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Abstract. Decomposition theorems for certain representations of Kac-Moody
algebras which are needed for the construction of modular invariant unitary
conformal models are proved. It is shown that all c < 1 modular invariant
models can then be recovered from gauged free fermionic models, including the
exceptional cases.

1. introduction

In a recent paper [6], new two-dimensional conformal models were constructed by
tensoring the c < 1 discrete unitary series of Friedan, Qiu, and Shenker [4] with
itself. In this way, one can reach models with central charges larger than one, which
are of interest in string theory as well as in two-dimensional statistical mechanics.
The building blocks of these new models are the representations of the Virasoro
algebra (Vir) with central charge less than one, and they were explicitly constructed
in [6] using a technique introduced by Goddard, Kent, and Olive [2] (see also [5]).
The construction starts with N free fermions, and a suitable subgroup of the
orthogonal group 0(N) x 0(N) is gauged to reduce the central charge. It was
argued in [6] that, if one starts with a standard set of modular invariant free
fermion models, the complete set of minimal modular invariant models discovered
by Cappelli, Itzykson, Zuber, and Gepner [8, 9] can be recovered. There were,
however, two technical points left incomplete in [6]. A theorem which gave the
decomposition of the level one highest weight representations of the affine 0(4N)
algebra was left unproved. Also, the exceptional solutions of CIZ remained beyond
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the reach of the construction. The purpose of the present paper is to fill in these two
gaps.

Using the Weyl-Kac character formula, we first show how to decompose the
Ramond sector of 0(4N) representations. This is then extended to the Neveu-
Schwarz sector, making use of an outer automorphism of the 0(4/V) affine algebra.
Finally, we show that the exceptional solutions of CIZ are obtained by using
conformal embeddings associated with exceptional symmetric spaces [10].

While completing this paper, our attention was brought to earlier work on the
same subject by Nahm [20], whose ideas are very close to ours. However, we feel
our treatment is more detailed and our point of view is somewhat different, so we
decided to present it here.

The paper is organised as follows. In Sects. 2 and 3 we briefly recall the main
results of [4] and [2, 3], and we fix some notations for the representations of
Virasoro and Kac-Moody algebras. For a general introduction to these algebras
and their physical applications, see [1]. The mathematical theory is contained in
[12]. Sections 4 and 5 explain the construction of modular invariant partition
functions. In Sect. 6 we state the decomposition theorems. The proofs are given in
Sect. 7. Section 8 illustrates their use in an example. In an appendix we discuss the
exceptional solutions.

2. The Discrete Series

Let us recall the commutation relations in the Virasoro algebra:

[Lm,LJ^(m-n)Lm + π+^(m3-m)^,_n, (2.1)

where m,n<=Z. A highest weight representation (H WR) of Vir is generated by a
highest weight vector |/zw), which satisfies the two conditions:

L0 |/iw> = /i|/iw>, LJ/ίw>=0, n>0. (2.2)

An irreducible HWR (IHWR) is completely specified by the values of h and c. We
shall denote it by V(h,c\ We define the character of V(h,c) to be:

Xk,M = <lh~c/2* Σ (dim W, (2.3)
n = 0

where Vn is the eigenspace of V(h, c) corresponding to the eigenvalue h + n of L0.
It was realized quite early that h ̂  0, c ̂  1 implies that V(h, c) is unitary, but it

took more time to investigate the region 0 < c < 1. (An IHWR with c = 0 is trivial.)
For n = 2, 3, ... we set

and

with pe {1,2, ...,«} and qe {1,2, ...,p}. Friedan, Qiu, and Shenker [4] proved that
if 0<c<l and V(h,c) is unitary, then c = cn and h = hntp<q for some (n,p,q).
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Conversely, Goddard, Kent, and Olive later proved [3] that V(hnip>q, cn) is unitary
for all (n, p, q\

IHWR in the discrete series (2.4,2.5) are not only a mathematical curiosity, but
also of great physical interest. Namely, to each value of n one can associate an
exactly solvable model of statistical mechanics, whose critical exponents are
determined by the hntptq.

It was natural to try to construct string models using the discrete series. One
possibility is to take the tensor product of a (finite) number of IHWRs in the
discrete series, chosen such that the total central charge is a positive integer. This is
possible since the sequence {cn} is rational, strictly increasing, and converging to 1.
This was shown in [6].

3. The Coset Construction

We start by reviewing the construction of [2, 3]. The GKO construction uses Kac-
Moody algebras, so let's first fix some notations for them. Let g be a simple, finite-
dimensional, Lie algebra, and { T1}, 1 ̂  ί ̂  D an orthonormal basis. The affine KM
algebra g is the Lie algebra with basis k, d, Tj,, m e Z and the commutation
relations:

.nδ
ij

9 (3.1)

(3.2)

[fc,7£] = [M] = 0. (3.3)

If the square length of the long roots of g is normalized to 2, as we assume from now
on, the eigenvalue of k on a unitary IHWR (UHWR) of g is a non-negative integer,
called the level. UHWRs can be defined as follows. Note first that g is embedded in
g by :Γh-> ΓJ. Then a UHWR with highest weight vector |Λ> has the following
properties:

T0

ίμ> = τ ίM>, (3.4)

where τ l denotes an irreducible finite dimensional representation of g,

Tΐ\Λy = Q, n>0. (3.5)

Let A be the highest weight of the representation τ, and θ the highest root of g. A
necessary and sufficient condition for unitarity is that

(A\θ)^k. (3.6)

A UHWR satisfying (3.4, 3.5, 3.6) is completely determined by \Ay = \A\ fc>. We
shall denote it by L(Λ\ Given a representation L(Λ\ one can construct on the same
space a representation of Vir by the Sugawara formula:

