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Abstract. We consider a system of interacting diffusions. The variables are to
be thought of as charges at sites indexed by a periodic one-dimensional lattice.
The diffusion preserves the total charge and the interaction is of nearest neigh-
bor type. With the appropriate scaling of lattice spacing and time, a nonlinear
diffusion equation is derived for the time evolution of the macroscopic charge
density.

1. Notation and Summary

We will study the problem of passage to hydrodynamic limit under diffusion type
scaling for a system of charges that are located at various sites of a periodic one-
dimensional lattice. The charges migrate between adjacent sites randomly according
to a well defined diffusion law. The algebraic sum of the charges is always conserved.
The charges themselves are of indeterminate sign. Under diffusion type scaling of
lattice width and time, a deterministic limit is obtained for the macroscopic charge
density and the limit is characterized as the solution of a nonlinear heat equation.
We will now develop the notation and end this section with a precise statement
of the results as well as a sketch of the proof.

S is the unit circle represented as the interval 0 g θ g 1 with end points identified.
The scaling parameter is N and the scaled lattice consists of sites j/N in S for
j = 1,2,..., Λf. The sites adjacent to j/N are j ± 1/N with addition being modulo
N. The charge at site j/N is represented by the variable Xy The charge configuration
(x 1 ? . . . ,xN) is represented as a vector 3c in RN. The configuration 3c changes with
time and as a function of time ~x(i) undergoes a diffusion in RN. The infinitesimal
generator of the diffusion is given by

r2 / ?, Pi \

(1.1)
όxΛ ~
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Here φ is a continuously differentiable function from R--+R satisfying the properties
to be listed below and φ'(x) = dφ(x)/dx. The factor N2 in (1.1) with lattice spacing
of 1/N represents the effect of diffusion scaling,

jy-* l x l Λc=l, (1.2)

\eAχ-φ[x)dx - M(λ) < oo VλeR, (1.3)

or equivalently there exists ω(x) which is symmetric and convex on R satisfying

lim -1—- = 0, ω(x) >\x\ for all Y (1.4)

and
\eω{x)~φ{x)dx<oc. (1.5)

In addition
leσlφ'{x)l~φ{x)dx<oo Vσ>0. (1.6)

Given such a φ we can define a density ΦJVW = e x P [~ Σφ(*jΏ o n ^N? a n d
will be the density relative to Lebesgue measure of a probability measure on RN.
The generator LN is formally symmetric relative to the density ΦN and defines a
diffusion process with invariant density ΦN with respect to which the process is
reversible. The Dirichlet form for the diffusion is given by

^ ( 1 *

The diffusion is not ergodic for the invariant measure ΦN. The sum x1 -f- + xN

is conserved by the diffusion and the hyperplanes xλ + ••• + xN = Ny of average
charge y are invariant sets. For every y the diffusion restricted to such a hyperplane
is elliptic and ergodic. The invariant measure on the hyperplane is the conditional
distribution of ΦN given x1 + ••• + xN/N = y.

We start with an initial distribution for "χ(O) given by some density
/ $ ( * ! , . ,XN) relative to ΦN. Then the evolution will give us a density
/jv(xi,..., xN) for t ^ 0. To obtain fN we have to solve the heat equation

d{f = LNfN for t>0, / : v U 0 = / ° . (1.8)

Associated with the charge configuration 3c we have the measure,

μN~NΣXjjlN'

viewed as a random signed measure on S. If for every smooth function J(θ) on S,

lim <J,μN>= lim ]-Σj(^)xi = \jφ)m(θ)dθ

exists, then we say that m is the asymptotic macroscopic charge density. Of our
initial density f°N we assume that for some nice mo(0), every smooth J( ) and
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each δ > 0,

lim $f°NΦNdx = 0, (1.9)

where

= I x:
1

-Σj[-)Xi-lmΌ(θ)J{θ)dθ >δ
N

In addition we assume that the entropy

HN(f°N) = lf° log f°NΦNdx (1.10)

satisfies a bound

(1.11)

for some constant C.
Under these conditions the randomly changing charge configurations at time

t ^ 0 are shown to have an asymptotic deterministic charge density m(ί, θ) which
is characterized as the unique solution of a certain nonlinear heat equation with
initial condition mo(θ). But to describe this equation we have to develop some
more notation. We look at the function M(λ) defined in (1.3) and define

p(λ) = log M(λ\ h(y) = sup [_λy - p(/)]. (1.12)
λ

Then h( ) and p( ) are a pair of conjugate convex functions and

λ = h'(y) if and only if y = //(/). (1.13)

i.e. /ir and p' are inverses of each other. By elementary calculation one can check that

L p'(A), (1.14)

so that the value of λ that makes (1.14) equal to y is / = h'(y). One knows also
that p' and ti are smooth strictly increasing functions. We can now state our main
result.

Theorem 1.1. If the initial distribution of charges satisfies (1.9) and (1.11), then for
every t>0, arbitrary smooth J( ) and each δ > 0,

lim I fNΦNdx=0 (1.15)
*-><*> E'N

with

'tN-<ι{x1,...,xN)' N

where m(θ, t) is the unique weak solution of the nonlinear diffusion equation

dm
^ m m m(t,θ)\t = o = mo(θ). (1.16)

We will now give a sketch of the proof.
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Let us fix a smooth J and consider the stochastic process

It is easy to write down a stochastic differential equation satisfied by ξN(t) in the
form

dξN(t) = aN(t)dβ + bN(t)dt. (1.17)

The way the problem is scaled implies that %(£)-> 0 as N-*CΌ. An explicit
calculation of bN(t) can be made and we obtain

(1.18)

Using summation by parts and the smoothness of J(θ) we can pass to

— )φ'(Xi(ή). (1.19)

N J
At this point one has to justify the ansatz that the density ft

N(x1,...,xN) looks
like a slowly varying family of local Gibbs states. This means that averages of
φ'(Xi) can be replaced by their mean values (ί/M(λ))\eλx~φ{x)φf(x)dxi where / = h'{m)
and m is the local macroscopic density. One calculates easily that

M(λ)

and therefore

lim bN(t) = i$J"(θ)h'(m{θ9t))dθ. (1.21)
JV->oo

The crucial step in the whole proof is the replacement of (1.19) by (1.21). Since the
ansatz is too vague to be formulated rigorously we obtain certain elementary

r
bounds on the average l/T^ft

N(x1,...,xN)dt as a consequence of (1.11). These
o

are then shown to imply certain inequalities, which in turn justify the passage
from (1.19) to (1.21).

