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Abstract. It is shown that the entire Virasoro, Ramond and Neveu-Schwarz
algebras can each be constructed from a finite number of well-chosen generators
satisfying a small number of conditions. The most economical sets consist of
just two starting generators in all cases, subject to eight conditions for the
Virasoro case, five conditions for the Ramond case, and nine conditions for
the Neveu—Schwarz case.

Introduction
The Virasoro algebra [1,2], for example
[LmsLn] =(m—n)Lm+n+c(m3_m)5m+n,05 (1)

(where the indices m and n run over the positive and negative integers) is normally
contrasted to the classical algebras, as their closure contains only a finite number
of generators. In one respect, however, the Virasoro algebra resembles these
algebras, even down to their simple prototype SU(2): a small number of generators,
in this case 2, suffices to define the rest through appropriate chains of commutations.
The entire algebra then follows inductively by use of the Jacobi identities, provided
that a finite number of independent commutation relations be imposed in each
case. Alternatively, the structure of the entire algebra is determined as a solution
of these commutation conditions, regarded as equations for the starting generators.
For SU(2), this is evident; given the two starting generators T; and T,, the third
generator T, is defined by

(Def) Ty=—i[T;, T,], @

* Work supported by the U.S. Department of Energy, Division of High Energy Physics, Contract W-31-
109-ENG-38
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and the two conditions which specify the algebra are:
(Cond.i) Ty =[T,,[T,,T,]],
(Cond.ii) T,=[T,[T,T,]1].
The solutions to these equations yield all representations of SU(2) and the
constructions based on them.

The purpose of this paper is to prove that, starting for example from L, and
L_, in the Virasoro case, the entire algebra (1) can be specified, provided that
eight commutation conditions be posited. Our discussion below will first focus on
defining all L,’s recursively out of two such, and then demonstrating how all
remaining relations (1) are consequences of merely a set of 8§ chosen from them.
We shall defer discussion of alternative starting sets, general systematics, and
significance to the last section of the paper, beginning with the above particular
choice of starting generators for illustration purposes.

Using the same type of arguments, we shall then treat the Ramond and Neveu—
Schwarz [3] cases where commutation and anticommutation relations have to be
used: fermion generators F are introduced, obeying

[Ln’Fa] :(n/z_a)Fn+a7
{Fa’Fb} = 2La+b + c(4a2 - 1)5a+b,07

where the new indices a and b run over the integers for the Ramond case and the
half-integers for the Neveu—Schwarz case. We shall conclude that the Ramond
algebra amounts to merely five conditions among two starting generators, and the
Neveu—Schwarz algebra to nine conditions among two starting generators.

3)

)

The Virasoro Algebra

Let us start with the most economical set of defining generators which allow the
construction of the Virasoro algebra, i.e. just the two generators Ly and L _,.

Lemma 1. L, and L _, reach all the L,’s through iterative definitions of the type (2).
This is seen directly, by constructing

(Def.1)  Ly=3[Ls, L_,],
(Def.2) L_,=3[L;,L_,],
(Def.3)  Lp=2%[Ls,L_4],
(Def.4)  Lo=3[Ly,L-4],

for the lowest values of the indices. The other operators are then defined recursively
from there, as

)

1
(Def) L,.,=——[L,, L] for n>2, (6)
(hn—1)
for the positive indices larger than three; and
1
(Def) L—n—l =—1_—n)[L_n,L_1] for n>1, (7)

for the negative indices smaller than minus two. W
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A different starting set, and hence a different set of definitions, could have been
used to define all L,’s, as will be discussed in the last section. Using the above
definitions, our next task is to investigate which small subset of the commutation
relations (1) guarantee the validity of all.

Our inductive tool will be the Jacobi identity J(m, n, p),

Jm,n,p): [[Ln, L), L] + [[Ly L] L] + [[Lyp, L), L] = 0. &)

A word of caution: at every step in the inductive process to follow, a given Jacobi
identity can only be used if the three inner commutators, i.e. [L,,, L,]... etc., are
already known by a preceding step in the induction. The Jacobi identity then
reduces to:

J(ma n,p) = (m - n)[Lm+naLp] + (n - p)[Ln+p’ Lm] + (P - m)[Lp+ms Ln] = 0, (9)
and will then be used in this form. As seen later, m + n+ p is the eigenvalue of
each term in (8) under commutation with L,. We call m + n + p the level of this
corresponding Jacobi identity.