-m'., (3.7)

where hg is the dual Coxeter number of g, and the colons denote normal ordering:

if »<0 (38)

if π^O. (ί*}
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The representation Ln^+L?n of Vir on L(A) is unitary, because L(Λ) has a positive
definite hermitian form < | } with respect to which

n. (3.9)

The central charge of this representation is

Another important property of the Sugawara operators is

[L;,Tri]=-mT^ + Λ . (3.11)

If g is not simple, but semisimple:

g = gιθg 2θ...®g s, (3.12)

where the gt are simple, one defines the action of the TJ on

} = L(Al}®L(A2)® ... ®L(ΛS), (3.13)

and (3.7) becomes:

g def

Likewise,

c(g) = c(g1) + c(g2)+ ... +c(gj. (3.15)

Often we will write

L(Λ) = (Λ19Λ29...9ΛS) (3.16)

instead of (3.13). Moreover, when one of the gi = su(2)9 we will write (ni9kt) with
nt ̂  kt instead of (Λί9 fcf), where At = nte and e is the fundamental weight of su(2).
Sometimes we will also suppress the level kt if no confusion can arise.

Now it can be shown [1] that c(g)^rank(g), therefore there is no way to get
values of c in the discrete series by the Sugawara formula alone. Following GKO,
let p be a subalgebra of g. Clearly, we can form a representation Lp

n of Vir on L(Λ\
Put

T9lP — J9 _TP Π 1 71un ~^n ^n V J t l ')

Then L9^ is another representation of Vir on L(A) with central charge

c(g/p) = c(g)-c(p). (3.18)

Furthermore,

[I#p,£]=0, (3.19)

where the action of/? on L(A) is defined through the natural embedding peg. From
(3.19) we see that L(Λ) has the structure of a (p0Vίr)-module.

There are several choices [11] of (g,p9A) that lead to the discrete series. We
shall use the following one:

g = su(2) © su(2), p = diagonal su(2),
(3.20)

where m 1=0,1, . . .,n — 1, n is the same as in (2.4), and m 2e{0,1}.
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Using character formulas for KM algebras [12] and Vir representations in the
discrete series [13], it was proved in [3] that with the choice (3.20), L(A)
decomposes into representations of p0Vir as follows:

(m 1 ,n-l;m 2 , l)= ®(m,n)®\_n,mι + \,m+\'], (3.21)
m

where the summation is over m e {0, 1, . . ., n} such that ml—m~m2 (mod 2), and we
used the notation [n, p, q] for V(hn 9 P tq, c). Note that in (3.21) we implicitly extended
the range of q in (2.5) to n+ί, making use of the fact that the substitutions

q) (3.22)

leave the value of hntptq unchanged.

4. Modular Invariance

In discussing the modular invariance issue, we recall that left and right-moving
currents are decoupled, which is reflected in the fact that we actually have two
commuting copies AL, AR of the algebra A acting on the Hubert space ffl of a two-
dimensional model defined on a torus (here A = g, p or Vir). A specific model is
described by the decomposition of Jtf into irreducible representations V1 of
A x A '

M= Θ(M)My, (4.1)
ί,jel

where Mtj is a matrix of multiplicities with non-negative integer entries, and / is
some indexing set. The value of c when A = Vir, or k when A = g, is taken to be the
same for all the V^R. From now on, we shall omit subscripts referring to c or k, e.g.
write hp>q instead of hn>pfq.

Let χ^q) be the character of VR and χ^q) the character of V^ where q denotes
complex conjugation. The partition function of the model given by (4.1) is:

Z(q)=ΣyMMίjχ](q). (4.2)
i» j

The character χhtC of V(h,c) in the case ^4 = Vir has already been defined in (2.3).
When A = g (or p) we define the character χΛ of L(Λ) as the function:

χA(q,z) = qh*-«*V2* £ trΛexp(2πiz)9

Λ, (4.3)
n = 0

where z e h, a Cartan subalgebra of g, and trn is the trace on the eigenspace of L?Q

with eigenvalue hΛ + n, hΛ being the least eigenvalue of i/0 on L(A):

U<\Ay=hA\Ay, (4.4)

and c~A is the eigenvalue of the quadratic Casimir operator of g on the
representation L(A) with highest weight A. Comparing (3.2) and (3.11), we find that
on L(A),

. (4.6)
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Now let q = e2πίτ with Imτ>0, and let the modular group SL2(Z) act on τ as
usual: ,

611 + b (A Ί\τι->——. (4.7)
cτ-hα

It was found by Kac and Peterson [12] that χΛ(τ) has very simple transformation
properties under (4.7). Cardy [14] and Itzykson and Zuber [7] found similar
transformation properties of the χhtC: if I is the finite set of values oϊh allowed for a
given c < 1, then the vector space Ec spanned by the χh c with h e / is stable under the
action ofSL2(Z). In other words, the space Ec of characters carries a representation
of the modular group. Moreover, this representation is unitary. A similar
statement holds for the χΛ.

In order to classify all the consistent conformally invariant models on the
torus, one has to find all the functions Z(τ) of the form (4.2) invariant under SL2(Z).
This problem, originally raised by Cardy [14], turns out to be tractable because of
these nice transformation properties of the characters. It was solved in [8, 9] for
the Virasoro algebra's discrete series. Gepner also found that the problem for Vir is
essentially equivalent to the problem for sw(2).

In addition to the condition Z(σ τ) = Z(τ), σeSL2(Z), one also requires non-
degeneracy of the vacuum: M00 = 1. The vacuum in the case of Vir is the highest
weight vector |0> of the representation V(h = 0, c), which together with (2.2) satisfies

L_ 1 |0>-0 (4.8)

so that |0> is invariant under the group SL2(C) of projective transformations,
whose Lie algebra is spanned by L0, L+ j , . Similarly, the vacuum in the case of g is
identified with |Λ0> which satisfies

Tl\A )=0 (4.9)
instead of (3.4).