2. Entropy and its Rate of Change

Since we will have to consider probability measures on RN as well as many of its
projections we now introduce some uniform notation. A probability measure α
on RN, if it is absolutely continuous will be represented by its density / with
respect to the density ΦN so that its actual Lebesgue density is / ΦN. If F c (1,2,..., N}
is a subset of cardinality k we can project α from RN to Rk by looking at the
distribution of {x; } for jsF. We will denote the projection by σF and the
corresponding density on Rk, relative to Φk by fF. We have the obvious formula
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We have used the obvious notation

ΦA(x) = exp [ - Σ φ(xj)'], xA = {x/.jeA}, dxA = JJ
jeA jeA

We consider the following diffusion generators on RN defined for a pair (i,j)e

[1,2,...,JV],

A ( ) 2 ( f ) (2.1)
Lifj can be viewed as an operator acting on functions depending on the variables
xF = {xj'.jeF}, provided iJeF. One should think of LUj as representing the
exchange of charge between sites i and j along a "direct bond" linking them. Our
generator

LN = N 2 Y L i t i + 1 (2.2)
i = 0

is a sum over nearest neighbor bonds. But we can consider sums that involve
other bonds as well. Each Litj is reversible relative to the weight ΦN.

There are two functionals on probability measures on RN that are relevant for
our purpose. The first one is the entropy. If α is a probability distribution with
density / then

HN(a)= \ f log fΦNdx.

It is known that entropy is a lower semicontinuous convex functional of α and
can be defined equivalently by the basic entropy inequality as the smallest constant
H for which

jUfΦNdx S \og\euΦNdx + H (2.3)

for all bounded measurable functions U on RN.
If we let the initial distribution evolve according to the forward equation or

equivalently the density / evolve according to (1.8), then the function

is nonincreasing in ί and one can compute

Corresponding to each operator Ltj we can define the Dirichlet form

Duj(u) = - J ( ^ w~ ) ΦNdx, (2.5)

and the corresponding /ί)7-(/) by

PNdx. (2.6)
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We can rewrite (2.4) in the form

dJψ=^4N2Nff {ΓN). (2.7)
at j=o

The variational characterization (2.3) of entropy defines HN(oc) as a natural
lower semicontinuous convex functional of α which is finite only when a has a
density / for which j / l o g fΦNdx is finite. Similarly there is also a variational
characterization of J(α),

/(α) = sup -$(^\x)oc(dx) . (2.8)

If α should have a nice density / then

/(α) = D(77), (2.9)

where L is any self adjoint operator with respect to ΦN and D is the Dirichlet form
of L. Typically L= LN or L? 7 . Since L is not elliptic ί(α) can be finite without α
having a density /. However the restriction of α to any invariant hyperplane will
have a density relative to the restriction of ΦN to the hyperplane and the Dirichlet
form is only computed from tangential derivatives on the hyperplane.

We want to establish some simple inequalities relating to the behavior of /(/)
under projections. Let α be a probability measure on RN and ocF its projection
onto Rk corresponding to {xjijeF}, where k is the cardinality of F. We then have

Lemma 2.1. For any pair i,jsF,

/ ί f J.(α

F)^/ ί f ;.(α). (2.10)

Proof.

ίu(α0 = supΓ - l(^\xF)*F{dxF)] (2.11)

over all functions u of xF. Since aF is the projection of α,

ΐφ*) ^ supΓ - j ί 1 ^ j(x)α(dx)l = ΐLj(a). (2.12)

The supremum in (2,11) is only over functions of xF, and one gets the inequality
in (2.12) because the supremum there is over a larger class, namely all functions
of x.

Let / be a probability density on RN. Let / ̂  1 be given. We consider the set
F M = {; : | ;-ί |^Z} and ful=ful the projection of / onto R2l+1. We define

N

fι = (\/N) £ fίJ as a measure on R2l + \
i i

Lemma 2.2. For any I ̂  1 and α,

1 (2.13)
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Remark. We have abused the notation somewhat here. On the left fι is a measure
on R2l+1 with coordinates indexed by variables {x7 : | j |g/} and ϊu + 1 are for
nearest neighbor bonds between them. But the sites | j\ ^ I are arranged in a chain
with two ends. On the right however the N sites are arranged cyclically.

Proof. By convexity

1 N

= 77 Σ
iV r = i

[by abuse of notation]

[by Lemma 2.1]

This proves the lemma.
Similarly let / on RN be given along with / ̂  1 and m such that 21 -f 1 g m ^

ΛΓ-(2/ + 1). Consider the set F m > M = {_/: |./ - i\ ̂  / or \j~m-i\^l}. We project
/ onto the coordinates in FmΛΛ and the resulting density on R2l+1 x R2l+i fs

denoted by / W Ή We average this over location / and denote fmJ = (1/ΛΓ) ^ /m!/'f'.

For clarity we think of the variables in JR2/ +

We define three forms

i = l

R2l + 1 as {^:|j| ^ /} and {z/ljl g /}.

We then have the analog of Lemma 2.2.