We now point out a “parity” automorphism of the algebra which helps shorten
the proofs to follow.

Lemma 2. The commutation relations (1) are invariant under the symmetry operation
L,—->—-L_,, c—>—c 1 (10)

All statements derived from sets possessing this symmetry will also be
symmetric.

n>

Lemma 3. The commutator of two operators of level m and n is of level m + n.
The proof follows directly from the Jacobi identity J(0,m,n). W

Lemma 4. The commutation relations of L, with all Virasoro operators follow from
its commutation relations with Ly and L_,:

(Cond.1) [Ls,Ly]=3L,,

(Cond.2) [L_,,Lo]=—2L_,.
This follows trivially from the definitions and from the previous lemma. W
Lemma 5. Within the initially defined set (Def.1-4)L_,, L _,, Ly, Ly, L,, Ls, it
is easy to see that two further conditions must be imposed:

(Cond.3) [L,,L,;]1=Ls,

(Cond.4) [L,,L_,]=4L,+ 6c.
Note that [L,,L_,]=3L, follows from J(1, — 2,2), Conds. 3,4, Defs. 1,2, and the
previous lemma. ¢ is defined as a mere number times the identity, so that it
commutes with all the starting generators, and hence all operators. All the allowed

Jacobi identities within this set are then satisfied, and the definition (6) extends to
n=2. N

(11)

(12)

It is sufficient to further impose the following 4 conditions' to completely

! The special role of levels 5 and 7 has been noted in different contexts, such as string theory, by Y.
Meurice in ref. [4]
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determine (1):

(Cond. 5) [Ly,L,]=L,
(Cond. 6) [Ls,L,]=3L,
(Cond.7) [L_,,L_3]=L_5
(Cond.8) [L_,,L_s]=3L_,.

We shall prove (1) separately for several classes of relations, mindful of the algebra
automorphism of Lemma 2, which holds for all commutators assumed or
established so far, and hence will hold for all their consequences. The first class
includes the commutators of operators with positive indices. Observe that, up to
level k=m+n=4, mn>0, all commutators are known by the above.

(13)

Lemma 6. All the commutators of fixed total level k =m + n> 4, where m,n>0,
can be obtained in terms of L,, .., through their definitions, except for levels 5 and 7
where two new conditions (Cond. 5, 6) have to be imposed.

Proof. This is shown by induction on k, based on the previous lemma. Assuming
it holds for k — 1, define the unknown commutators X%® by

X =Ly, Li-i-1], (14)

where t runs fromt=1tot=r—2,fork=2reven,andtot=r—1fork=2r+1
odd.

For k = 2r even and greater than 4, the r — 2 Jacobi identities J(1,s + 1,k —s —2),
s=1,...,r—2, lead to a system of r—2 equations in the r —2 unknowns X,,
t=1,...,r—2, of the form

MPXP =mPL,, (15)
where
k—4 1 0 0 0 0
0 k—5 2 0 0 O
0 0 k—6 3 0 0
M= | ¢ 0 0 k-7 0o 0 | (16)
o 0 0 0 Fore3
0 0 0 0 0 r—1
and the vector m¥=2"” has components
m¥=2 = (2s + 3 — k) (k — 2). (17)
Since
_ (k—4)!
det M*=2W ="~ 18
¢ r—2)! (18)

is non-zero, (15) admits the known unique solution (1) for the X*s in terms of L,.
When k is odd and larger than 3, k =2r + 1, there are r — 1 unknowns, but
the Jacobi identities J(1,s+ 1,k—s—2), s=1,...,r—2, provide only r—2
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equations. The matrix in (16) now has to be supplemented by an extra row with
the Jacobi identity J(2,3,k — 5), (and the last component of m*=2"*1 vanishes),
so it becomes (r — 1) x (r — 1)

k—4 1 0 0 o0 0 0
0 k-5 2 0 o0 0 0
0 0 k—6 3 0 0 0
pe=2n | O 0 0 k=74 0 0 (19)
0O 0 0 0 0 - r=3 0
0 0 0 0o 0 - r r—2
8—k k—7 0 1 0o - 0 0
For r =4, the bottom row is (— 1,2, — 1) instead. Again,
B . (r—2)
det M*=2r+0 = (— 1)+ 1k — T)(k — 2)k #0 (20)