Table 1. The list of modular invariant partition functions for c<l

X n Z(X)

j n n+ 1

^ n - Σ Σ
^ p=l g = l

I 41

•£ p= 1 } q odd= 1

D2l+l,lZ2 41-2 1VJ V \χpq\
2+ \χp,2l\

2 + Σ (
^ p — 1 \^q odd — 1 q even — 1

E6 n I Σ {I:
^ 9 = 1

1 18

EΊ IT - Σ {I;
2 g = l

\ 30

29 - Σ
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The CIZ classification [8] is presented in Table 1. There are two infinite series
of solutions Al and Dl and three exceptional solutions, £6,£7,£8. n refers to the
central charge cn of model X, given by Eq. (2.4). χpq is the character of V(hptq9cn).
The reason why they are labeled by the simply-laced simple Lie algebras is because
the subscripts p of the diagonal terms \χpq\

2 appearing in the solutions are precisely
the exponents of the corresponding Lie algebras. Apart from that, the origin of the
ADE pattern is still mysterious.

5. The Branching Functions

The authors of [6] showed how to realize the models from the discrete series
starting from 4n free fermions, and adding an external gauge field taking values in a
subalgebra of o(4n), which we shall specify in a moment. The gauge field has two
features. First it implements physically the GKO mechanism. Second, it projects
out and regroups states from the free fermionic Hubert space, preserving modular
invariance. More precisely, we start with a modular invariant partition function of
free fermions:

z/(τ)= Σ Xλ(τ)MλμXμ(τ) > (5-1)
λ,μ

where A,μe{o,z;,s,ί}, the 4 UHWR of g = 6(4n) of level one (Fig. 1). Then we
choose a semisimple subalgebra pCg such that c(g/p) = cn. The UHWR L(λ) of g
decomposes as

L(λ)=@L(Λ)®U(λ,Λ). (5.2)
A

Here L(A) are the UHWR of p of level j = ( j ί , j2, •••), Λ being the level for the i-th
simple component of p, which is given by the Dynkin [15] index of the embedding
P i C g . U(λ,A) is the subspace of L(λ) spanned by the highest weight vectors of the
^-modules equivalent to L(A) contained in L(λ). From (3.19) we know that U(λ, A)
is a (in general reducible) representation of Vir with central charge c(g/p). lΐL(A) is
not contained in L(λ), we set U(λ,A) = Q. Taking the characters of (5.2) we find:

A

where bλ

Λ is the character of U(λ, A) and has been called the branching function in
[16]. One has from (3.17),

U(λ, A) = 0Q anV(hλ -hΛ + n, c(g/p)) (5.4)

with an 6 Z +. α0 is the multiplicity of occurrence of L(A) in L(λ). If c(g/p) < 1, as we
assume now, by (2.5) only a finite number of an are non-zero.

Let E9 be the vector space spanned by the χλ, with λe{o,v,s,t}9 and Ep the
vector space spanned by the χΛ with level(yl) = ;. Then by (5.3) we have a linear
map:

b(τ):Ep->E9. (5.5)

Fig. 1. The Dynkin diagram of ό(4n)
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For two branching functions bL(τ),bR(τ), define the hermitian form:

<bM= Σbλ

LΛ(τ)bλ

RΛ(τ). (5.6)
λ,Λ

Let ρ9:SL2(Z)-+Aut(E9} ana ρp:SL2(%)-+Aut(Ep) be the representations of the
modular group afforded by the affine characters. Then we have a natural
representation ρ of SL2(Έ) on the space of linear maps EP-^E9 given by

b(σ τ) = ρ(σ) b(τ) = ρ9(σ)b(τ}ρp(σ ~ x) , (5.7)

and since both ρ9 and ρp are unitary, ρ is unitary with respect to < , >. In other
words, (5.6) is a modular invariant function.

Now let M9 be the matrix defining our free fermion theory Zf(τ) in (5.1), and let
Mp define a modular invariant partition function for p. Then M9 and Mp commute
with ρ9, respectively ρp, and it follows [11] that

Zg/p(τ) = (b(τ)Mp,M9b(τ)y (5.8)

is a modular invariant partition function for the Virasoro algebra.
Let Z(X) be a modular invariant partition function from the CIZ classification,

with X = Ab Dl or Et. Denote by Jήf4n the Hubert space of the simplest modular
invariant theory of 4n free fermions :

^4n = (o, o)®(υ, v}®(s, s)® (ί, ί) . (5.9)

We use (5.9) to construct Z(X) when X = Al or £,. In the case X = Dh the structure
of the Hubert space depends on n. Define

) , (5.10)

) . (5.11)

The free fermion Hubert space for the case X = Dt is then given when n is even by

if nΞ0(mod4)

if «Ξ2(mod4).

From (5.9) and (5.12) a matrix M9 can be determined, which when inserted in (5.8)
will produce all the invariants Z(X) in Table 1. However, for each Z(X) in Table 1,
there is another conformal invariant Z'(X) whose central charge n differs by one
unit [8]. For X = An, Z'(X) = Z(An+l), so this is not very interesting, but for the Dl

series, one obtains in this way invariants for odd n. They can also be constructed
from fermi fields [6], by first decomposing o(4n) into o(4)®o(4n-4) - see (5.16)
below - and with the following choice of boundary conditions:

(5.0)

For E6, EΊ,E8, there are three other conformal invariants at n= 10, 16,28. They
can be easily constructed starting from modular invariant partition functions for
su(2) by interchanging su(2)c and su(2)d - see Eq. (5.18) below - as in [11]. But it is
not possible to obtain them by the kind of fermionic realization which we use.