Lemma 23. For any m such that 2/ + 1 ̂  m ̂  JV — (2Z + 1),

i = - Z

Σ1

i = - 1

(2.14)

(2.15)

(2-16)

Proof. Inequalities (2.12) and (2.15) are analogs of inequality of (2.13). We therefore
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only have to prove (2.16). By convexity and (2.10),

^ 1 N~1 1 N~1 ^

By Schwartz's inequality,

Summing with respect to i from i = 0 to JV — 1 we get (2.16).
Let us start our evolution with an initial distribution satisfying (1.1). Then

according to formula (2.4) we obtain the following estimates:

lΓNlogfNΦNdx^CN for all ί^O, (2.17)
and

Now if we use the fact that both the expressions §f log fΦNdx and

T

are convex functional of /, we obtain for the density (l/T)J/^dί or taking
o

T = 1 and setting

Theorem 2.4.

lJJ (2.19)

! ί { ί ^ ϊ K ^ - . (2.20)
In addition

ί { ^ } C ' . (2.21)

Proof Only (2.21) needs an explanation. By estimate (2.3) and (2.19),

Λ ^ ^ Φ j y d x + CN ̂  CλN + CJV.

3. Limit Theorems for Densities

The aim of this section is to prove two theorems concerning the probability
densities of sums of independent random variables. Although the results are
essentially well known we need special forms of these results for our use. We will
give a quick sketch of the proofs as we go along.

Lemma 3.1. Let f(x) be a probability density on R such that §xf(x)dx = 0,
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§x2f(x)dx = σ2, ^x4f(x)dx^M and §\f'(x)\dx^M. Then there is a number
δ = δ(M) depending only on M such that

\$eiξxf(x)dx\^(l + \ξ\2)-δ for all ξeR. (3.1)

Proof. If φ{ξ) = \eίξxf{x)dx, then \φ{ξ)\ ̂  1 and moreover

σ2ξ2 < *

\Φ{ξ)\ύ~r, (3.3)

and for every ε > 0,

\ύθM{ε)<l9 (3.4)

where CM and 0M(ε) are constants depending only on M and ε > 0 as indicated.
Moreover σ2 is bounded above as well as below away from zero in terms of M.
To establish (3.1) for all ξ we use (3.2) for small \ξ\9 (3.3) for large |ξ | and (3.4) for

Lemma 3.2. Let fn(x) be the density of xx -b ••• + xn/^/n, where x l 5 . . . , x n are
independent and identically distributed with a common density f(x) satisfying the
assumptions of Lemma 3.1. Then

e~χ2/2σ\ (3.5)

uniformly on R and in fact the derivatives of fn(x) of all orders converge uniformly
to the corresponding derivatives.

Proof We use the formula

4K{(£)]V (3.6)
For sufficiently large n, the above formula is well defined because of inequality
(3.1). Clearly [φ(ζ/+Jn)Y->e~(<^2)σ2 as w-> oo. It is then a question of verifying that
we can apply the dominated convergence theorem. From the monotonicity of the
function (1 + A/tJ in t for ί ^ O we can estimate

sup|ξ| fc
z\2\-nδ

which is integrable for / large enough. We can now differentiate (3.6) with respect
to x as often as we want and pass to the limit.

Let e~φ{x] be our basic probability density and M(λ) = $eλx~ΦU)dx. We denote
p(λ) = log M(λ) and
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Let us define

Then

f(χ9λ) =
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(3.8)

and

is bounded if λ is bounded.

(3.9)

(3.10)

(3.11)

(3.12)

Lemma 3.3. Let fn{x,λ) be the probability density of x1 + ••• + xjy/n, where

x1,..., xn are independent and identically distributed having a common density /(x, λ).

Then

lim fn(x,λ) =
1

2πσ(λ)
exp -

1

2σ\λ) •
(3.13)

uniformly in x and bounded λ intervals. In addition the first partial derivative of fn

with respect to λ converges to the corresponding partial derivative on the right

uniformly on bounded λ sets and uniformly in x.

Proof. Let

Then

Let us compute dfjdλ. Computing the derivative inside we note first

~ = Je'ί* °~(x, λ)dx = \{e^ - 1 - iξx) ̂ (x, λ)dx,

because J(δ//δA)(x, λ)dx = \x{dfldλ){x, λ)dx = 0. Therefore

Therefore

dφ df

dλ
(x,λ)

δλ
Π

We are now ready to prove our first main theorem of the section:

Theorem 3.4. Let φn(x) be the density of xx + ••• + xjn, where xi,...9xn are

independent and identically distributed with a common density e~φ{x\ Then
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\imUogφn(x)=~h(x), (3.14)

l i m - - — - = -h\x\ (3.15)

uniformly on compact x-intervals.

Proof. We use Cramer's trick. Let yeR, λ = h'(y) and y = p'{λ). Consider

fix v ) - ~ ; { x + y)~φix + v)

We want to apply Lemma 3.3 to the above density treating y as a parameter.

Then density fn(x9y) of xλ + — h xn/'yjn at x = 0 is related to the density fn(x,y)

of x1 + -f xn/y/n at x = 0 by a simple factor of ^/rc and a calculation yields

</>n()0 = lM(λ)γe-"λy^nfn(O,y). (3.16)

We also know that logM(/) — λy = p(λ) — λy = — /z(y). Equations (3.14) and (3.15)
are now easy consequences of Lemma 3.3.

We are now interested in studying the conditional distribution of xx,..., xn on
the hyperplane xλ + + xjn — y, where xx,..., xn are independent and identically
distributed random variables with a common density e φix). We have clearly a
smooth density φn(x) for xγ -f ••• -f xjn, and therefore the conditional density is
well defined on each hyperplane. Let us denote by v£1)(dx1,...,dxj the measure
on Rn concentrated on the hyperplane xx + ••• + xn/n = y. We want to establish
the following main theorem.

Theorem 3.5. Let F be a bounded continuous function on Rk for some k ^ 1. Let for
each yeR, ocy(dx) denote the probability measure on R with density (l/M(λ))e/x~Φix\
where λ = h\y). Then for every ε > 0,

n-k+l M v "

^ε 1 = 0 (3.17)- \F{zι,..., zk)tty{dz1)oiy(dz2) xy(dzk)dy

locally uniformly in yeR.

Proof Let us remark that v(

y

n)(dx1,...,dxn) is symmetric with respect to the
permutation group acting on the variables x t , . . . , xn. Therefore by Hewitt-Savage
0-1 law and its implication we need to check the theorem only when k = 1 and
F(x) is a bounded continuous function on JR with a uniformly bounded first
derivative. This will follow from the following lemma.

Lemma 3.6. For every θeR

\imUogμθ{F{xύ + - + F{x»))dvy

n\dxu...Jxn) = G(θ,y) (3.18)
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exists and the limit G(0) is differentiable at θ = 0 with

dG(θ,y)

9 = 0

Proof. Let us denote by Hn(y) the function

Hn(y,θ)= f ^ i ) + + AχB)
x i + • + xn = ny

Φn(y)= ί e-Σφ^dXl-
x i + + xn = ny

Proving (3.18) reduces to showing that

= \F{x)ay{dx). (3.19)

l i l H ^ Θ ) - lim -logφn(y) = G(θ,y)

exists locally uniformly in y. Let us denote

a(θ) = Umx) ~φix)dx, M(λ, θ) =
a(θ)

Then essentially by replacing φ(x) with φ(x) - ΘF(x) we can apply Theorem 3.4
and obtain

lim -\ogHn(y,θ) = logα(θ) - h(θ,y),

where

Equation (3.18) now follows with

G(θ, y) = log a(θ) — h(θ,

It is now elementary to conclude that

_ ^ ( 0 ) 1

dθ M(λ*,0)
(3.20)

where 2* = Λ'(y). The right-hand side of (3.20) is easily computed to be
(l/M{λ))$F(x)eλ*χ-φ(x)dx. This proves (3.19).

Theorem 3.5 follows from Lemma 3.6 by exponential Tchebychev bounds.

4 Local Gibbs States

A local Gibbs state is a vague term which refers to a probability distribution on
RN with a density relative to ΦN which looks somewhat like cexp IΣλixJ. Here
/f are constants that are slowly varying so that λt = λ(i/N) for some smooth function
/ on S. If we define m(θ) — p'(λ(θ)\ then the above local Gibbs state corresponds
to a macroscopic charge density of m(θ) on S. This refers to the fact that if J(θ)
is a smooth function on S then (\/N)ΣJ{i/N)xι as a random variable on RN is
almost a constant for large JV, being nearly equal to \J(θ)m{θ)dθ under our local
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Gibbs density. For such a density / = cGxρ[_Σλixi'] one can calculate

On the other hand if f = cQxpΣλtxh one can then calculate explicitly and
show that for any function F(x_ fc,...,x fc) depending on (2fc+l) coordinates
(l/N)ΣJ(i/N)F(x_k + ii...,xk + i) is also almost a constant relative to our Gibbs
state and compute the constant explicitly in terms of m(θ). The aim of this section
is to show that the above consequence for local averages follows from entropy
bounds of the type (4.1). This will be the key step of our main theorem.

We will be dealing with sets of probability measures or densities ΛN Cί C2 defined
in terms of two constants C l 5 C 2 but in dimensions JV, that vary. The purpose will
be to obtain for these classes certain results that are valid uniformly in N so long
as Cί and C 2 are held fixed.

Let ANXuc2 be the class of densities / on RN satisfying the following bounds:

^[^WJ/Φ.ώ^C, (4.2)

Σ W/)^?Γ- (4-3)

Here ω( ) is the function defined in (1.4).
Let F be a function depending on the 2fc -h 1 variables {x/.\j\ S. ̂ } o n R2k+1

which is bounded and continuous on R2k+i. Given such a function let us define
F(y) for yeR by

l\-λΣ-]F(k,...,xk)Φ2k+ιdx, (4.4)

with λ = h'(y). Let us define for any integer z e [ l , 2 , . . . , i V ] a n d / the quant i t ies
ξi = F{xi-k9...,xi + k) a n d ξitl = F((1/2J + l)(x f _, + ••• + xi + ι)). Final ly let J ( ) be a
s m o o t h function of θeS. T h e m a i n result of this section is the following t h e o r e m .

Theorem 4.1. For any given constant Cί and C2 > integer k and choices of F( ) and

lim lim sup sup j —
ε-+0 N->co feANfCltCi

(4.5)

We will first prove some auxiliary lemmas and theorems before finally returning
to the proof of Theorem 4.1. The first step is Theorem 4.2 which we now state
and prove.

Theorem 4.2. For any Cl9C2 and F( ),

lim lim sup sup j —
J N N

1 Ά

fGANCιC2
7 = 1

1 i + ί

fΦNdx = 0. (4.6)
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Proof. At first glance the above theorem looks hard because N is becoming large
and things can get out of control. We will show however that the hard work has
all been done already and we can obtain (4.6) from our earlier results in Sects. 2
and 3.

First Step. Since F is a bounded function and / is becoming large while k remains
j + l j+l-k

fixed we can replace (1/2/ + 1) Σ £* by (1/2/ — 2/c -f 1) £ ξh and the error will

be uniformly small.