It was argued in [6] that the zero mode of the gauge field projects out the states
from the free fermion Hubert space which are invariant under the diagonal
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subalgebra of pL®pR Accordingly, we obtain for Mp the invariant:

MLr = <W> (5 14)

where r./l — (Λ*,/c) and A* is the highest weight of the contragredient p-module

Now we give the embeddings peg which we use in order to produce the
invariants Z(X) of the CIZ classification. The general form of p is

p = q®su(2)a®su(2)d (5.15)

with q semisimple. We use superscripts α, fo, . . . to distinguish between the su(2)
factors. The embedding g D p is composed out of three more elementary ones:

o(4n) 3 o(4n - 4)®su(2)a®su(2)b , (5.1 6)

o(4n-4)3q@su(2)c, (5.17)

(5.18)

Equation (5.16) is just the regular embedding, (5.18) the diagonal embedding. (5.1 7)
is obtained as follows. Given a simple Lie algebra g', one chooses an involution
such that q@su(2)c = pf is its fixed point set. In other words g'/pf is a symmetric
space, dim(gf/p') = 4n — 4. Then (5.17) is the natural embedding of the isotropy
group into o(4n — 4).

Table 2 contains the choices of q and g' that have to be done to construct a
given Z(X). The column labeled "levels" gives the Dynkin indices of the embedding
of the three simple factors q, su(2}a and su(Σf of p into g. Equivalently,
representations of p, sϊί(2)α, su(2)d to be considered later will have the indicated
levels.

Table 2. Subalgebras assignments

Levels

AnίDn sp(n) sp(n-l) 1,1, n

£6 E6 su(6) 6,1,11

EΊ EΊ so(U) 8,1,17

Es E8 EΊ 12,1,29

Equation (5.18) is nothing but the embedding (3.20) used in the GKO
construction. Equations (5.16) and (5.17) are conformal embeddings. This means
that they are of the type gι3g 2 such that Un

ll92 = Q or, equivalently, c(g1/g2) = 0.
Notice that branching functions for conformal embeddings are constants, and the
coefficients b\ are nothing but the multiplicities for L(A) occurring in L(λ).

To obtain Z(X) as a summand in Zg/p, the only thing we have to do is to
compute the branching functions b(τ\ which are composed of the branching
functions for the embeddings (5.16, 5.17, 5.18). In fact, the branching functions for
(5.18) are already given by (3.21).
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The branching functions for (5.16) are easily found. They are given by

(5.19)

with the notational conventions explained above and omitting the levels which all
are equal to one.

The branching functions for (5.17) will be given by the decomposition theorems
of the next section. These theorems, together with (3.21), (5.19), and the modular
invariants M9 and Mp defined above lead to the relations:

Zg/p = 4lZ(X) (5.20)
when X = Ab D{ and

ZglP = 4llZ(Al) + Z(XJ] (5.21)

when X = Eh 1 = 6,7,8.

6. The Decomposition Theorems

The non-trivial part of the computation is to find the branching functions for
(5. 1 7). For this, we first have to introduce more definitions. Let /z, /z, /z0, hQ be Cartan
subalgebras of g', g', pf, p' respectively, such that h0 Ch,hQC h. (h is the direct sum of
h and the two-dimensional space spanned by k and d.) Denote by K*, /z* etc. ... the
duals. Also let A, A, A0, A0 denote the corresponding sets of roots. We fix a choice of
positive roots A+ί A + of g' and g'. Note that A0 C A because the symmetric spaces
given in Table 2 are such that g' and p' have the same rank, which implies that the
embedding p'Cg' is regular. We set A0+ = A0n A+ and A1=A—A0.

Let W, W, W0, W0 be the respective Weyl groups. W0 and W0 are contained in W
and W, but they are not invariant subgroups. Recall that Wis a semidirect product

W=W\xT, (6.1)

where T, the invariant subgroup of "translations" is the lattice M spanned by the
long roots of g'.

For /le/z*, denote by λ its projection on /z*. Then

λ = Z+mΛ0 + aδ. (6.2)

δ and ΛG correspond by duality to k and d. One has δ(d) = ΛQ(k)=\,
δ(k) = Λ0(d) = Q. The invariant bilinear form on /z* reads:

(λ\λf) = (Z|Z') + ma' + m'a . (6.3)

Note that in (6.2), m = (λ\δ) = level (λ). The action of ία e T, α E M on /z* is given [12]
by:

tΛ(λ) = λ + (λ\δ)a - [(λ|α) + i|α|2(A|δ)]δ . (6.4)

Let
ρ = Mo + i Σ ^ (6.5)

aeA +
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and ρ0 the analog for pr. Later we shall also need the so-called formal
character ch^:

(6.6)

where mult(λ) is the multiplicity of λ, and the sum runs over all the weights of L(A).
For any λ e h*, x e /i, eλ is the function on ft defined by

eλ(χ) = eλ(x}. (6.7)

The definitions (4.3) and (6.6) are related by:

χA(τ, z) = qkΛ-w/" exp( - 2πimu) chΛ(x), (6.8)
where

x = 2πi(z-τd + uk) (6.9)

and q = e~δ(x) = exp(2πiτ). The series (6.6) converges absolutely in the region
Imτ>0.

The following theorem is due to Kac and Peterson [18], with a correction by
Nahm [20], and gives the decomposition of the half-spin representations s and ί
(the Ramond sector). It is in fact an easy generalisation of the finite-dimensional
analog, which was proved by Parthasarathy [19].

Theorem 1. Let g' be a simple Lie algebra, p' C g' a semisimple subalgebra of the same
rank, such that g' = p'@V defines a symmetric space, i.e. [V, V~\ Cp'. Let W1 be a set
of coset representatives of W/WQ, such that w(ρ) is a dominant weight for any weW^.
Then under ό(V}~3p' we have

s = © L(w(ρ)-ρ0), (6.10)
weWf

ί= 0 L(w(ρ)-ρ0), (6.11)
weWϊ

where Wf = {we Wλ \ det(w)= ±1).