Second Step. If we denote by ψι(y^ι,...,yι) the function
1 (l-k) / v i . . . i

2/+1

then

j + l

2/ 1 i=j-ι

[see Lemma 2.2 for the definition of / ' ] . If we denote by Bι

N CuCτ the range of fι as /
varies over ΛNίCuC2, then

s u p fϊvj
1

fΦNdx= sup

Now 5iv,ci,c2

 a r e a ^ distributions on R2l + 1. We will verify that Bι

N CιC2 is a tight
family on # 2 Z + 1 as JV-> oo and obtain information about its limit points Bι

CuC2.
From (4.2) we obtain

21-
ύCx for all geBι

NXuCl. (4.7)

This implies tightness immediately. If β is any element of Bι

ClC2, by lower
semicontinuity and (4.7) we obtain

1

Further the function

Σ
j=-ι

is lower semicontinuous. From (4.3), Lemma 2.2 and lower semicontinuity we find
that It(β) = O for βeBι

CuCl.

Third Step. We can now replace the lim sup sup in (4.6) by sup . Moreover if
l
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It is therefore sufficient to prove that

lim sup 1 1 ^ 1 ^ = 0, (4.8)
l->^βeΓUCι

where

^ ^ l \ (4.9)

Final Step. If we define the generator

1 ι~x ( d d V 1 ι~ι

2ia-±i\dyi dyi+1j 2 t f l z

then /t(j8) = 0 implies that β is an invariant measure for the diffusion on R2l + 1

with generator L[l\ We know that these are convex combinations of the ergodic
ones concentrated on the various hyperplanes (1/2/ + 1) Σ >'j = y- Therefore

where β is the distribution of y under β. From (4.9) it follows that §\y\dβ^
(1/2/-f lJJCEIttDdjff^Ci. One can now obtain (4.8) from Theorem 3.5 and the
above bound.

If we take a look at what has been achieved in Theorem 4.2 for a "Local Gibbs
state," i.e. a state satisfying (4.2) and (4.3) for some constants Cί and C2, then
relative to such a probability distribution one can always replace (\/N)ΣJ{i/N)ξi

by (ί/N)ΣJ(i/N)l (1/2/+ 1) Σ ζt I and according to Theorem 4.2 this can be

replaced asymptotically by (l/N)ΣJ(i/N)ξu, provided / is large and fixed. However
Theorem 4.1 demands that / be chosen as [JVε] for arbitrarily small but fixed ε > 0.
The next two theorems are to make the replacement possible.

Theorem 4.3. For any δ>0 and Cx and C2 finite

lim lim sup lim sup sup sup

1

2 / + 1 2 / + 1
^δ \fΦNdx = 0. (4.10)

Proof. The proof is very much like the proof of Theorem 4.2. We first rewrite the
integral through the projections amΛ introduced before Lemma 2.3. Let us note
that the measure α and the density / will be used interchangeably. The integral
then is

First Step. Let us denote by B™\ι

CίiC2 the range of fmJ as α or/varies over ANXuC2.
These are probability measures on R2l +1 x R2l+ i with coordinates {yy. \j\ ^ /} and
{Zj .\j\ g /}. We denote by Bl£tC2 the set of limit points of Σ B™χuc2- The

2/4- 1 ^\m\^Ne

basic estimate (4.2) yields for any geB%'t
l

CuC2,
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g Cu (4.12)

and thereby tightness. The lower bound on the gap \m\ S; 2/ + 1 is to make sure
that the two sets of blocks of size 2/ + 1 with their centers separated by m have
no common sites. If/? is any limit point in B'c\,c2 we obtain the following estimates:

^ Cu (4.13)

Σ Ίi+i(/*) = 0, (4.15)

ίγ-z(β)^C2ε
2. (4.16)

These are obtained from lower semicontinuity and Lemma 2.3.

Second Step. (4.14) and (4.15) imply that the measure β on jR2ί

invariant with respect to the diffusions

and a similar one involving the second set of coordinates. This implies that

β(dy9dz) = ̂ ι+"\dy)vfι^\dz)β{dajb\ (4.17)

where β is the distribution of a = (1/2/ + 1)2*^ and b = (1/2/ -f \)Σzi on K2. Here
v is as defined in Theorem 3.5.

Third Step. From (4.3) for β one can clearly obtain

J[ |α | + |b|]^(dfl,d&)^2C1. (4.18)

According to Lemma 4.4 the inequality (4.16) provides an estimate

Til)(β)^C2ε
2(2l+\)2, (4.19)

where

\dβ{a9b), (4.20)
u > 0 |_ U

and G(0 is the generator of the diffusion

K ^ ) ( S ! ) ι4 2»
on jR2. Here h2ι + 1(a)= ~logφ2ι + 1(a) and ι/̂ fc(α) is the density of x1 + ••• +xk/k,
where x 1 ? . . . ,x f c are independent with common density e~φ{x).

Let us consider the range Γι^uCl of β on K2 as β varies over 5 ^ C 2 . Then
β satisfies (4.18) and (4.19). We now consider the set of limit points of Γ1^ as
/-> oo and denote it by Γε

CuC2.
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We have tightness from (4.18) and Lemma 4.5 gives us the estimate

\[_h'(a) - ti(b)Ydβ(a,b) ^ 8C2ε
2 (4.22)

for every βeΓε

CuC2. We also have the companion estimate: for every βeΓε

CltC2,

ίlUal + lbndβ&b)^^. (4.23)

Finally if we let ε—>0 and again look at the limit points, denoting the set by

Γ° l ι C , , then

J[ft'(α) - ti(b)~]2dβ{a,b) = 0 (4.24)

for every βeΓcίtC2. From the strict convexity of h, h' is a strictly monotone map
and β is then concentrated on the diagonal of R2. But this is precisely the content
of the theorem because of (4.11).

We now have two lemmas to prove in order to complete the proof of
Theorem 4.3:

Lemma 4.4. Let β be a probability measure on R2l + ί x R2l + 1 of the form

β(dy, dz) = \v{2ι + l)(dy)v{2l + ί)(dz)β(da, db),

where v{2l+1) is the restriction ofΦ2ι+i to the hyperplane of average charge a. Then

Jl2'+1>{β)S(2l+l)2Iϊ'z(βl

where T is defined in (4.20) and Iγz in Lemma 2.3.

Proof. We recall that e"' ' 2 1" 1" 1 is the density at a of the mean (xι + — h x2ι + i)/
(21+ 1), where x 1 , . . . , x 2 ί + 1 are independent, all having e " * M as density. We notice
first that

\g

Since g is arbitrary and va and /i'2j + 1(fl) are continuous in α, we obtain

Iγ>z(β) = sup Γ - J (GU) β(du, dz)\ (4.25)
«>oL \u J J

where
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If β = jvi 2 ί + ι\dy)v{

h

llJr X){dz)β{da,db), we can take u to be a function of a and b

of the form u((l/2/ + l)£y/,(l/2/ + l)27zj). Then

1 YYδ

2(214

If we now use (4.25),

21+lj \da db/

(Φ\yo)-Φ\zo)){ua-ub)-]β{dydz)i

^2i+l(«)-^2i+l(fe))("a-«i

~(2l+l)2*yHJ'

Lemma 4.5. If {βι} is a sequence of probability measures on R2 satisfying

j [ | α | + |b|]j8z(dα,db) ̂  2CΊ (4.26)

/ ( Z )(/^)^C2(2/ + l)2ε2

? (4.27)

β is any limit point of βh then

l\h\ά) - h'(b)Yβ(daJb) g 8C2ε
2.

Proof. (4.27) implies for every u

lΓ r lΓy<3 d V
~ ! U ~ (n2l+ 1 (a) ~ n2l-

2\_ u\_\da dbj

^ ~ C ε 2 ( 2 / + l ) 2 .
Taking u = exp[(2/ + \)v{a,b)~] for some υ,

-(2/+ l ) ^ ^ ! ^ ) - / ^ ^ ! ^ ) ) ^ - ! ^ ^ ^ ^ ^ ) ! ! ^ -2Cβ2(2/+ I)2.

If i? is a constant outside a compact set one can divide (4.27) by (21 -f 1) and let /-> oo
to obtain

We are done if we let
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except, then v is not constant outside a compact set. But we can take

vτ(α, b) = min \^\h{d) + ft(fc)], τ],

and let τ-> oo. ι;τ is not quite smooth enough. But one can mollify vτ somewhat.
We now prove a slightly strengthened version of Theorem 4.3.

Theorem 4.6. For any given finite constants Cί,C2i

lim lim sup lim sup sup sup
ε-*0 l-*co IV-+0O 2/+l^M^εΛ7/e<4 ) V

X ί + I ~^~ " ' ~^~ Xi

2/ + 1 21+]
fΦNdx=:O. (4.29)

Proof. Given Theorem 4.5 all we need to derive Theorem 4.6 is some uniform
integrability of (1/2/ -f 1) ]Γ Ij^ l relative to all the distributions a1 with α varying over

4N d c2- ̂ u t ̂ ^ *s precisely the role of condition (4.2) especially with ω(x) satisfying
(1.4).'

Finally we prove

Theorem 4.7. For any CliC2,

lim lim sup lim sup sup
s - + 0 Z - + C O N-+cc f,= A%J „ ,

Xi- [Nε] i ' " i Λ i + [iVεJ

21 + 1 2[ΛΓε] + 1
fΦNdx =

Proof. Theorem 4.7 follows immediately from Theorem 4.6. An average over a
long block of length 2[Nε] + 1 is just an average of averages over short blocks of
length (2/+1). According to Theorem 4.6 they do not differ by much among
themselves so the average is close to any one of them.

Theorem 4.7 allows us to deduce Theorem 4.1 from Theorem 4.2. One uses
the continuity of the function F(y). Any trouble arising from large values of
(Xi~ι+ -" + χi + ι/l)[F(y) need not be uniformly continuous] is taken care of by
(4.2) which tells us that there cannot be too many such blocks.

5o Hydrodynamic Limit

Let us start our evolution with an initial distribution f% satisfying (1.9) and
(1.11). We will study the evolution in a fixed interval [0, T]. In fact without loss
of generality we will assume that T = 1. With /£ as initial distribution we have
a measure PN on the space C{[0,1] :^} of trajectories {xj(t):O^ t g 1, 1 <Zj ^ N}.
Let us denote by Mι the compact metric space (under weak convergence) of all
signed measures on S of total variation at most /. The space M = UιMι is viewed
mainly as a measurable space. We denote by Ωt the space C{[0,1];MJ of all
weakly continuous maps of [0,1] into Mx. Ωι is a complete separable metric space
with uniform convergence in weak topology. The space Ω= UιΩι is again viewed
only as a measurable space. Given a collection of trajectories {xj(t)}
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associate a point in Ω by

μN(t) = --ΣXj(t)δj/N. (5.1)

This introduces a measure QN on Ω as the distribution of μN( ), where {*_,•(•)} have
PN for their distribution. According to Lemmas 6.1 and 6.2, from any subsequence
of QN we can choose a further subsequence that converges weakly on Ω. What
this means is that for any bounded function F whose restriction to Ω{ is continuous
for every /, we have convergence of expectations. Let Q be any limit point along
any subsequence. The main theorem of the section is the following:

Theorem 5.1. Let Q be any limit point. Then

a)

c)

d) Qίμ(-):)\{[h'{m{t,θ))Vs2dθdt< oo] = 1,

Proof. From the monotonicity of the entropy (see Eq. 2.4) and Lemma 6.3 we
conclude that for each ί > 0, Q[μ:μ(t,dθ) = m(t,θ)dθ'] = l and $h(m(t9θ))dθ ^C

s
for all t ^ 0. Now Fubini's theorem will yield a) as well as c). b) is just a restatement
of condition (1.9). To prove d) we use Fubini's theorem and Lemma 6.6. We note that

~ 1

where Q = $Qtdt and Qt is the marginal at time t of Q. Lemma 6.6 of course

applies to Q.