Thus the problem of finding the branching functions for s and t is solved by the
preceding theorem, provided we have an explicit description of the set W± in the
cases of interest. Observe that

W^(W^T}/(W^T^(W/W,}x(T/T,}. (6.12)

One finds that Γ/Γ0 is trivial in the classical case g' = sp(n), but T/TQ^Z2 in the
exceptional cases [20].

Corollary 1. // g' = sp(n+l\ p' = sp(n)®su(2\ then (6.10) and (6.11) become

s= © (Λj9n-j), (6.13)
7 = 0, 7 even

t= Θ (Λpn-j), (6.14)
7 = 1 , 7 °dd

where Aj refers to the j-th fundamental representation of sp(n).

In the exceptional cases, g' = E6, £7, E8,q = su(6), so(12), E7, the set Wί has to be
found with the help of a computer program. The results are given in the appendix.
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Fig. 2. The automorphism μ

The decomposition of o and v, the Neveu-Schwarz sector, can be deduced by
means of the next theorem.

Theorem 2. For each q in Table 2, consider ό(4N)^>q@su(2), where 4N = dim(g'/p').
The su(2) factor has level N. Denote the branching functions for this embedding by
bλ

Λj, where λ E {o, v, s, f}, A is the highest weight of a UHWR of q and] e {0, 1, . . ., N}

specifies the UHWR of su(2). Let μ be the automorphism of the Dynkin diagram of
o(4N) given by Fig. 2. Then the following relations hold:

j-bίj. (6.15)

Corollary 2. Under ό(4n)Dsp(n)φsu(2) we have

o= 0 ( Λ p j ) , (6.16)
j = 0, j even

«= Θ (Λj,ϊ). (6.17)
j= 1 , / odd

7. Proofs

Proof of Theorem 1. Since p' and g' have the same rank, dimV=2n is even. Let
{±£j}, 1 ̂ i^n be the weights of the o(2n)-module 7, and let i:p'-+o(2n) be the
inclusion map. One can choose h0 such that i(h0) is contained in a Cartan

subalgebra u of o(2n). Looking at the transposed map ί* = π: M* ->/ϊg, one sees that

there is a bijection between {+ εt} and Zj, because σ ° i = ρ, where σ is the standard
representation of o(2n) on F and ρ is the representation of p' on V induced by the
adjoint action of g'. So we can arrange that

π(εt) = cίi9 (7.1)

where {α1 ;α2, ...,απ} = Jj + .
Using the construction of 5 and ί by fermionic oscillators [17, 18], we easily

compute the formal character of the Ramond representation s@t of o(2n):

ch(s®t) = eΛ" Π (e*il2 + e~ε*12) Π (l+eε*qm)(\+e~Eiqm) (7.2)
i=l m= 1

with q = e~δ. A9

0 is the analog of Λ0 for g = ό(2w). Because 5 and ί are, respectively,
subspaces of even and odd fermion numbers, from (7.2) one derives:

eA° Π (eε*/2-e~ε*12) f[ (1 -eειgm)(l -e~ClO (7.3)
i= 1 m= 1
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Recall the Weyl-Kac character formula for L(A}\

Π (^~e Tυl tα'

where ε(w) —det(vv). Putting A = 0 in (7.4) one obtains the character of the trivial,
one dimensional representation, ch0 = l, and the denominator identity:

Inserting (7.5) back into (7.4), one gets another form of the character formula:

Σ ε(w)ew(Λ+ρ}

ChΛ = ̂ ^ε(w)e™^' (?'6)

The roots A of g' are given in terms of A and δ by:

£, m>0}u{m(5|meZ, m>0}. (7.7)

The multiplicities are: mult(mδ) = rankg/ and mult(α) = 1 in all other cases. Recall
that p' = q@su(2). Let A'Q and yio be the analogs ofΛ0 for g and su(2). We extend the
map π to w* by

=/ytΌ+/^S, (7.8)

where / and / are the Dynkin indices of p' C o(2n). In the same way as we defined π,
we define φ:h*-^h$. Note that

φ(ΛQ) = Λ'Q + ΛZ, (7.9)

because p' C g' is a regular embedding. Let L(A) be a representation of p1 with
highest weight Λ = (Λ',Λ"\ We define

ch^-ch^ch^. (7.10)

Comparison of (7.3) and (7.5, 7.7) yields using (7.1):

r 1 / \ 1 / \τπ[ch(s)-ch(ί)]=

woe Wo

Σ e(w) Σ ε(w0)ewow<ρ)

W€jfj __ WQ6^Q _ Π \
w ' l

By the Weyl-Kac formula (7.6) for p', the theorem is now proven, provided we show
that s and t have no irreducible component in common, whose contribution would
cancel in the difference ch(s) — ch(ί). To show this, we consider first the finite
dimensional analogs s and T of s and ί. We know that the weights of the o(2ri)-
module s are of the form

ε 2 ± . . . ± ε j (7.12)
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with an even number of minuses, while those of Γhave an odd number of minuses.
We prove that the sets of weights of s and ζ considered as //-modules, do not
intersect. Supposing the contrary, we would have an equality such as:

ρ1-α/

1-α'2- ... -α; = ρ t -α'ί -α^- ... -<. (7.13)

where α , α'/e A1 + , ρ^ρ — ρ0, Πs even and m is odd. But when a root in Δl is
expressed as a linear combination of simple roots, the sum of the coefficients in
front of the simple roots which belong to A1 must be odd, by the properties of a
symmetric space. Therefore (7.13) is a contradiction.

Since g' is simple and p' semisimple, it follows that the p'-module V is
irreducible. As a consequence the embedding p'Co(2n) is integral, in the
terminology of Dynkin [15]. This means that for any irreducible o(2n)-module

its decomposition into irreducible //-modules:

L(I)= φL(Λ;) (7.14)
ie/

is such that A{ — A^Q, where Q is the root lattice of p7, for any i,jel. Let
denote the set of weights of L(A^. P(At) is the intersection of At + Q with the solid
polyhedron whose vertices are the elements of the orbit W0 A{. Let M(A^ be the
set of points of At + Q whose distance to the origin is minimal. Then Ji(Ά^ C P(A^
but Jί(Ά^ = Jί(Zj). So we have proved

At-AjEQ => P(Zί)nP(JJ.)Φ0 (7.15)

The relation Άi — ΆjEQ defines equivalence classes of weights. Denote by [s]
and [f] the equivalence class of weights of s and ζ respectively. They are well-
defined because p' C o(2n) is integral. Equation (7.1 5) implies that [s] φ [ί] because
the sets of weights of s and Tare disjoint.

Now we come back to the infinite-dimensional theory and s, t. s is a subspace of
s, and all the weights of s are in the same equivalence class, [s], and likewise for t.
The converse of statement (7.1 5) is clear, so [s] φ [ί~] implies that the sets of weights
of s and ί are disjoint. This concludes the proof of the theorem. Observe that from
(7.8) and (7.9), by looking at the coefficient of ρ0 in (7.11) we get:

/ = Λβ-Λ 4; j" = h,-2. (7.16)

Proof of Corollary i. In this case one has W^ = W/W0. Let { + β j / = l , . . . ,n + l be
the weights of the fundamental representation of sp(n-hl). The et form an
orthonormal basis of h*. The structure of the group W is:

ΐ^=S n + 1 ιxZ5 + 1 , (7.17)

where Sn + l is the permutation group on the set {e l J...,en} and Z^4"1 acts by
et^> ±et. We can choose the same basis {ej for /i"0, with i = l corresponding to
su(2) and ί = 2, . . . ,n+l to 5/?(n). Then we have:

l)β3+ ... +eπ + 1, (7.18)

e3+ ... +e w + 1 . (7.19)

It can be checked that

.,(12.. .n + l)} (7.20)
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is a set of coset representatives with the required property. Here (12 ... n) is the
cycle l-»2-> . . . — »n— »1. Computing w(ρ) — ρ0 for we Wi proves the corollary.

o/ Theorem 2. For defϊniteness we take q = sp(N). The exceptional cases may
be treated similarly. Put g = o(4ΛΓ). Let ωί? i=ί,...,2N and ώί9 ί=l, . . . ,ΛΓ be the
fundamental weights of g and q. Then the Cartan subalgebra w* of g is spanned by
A o (here we do not use the superscript g), δ, and the ωt; h$ is spanned by Λ'0, Λ'^ δ, e
and the ώi9 where ' refers to the sp(N) component of //, " to the su(2) component and
e is the fundamental weight of su(2). The map π : w*->/z;5 defined before is explicitly
given by

π(ω :) = ojt + ie, 1 <; z < N ,
(7.21)

π projects a weight of g onto a weight of /?'. In principle, one could find the
decomposition of a representation of g by applying π to all the weights of the
representation and doing an appropriate bookkeeping of the multiplicities.

Let αt , i = 0 5 l , . . . ,2JV denote the simple roots of 6(4N). The fundamental
weights Λ{ of ό(4N) are defined by the relations:

T^r¥=δi/ (7 22)
vαjiαj)

They are linked to the ω{:
(7.23)

where mι=m2N-\ =r^2N=^ an<i mt = 2 for 2^ί^2N — 2. Note that

{o,ϋ,s,ί} = μo,^ l 9^2Λr-ι^2N}. (7-24)

From the automorphism μ of the Dynkin diagram shown in Fig. 2 one can
construct an automorphism of u* [21]:

μ - ί ω o W ? (7.25)

where ω = ω 2 Λr-ι = i(ει +ε2 + ... +ε2N), ίω is defined as in (6.4) and w is the Weyl
group element of 0(4JV) given by:

w(εi)=-ε 2 J V_ / + 1 . (7.26)

The action of μ on the fundamental weights is

μ(Ai) = Λ2N.imod(Cδ. (7.27)

We also have an automorphism μ' of the Dynkin diagram of sίί(2) (see Fig. 3).

Fig. 3. The automorphism μ'
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Correspondingly, we define an automorphism of /ιg by:

μ'(nΛ'(> + me) = nΛZ + (n-m)e-(n/4-m/2)δ, (7.28)

and μ' = identity on Λ'^δ.ώ^
Note that μ (and μ'} can be extended to an automorphism of the whole affine

algebra ό(4N) [respectively m(2}~] by putting

μ(ej = eM, μ ( f i ) = f μ ( i } , (7.29)

where eb fh i = 0, 1 , . . ., 2N are the Chevalley generators. From that it follows that μ
and μ' preserve weight multiplicities.

The reason why we introduced π, μ, and μ' is because we have the commutative
diagram:

U* > /70

AM U (7.30)

i.e. we have π°μ^μ' °π. It is trivial to verify this using (7.21), (7.25), and (7.28).
By considering (7.30) the theorem follows immediately. Indeed, applying π o μ

on s®t corresponds to mapping the Ramond sector to the Neveu-Schwarz sector,
and then looking at the decomposition of the Neveu-Schwarz sector, which is what
we want to know. On the other hand, applying first π, i.e. decompose the Ramond
sector - which is easy to do by Theorem 1 - and then μ', amounts to the same thing.