We now turn to the proof of e). Let us consider the cutoff function \j/ι of Lemma
6.4 and pick ε > 0. We then consider for some 0 < t :g 1,

, dθ) - J J(θ)μ(0, dθ)
s

1 f Y A'1

As functionals F^ '(μ( )) converge as iV-> oo to a limit given by

F'uM-)) = \J{θ)μ{t, dθ) - \J(θ)μ(Om, dθ)
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and the convergence is uniform on compact subsets. Therefore

N->oo

51

(5.2)

Let us look at the right-hand side first. By Itό's formula

N2 ' 1

where MN(ή is a Martingale and an explicit calculation yields

1

'"N2 "ΊrJ-'iiOT-£ (5.3)

and tends to zero with N. Moreover because of Lemmas 6.4 and (5.3),

1l Σ J i

Let us consider

According to Lemma 6.4,

•w N
• 0 .

N

lim limsupziiV(/) = 0.

(5.4)

(5.5)

(5.6)

Let us consider

^iWiiM*,

= ΔN(l,ε). (5.7)

According to Theorem 4.1 and then (2.4),

lim lim ΔN(l,ε) = 0 for every /.
ε->ON-^oo

ϊf we combine (5.4), (5.5) and (5.6) we obtain

lim lim sup lim sup E Q* [ | F^ (μ( •)) 1 ] = 0,
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and combined with (5.2) this yields

We can let ε->0 inside because Ff

Lε is uniformly bounded and obtain using a)

ί0

where

~ <J,μφ)>-i\$J"(θ)$ι(rn(s9θ))dsdθ.
00 s

Now we let Z -> oo. We can use Lemmas 6.5 and 6.3 and the dominated convergence
theorem to conclude that

where

- <J,μ(O)>

This proves the theorem.
Now to complete the proof of Theorem 1.1 all we need is to appeal to a

uniqueness theorem for weak solutions of

~ - i[fc'(m(ί, 0))]βfl, m(ί, 0)|f = 0 = mo(0).

6. Auxiliary Lemmas

In this section we shall prove some lemmas that were used in Sect. 5 where the
hydrodynamic limit was identified. The first two lemmas show compactness of the
process μN(t) defined by (5.1), in the sense described in that section. Lemma 6.3
is essentially (a) of Theorem 5.1 stated in a general way. Lemmas 6.4 and 6.5 are
used in implementing the truncation in (c) of Theorem 5.1. Lemma 6.6 is needed
in the proof of uniqueness in the next section.

Lemma 6.1. Let PΦN be the law of the process ξN(t) — (x1(ί),...,xN(t)) with ΦN as
initial distribution and let PN be its law with initial density aN (relative to ΦN) such that

J aNlogaN-ΦNdx^ CN
RN

with C a constant. Then

lim lim PN< sup — ^

Proof. By Lemma 1.12 of [K-V] we have that for any symmetric function g on UN

PΦA sup g(ξN(t))^l\^JA + B9
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where

A= J g2ΦNdx,

= 0 y \u*i vΛi+1

are assumed finite. Let

g = exp< 2J \χi

Then there are constants Cx and C 2 independent of N such that

A S C^ and B ^ N2C2C^.
Therefore

s u P ^ Σ Q

which is equivalent to

PΦN\ sup -

for some constants C 3 and C 4.
We now use the basic inequality (2.3) which is

jgfNΦNdx^

to obtain the inequality

for any Borel set A in IR .̂ Here f/jv is the entropy of the law PN relative to PΦN and we
know by hypothesis that HN ^ CN. This inequality and the estimate above give

This implies that

r i N-ι Ί c

jimP^j sup — Σ l̂ iWI ^ / p - p

for some constant C 5 and hence the lemma is proved.

Lemma 6.2. For every test function J on S,

l i m l ΐ m > J sup \(J,μN(t)} - (J,μN(s)}\> ε}=
<SjO N->co / 0 ^ r , 5 ^ 1

/or a// ε > 0.

Proof. By Itό's formula and a calculation similar to the one in Sect. 5 for the
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identification we see that we must show that

• 0lim PNJ sup
)θrgs,ί:g N

as δ -+0 for all ε > 0. In fact since \J"\ is bounded it suffices to show that

> ε I = 0.lim lim PN) sup Jϊv V

To prove this we use a truncation φ{ of </>' defined by

φ' for | 0 Ί ^ / , ι/rz = / for φr>l, -I for 0 ; < - /.

It then suffices to show that the estimate is valid for φ' replaced by ψl9 which is
obvious since φι is bounded, and then that

1
lim lim P J J ~ Σ \ψι(xj(σ))-φ'(xj(σ))\>ε\ =
/Too N ^ o o (.OiV j = i

for all ε > 0. Now

N\]~ Σ \Φι(φ))-φf(x»

and for the expectation on the right we can use the basic inequality (2.3). This
gives for any 0 ^ t g 1 and any y > 0,

f ey

\φ\>l

y\Ψ \-4

Thus

lim lim > ε U -,

where we use the hypothesis that

$eM'hφdx<ao

for all y > 0. Letting y -+ oo gives the result.