8. An Example

To illustrate the use of decomposition theorems, we will show how to compute the
invariant Z(Jf) for X = Dt, n = 2 (mod4). In this case ffl is given by (5.11). We use
(5.19), Corollaries 1 and 2 and find the decomposition of the representation o of
6(4n) into irreducible representations of p'@su(2)a®sίί(2)b:

;,Λ0,0)0 "0 (Λ 7 , j , l , l). (8.1)
;' odd - 1

With (3.21) this can be further decomposed into representations of
4φsu(2)αφsw(2)ίi®Vir:

o= "φ 0 (^,0,/n,[; + l,»ι+l])
j even — O m even = 0

Φ Θ Θ (Λ, , l ,m,j j + l,m+l]). (8.2)
j odd= 1 m even = 0

Now consider (OL, OR). According to (5.14) we have to select the representations
which satisfy ΛjtL = ΛjtR, mL = mR etc. Setting p=j+\ and q = m + l we find that
the contribution of (OL, OR) is

n n

n Σ Σ IXMI (8-3)
p= 1 q odd= 1



Modular Invariant Partition Functions 257

Similarly one can find the decomposition of v and t:

"
j even = 0 m odd = 1

® 0 0
j odd = 1 m odd = 1

(8.4)

ί= Θ 0 (/f, ,l,m,[n-
j even = 0 m odd = 1

θ "0 0 (Λj,Q,m,[n-j,m +
j odd = 1 m odd = 1

As a result, the contribution of (VL, tR] is n times

.5)

« /i

Σ Σ
p = l ήf even = 1

n 21-2

Σ Σ ( IpqΪK - 1 - p,q + C'C') (8 6)
P ~ l <? even — 1

The terms (SL, SR) and (tL, UR) produce exactly the same expressions, (8.3) and (8.6).
Thus we get the relation (5.20) in a particular case.

Appendix: The Exceptional Solutions

The explicit decompositions of s@t resulting from applying Theorem 1 when
g' = £6,E7,£8, q = su(6),so(\2\EΊ are given in Tables 3-5. Each entry in these
tables corresponds to an irreducible representation L(Λ) of q®ίu(2). The first
column contains a + or a — depending on whether the representation is contained
in s or t. The second and third column are the Dynkin coordinates of A for the q
and the su(2) components, respectively. The entries whose second column is

Table 3. The decomposition in the case g' =

4 00000
4 00006
4 00030
4 00060
- 00100
- 00130
4 00200
- 00203
4 00303
4 00400
- 00500
4 00600
- 01005
4 01010
- 01021
4 01040
- OHIO
4 01121

10
0
6

10
9
7
10
3
4
0
1

0

1
8
5
8
9
6

4 01202
- 01302
- 02001
4 02004
4 02020*
4 02020*
- 02031
4 02101
- 02120
4 03000
- 03011
4 03030
- 03100
4 04002
4 04010
- 05001
4 06000
- 10020

2

3
7
0
4
10
7
8
5
6

9
6
7
10
8
9
10
7

- 10050
4 10104
4 10112

4 10120
- 10212
- 10301

4 10401
4 11011
- 11030
- 11103
- 11111*
- 11111*

4 11211
- 12010
4 12021

4 12110
- 13020
- 20013

9
2

4
8
5
1
2

6
9
1

3
7
4
5
8
6
7

3

4 20040
- 20102
4 20202*
4 20202*
4 20210
- 20310
4 21012
4 21101

21201
4 30003
- 30111

30200
4 30300
- 31002
4 40020
4 40101
- 50010
4 60000

10
5
0
6
2

3
2
4
5
4
1

3
4
3
0
2

1
0
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Table 4. The decomposition in the case g' = EΊ

4- 000000

4- 000004

4- 000008

- 000013

- 000017

+ 000026

+ 000062

- 000071

4- 000080

4- 000102

4- 000106

- 000115

+ 000204

4- 000302

- 000311

4- 000400

- 001001

- 001003

- 001005

+ 001012

+ 001014

- 001101

- 001103

4- 002000

4- 002002

+ 002004

- 002013

- 002031

4- 002040

4- 002102

- 003001

+ 004000*

+ 004000*

Table 5. The

4- 0000000

- 0000003

16 4-

10 4-
16

11

15 +

16 +

0 +

1

0 4-
12

14 4-
15

16

6 +

7

8 +

13 4-

9 4-
13

10 +

14 4-

11 4-

15

12 +

16 +

12 +

13

3 +

4 +

14

15

0 +

16

decomposition

28 4-

21 4-

4- 0000006* 0 +

4- 0000006* 28

+ 0000012

- 0000015

4- 0000024

- 0000051

+ 0000060

- 0000101

4- 0000102

4- 0000104

- 0000111

- 0000113

+ 0000200

22 4-

27 4-

28 4-

15

16 +

23 -

20 4-

26

21 +

27

22 +

010000 14

010004 12

010013 13

010051 1

010060 2

010102* 8

010102* 14

010111 9

010200 10

010211 5

010220 6

011001 15

011003 11

011012 12

011101 13

012000 14

012020 2

020000 16

020011 7

020020 8

020040 0

020102 10

020111 11

020200* 4

020200* 12

030000 6

030011 9

030020 10

040000 8

100000 15

100004 11

100013 12

100102 13

in the case g' = E
S

0001200 26

0002000* 18

0002000* 28

0002011 23

0002020 24

0003000* 6

0003000* 22

0010000 25

0010003 24

0010012 25

0010021 18

0010030 19

0010101 26

0010102 23

0010111 24

- 100202

4- 100211

- 100300

4- 101001

4- 101003

- 101012

+ 101041

- 101050

4- 101101

4- 101121

- 101130

- 102000

- 103010

- 110000

- 110102

4- 110111*

4- 110111*

- 110120

- 110200

- 111030

- 111110

+ 120011

- 120020

- 120100

- 130000

4- 200000

- 200131

+ 200140

4- 200202

- 200211

4- 200300

- 201021

4- 201030

- 0030000

- 0030100

+ 0040000*

+ 0040000*

4- 0100000

- 0100003

- 0100005

+ 0100012

- 0100031

+ 0100040

- 0100101

4- 0100102

- 0100111

+ 0100200

4- 0100220

7

8

9

14

10

11
2

3

12

4

5

13

1

15

9

6

10

7

11
1

3

8

9

5

7

16
3

4

8

9

10

5

6

15

19

0

18

26

23
1

24

17

18

25

22

23

24

12

4- 202020

+ 202100

- 210111

4- 210120*

4- 210120*

4- 211010

+ 220100

+ 300031

- 300040

+ 301021

- 301030

- 301110

- 302000

- 310020

- 311010

- 400031

4- 400040

4- 400200

4- 401010

4- 402000

+ 410020

- 500100

- 501010

+ 600000

4- 600100

- 700000

4- 800000

+ 0120100

- 0130000

+ 0200000

4- 0200004

- 0200031

+ 0200040

+ 0200200

- 0200201

4- 0201020*

+ 0201020*

+ 0202000

- 0210100

- 0210110

4- 0220010

- 0300021

0

2,

1

2

8

4

6

4

5

6

7

1

3

3

5

5

6

0

2

4

4

1
3

0
2

1

0

18

17

28

0

19

20

14

7

10

18

4

13

17

16

9
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Table 5 (continued)

4-
—

4-
—

4-
4-
+
_
—
+
-f
-f
—
+
—

4-
—
-f
—
—
—

4-
—
—
—
—
+

4
-

4-
4-
4-
+
+
—
—

+
—
—
+
—
—
—

4-
—

0000202
0000203
0000212
0000301
0000400*
0000400*
0001000
0001003
0001011
0001012
0001020
0001040
0001101
0001102
0001111
1000101
1000102
1000111
1000200
1000310
1001000
1001011
1001020
1001030
1002000
1002100
1010000
1010004
1010021
1010030
1010120
1010210
1011002
1011010
1020020
1020100
1030000
1030001
1100000
1100031
1100040
1100210
1101020
1101101
1101110

28
25
26
27
10
28
24
25
19
26
20
14
27
24
25
24
21
22
23
11
25
20
21
15
19
7
26
2
19
20
14
10
4
18
13
17
16
1
27
18
19
13
17
6
9

- 0010130
- 0010200
- 0010300
- 0011000
- 0011010
4- 0011011
- 0011020
- 0012000
4- 0020000
- 0020003
- 0020021
4- 0020030*
4- 0020030*
4- 0020100
4- 0021010
- 1110003
4- 1110110*
4- 1110110*
- 1111001
- 1120010
4- 1200111
- 1200200
- 1201010
- 1201100
+ 1210100
4- 1300011
- 1300110
- 1301000
4- 1400001
- 1400010
- 1500000
+ 2000000
- 2000041
4- 2000050
4- 2000300
- 2001003
4- 2001030
+ 2002010
- 2010102
- 2010120
- 2010200
4- 2020002
4- 2020020
+ 2021000
4- 2100210

13
25
9
27
17
22
23
21
28
3

21
12
22
16
20
1

12
16
3
15
8

15
11
5
14
10
7
13
12
9

11
28
17
18
12
3
16
8
5
15
11
0
14
2
14

4- 0101000
- 0101011
4- 0101020*
4- 0101020*
4- 0101200
4- 0102000
- 0102001
- 0110000
4- 0110021
- 0110030
- 0110110
- 0110120
- 0111010
4- 0120002
4- 0120010
+ 2101002
- 2101011
4- 2101100
+ 2110101
- 2110110
- 2200101
4- 2201010*
4- 2201010*
- 2300011
4- 2300100
4- 2400010
+ 3000103
- 3000300
- 3002000
4- 3010012
4- 3010200
- 3011001
- 3020100
- 3100102
+ 3101001
- 3101100
- 3110011
+ 3200101
- 3201000
- 3300100
- 4000013
4- 4002000*
+ 4002000*
- 4010002
4- 4010101

26
21
16
22
8
20
5
27
20
21
15
11
19
2
14
2
7
10
4
13
9
6
12
11
8
10
4
13
9
6
12
1
3
3
8

11
5
10
7
9
5
0
10
7
2

4- 0300200*
+ 0300200*
4- 0301000
- 0310100
- 0400001
4- 0400020
4- 0401000
4- 0500000
- 0500001
4- 0600000
- 1000000
4- 1000003
- 1000012
4- 1000041
- 1000050
+ 4020010
4- 4100012
- 4101001
4- 4110001
+ 4201000
+ 5000003
- 5001100
4- 5010002
- 5010011
- 5020000
- 5100002
- 5110001
- 6000003
+ 6000200
4- 6001010
4- 6010001
4- 6020000
4- 6100002
- 7000110
- 7001000
- 7010001
4- 8000020
4- 8000100
+ 8001000
- 9000010
- 9000100
4- 10,000000
+ 10,000010
- 11,000000
4- 12,000000

6
16
12
15
11
8
14
10
13
12
27
22
23
16
17
4
4
9
6
8
6
1
8
3
5
5
7
7
0
2
4
6
6
1
3
5
0
2.

4
1
3
0
2
1
0
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followed by * give rise to the off-diagonal terms of the exceptional invariants. They
come in pairs with the q component of A repeating itself. This peculiar
phenomenon does not happen in the classical cases.

One can check that the following property holds for each one of these tables:
the number of entries whose third column equals 7, where j is any integer between
zero and hg, — 2 [see Eq. (7.16)], is equal to the rank / of g', except when j+1 is an
exponent of g', in which case it is equal to / +1. This takes care of the diagonal
terms in formula (5.21).
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