Lemma 6.3. Let fN be the density relative to ΦN of a random variable ξN =

(xί,x2,...,XN) on UN such that

SfNlogfNΦNdx£CN
RN

with C independent of N. Let QN be the law of the empirical measure

1 N

^ T f Σ δJIN*Γ
iV j = i

(6.1)
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Then for any weak limit Q of QN

Q{μ:μ«dθ} = U

and ifm(θ) = dμ/dθ then

where C is the constant in (6.1) and h(x) is the conjugate convex function of

p(λ) = log MM, M{λ) = $eAy~φiy)dy.

Proof. Let WN be the law of μ induced by ΦN itself. Under WN, μ is the empirical
measure of N independent, identically distributed random variables with mean

and finite moments of all orders. The law of large numbers tells us that WN

converges weakly to the deterministic law concentrated on the measure mdθ
(Lebesgue measure multiplied by m). Moreover WN has the large deviations
property [V] with / function,

μ(g(θ))dθ if μ«dθ, d^Q

I(μ) =

+ oo otherwise

The large deviations property leads also to the result

I

for any bounded, continuous function u of μ.
Let {/,-}, j = 1,2,... be a sequence of functions on S that are dense in C(S) and let

uk(μ)= sup \sfj(x)μ(dθ)-Sp(fj(θ))dθ\.
[s s J

We can pass to the limit in the basic inequality (2.3) in the form

j ukfN ΦNdx g — log j eNl4k ΦNdx -\ j fN log fN ΦNdx
RN N N

Since the entropy per variable is bounded by C we conclude that

ί sup
{μ dμ/dθ = gsL1}

By convex duality

= ih{g(θ))dθ= sup
S fεC(S)

Using this we get the estimate
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Since uk(μ)-^I(μ) as k-+ αc, by Fatou's lemma

This implies that

and that

where dμ/dθ = m(0).

Lemma 6.4. Lei ι/̂ (

Let

Q{μ:μ«dθ} = 1

EQ\ϊh(m(θ))dθ\^C
U J

a truncation of φf{x).

φ\x\ W(x)\^l
W )̂ = / , f(χ)>/ .

-/ , φ'(x)< -I

wz'ί/z / = //'(x). Then for each x,

as

Proof We will use our hypotheses

jVλ" ^ ( x )dx < oc for all λ,

Clearly

on

for all σ > 0. Now

Hence

M(λ)J

By the basic inequality (2.3), for any σ > 0,

/

Here we use the fact that at / = h'(x),

Passing to the limit for x fixed we see that
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ί-*oo G

because of our basic hypotheses on φ and φ'. Letting now σ -> oo we obtain the
desired result.

Lemma 6.5, There is a constant Cε such that for any ε > 0,

\h'(x)\£Cε + εh(x).

Proof. We will actually show that

which combined with Lemma 6.4 gives the result.
Now

and as in the proof of Lemma 6.4

\φι(x)\£

for any σ > 0. With

we then get

If we let ε = 1/σ and Cε — εCι/ε this is the same as the statement above.

Lemma 6.6. Let us assume that the conditions of Lemma 63 are fulfilled and in
addition

1 1 JV /;}/•__ p,f_, \2 Qi

1>Ndx^—9 (6.2)

where C is some nonnegative constant. Then any limit point Q obtained in that
lemma satisfies in addition

^ 8C (6.3)

with the same constant C as in (6.2).

Proof. This follows immediately from Eq. (4.22).

7. Uniqueness

We will show in this section that a weak solution of the equation

(7.1)



58 M. Z. Guo, G. C. Papanicolaou and S. R. S. Varadhan

is unique within the class of measures μ(ί, dθ) satisfying

sup ||μ(ί, )|| < oo and μ(f, •) is weakly continuous in t, (7.2)

μ{t9 dθ) = w(ί, θ) dθ for almost all t and

]$h(u(t,θ))dθ <ao, (7.3)
05

JJ{[Λ'(u(t,0))]β}2gC<oo. (7.4)
OS

A weak solution is of course given by

U{θ)μ(t9dθ)-U(θ)μ(09dθ)=\{iJ"φ)ht(u(s9θ))dsdθ9 (7.5)
S S OS

for all smooth test functions J( ).
We first take J=l and check that Ju(ί,0) d# = f/(0) dβ = α for all t and all

solutions. The function u(t,θ) — a is denoted by ύ(t,θ) and has mean zero on S.
Therefore there is a function ΰ(t, θ) of mean zero, such that

d-ψ -«..«. (7.6)

and (7.5) can be rewritten in a suitable sense as

~Jΰ(t,θ)J(θ)dθ = Uj"(θ)[h'(u(t,θmdθ (7.7)
ot s £ s

or

θ. (7.8)

Because of (7.4) this means that v(t, •) is differentiable in t as a map into L2(S) and

^ (7.9)

Now if we denote the difference between two solutions by w, then w = u — v = ύ — v
and

^ (7.10)

If we now calculate

, 0) - v(t9 Θ))dθ
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Since ||w(0)|| = 0 we are done. The steps need a little bit of justification but it is
routine.

8. Concluding Remarks

There have been several examples where hydrodynamic limits have been established
for interacting systems. For example De Masi et al. [DE] and Dobrusin [D]. See
also Spohn [S] for the closely related problem of fluctuation theory. Our work is
related to and was motivated by the work of Fritz [FR], Funaki [FU] has some
results extending Fritz's work. But our methods are very different from all of the
earlier methods. We use basically entropy estimates. They have the advantage of
universality and with modifications the method should be applicable to other
models that are reversible and when the scaling is of diffusion type. Moreover the
method allows us to proceed farther and do large deviation theory. See for instance
Donsker and Varadhan [DV]. Although we treat the case of dimension one it is
not an essential condition. With only a change in notation the method works in
any number of dimensions.

Replacing the circle or torus by Rd poses more of a challenge. The problem in
some sense is essentially local, and it should be possible to localize. Fritz has
conveyed to us some ideas in private communication, but it still remains to be done.
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