3!

forr>3.Forr=2,3,ie k=35,7, the extra Jacobi identity does not exist to provide
the additional row, and (Conds. 5, 6) have to be imposed. W

The same conclusions apply to the case m,n <0 by virtue of Lemma 2 and
(Conds. 7,8). We proceed to study the commutation relations of negative with
positive indices. First, the commutators of L_,; with the L, (m > 2) are obtained
from the following lemma.

Lemma 7. The commutator of L_, with L,, m>2 is obtained from the known
commutators of L_, with Ly and L,, and of L, with L,, by induction through the
use of the Jacobi identity J(— 1,1,m), starting with m=2. R

By the automorphism of Lemma 2, the commutators of L, with the negative
L_,,n>2 are likewise known. Thus the commutators of L, and L_, with all the
L,’s are determined. The commutators of the negative and positive L’s can finally
be obtained inductively from the following lemma.

Lemma 8. The commutators of L,, with L _, are obtainable in terms of L,,_, for all

nm>2.
The m=n>2 and the m=n+1>2 commutators follow inductively by

sequential use of J(1,m, —m) and J(— 1,m + 1, — m), starting with m =2. Now,
given some m, assume the result holds for all positive n smaller than or equal to
this m; then, by virtue of J(1,m, —n) and the above, the result follows inductively
in m (for all n < m), starting with first value m = 2 (induction basis). For m < n, the
lemma follows by the above and the parity of Lemma 2. W

Finally, the lemmas are readily assembled to obtain:

Theorem 1. Given L, and L_, and the definitions of Egs. (5), (6) and (7), with the
eight conditions of Eqs. (11), (12) and (13), the entire Virasoro algebra (1) is
satisfied. W
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The Ramond Algebra

We now turn to a supersymmetric extension of (1), namely the Ramond algebra
given by (4) when the indices a, b run over the integers. In this algebra, since there
are commutators and anticommutators, there are four types of graded Jacobi
identities, involving respectively three L’s, two L's and one F, one L and two F’s,
and three F’s. They are given by (8) as well as J1(m, n, p), J2(m, n, p), and J3(m, n, p),
respectively; by convention, the i in Ji(m, n, p) refers to the number of F’s in the
Jacobi identity and the F indices are at the right.

Jim,n,p): [LLm> Lo, Fpd + LLLy, Fpds L] + LLF s L L] = 0, 1)
J2m,n,p): {[Lys F, 1 F,} + [{Fy, Fp}, L] = {[Fp, L), Fo} =0, (22)
J3(m,n,p): [{F,F.},F,1+[{F,F,},F,]+[{F,.F,},F,]=0. (23)

If all the inner commutators are known from a previous step in an induction, then
these Jacobi identities reduce to the set (9) together with

Jl(m9n’p)E Z(m_n)[Lm+n>Fp] -f-(}’l - 2p)[Fn+p’Lm] ‘*_(2p~~ m)[Fp+m>Ln] ':07

(24)
Jz(m’nﬂp)E“'[Lm’Ln-Fp] +(2n_m){Fm+me} +(2p‘ m){Fm+p’Fn} :O’ (25)
J3(m’ n’p) = [Lm+n5Fp] + [Ln+p’Fm] + [Lp+maFn] = O (26)

Compared to the Virasoro case, it may not be unexpected that the increased wealth
of Jacobi identities will lessen the number of conditions below.

The simplest set of starting operators, as will be discussed at the end of the
paper, consists of the operators L_, and F;.

Lemma9. L_, and F, reach all the Ls and all the F,’s through the iterative
definitions

(Def.a) Fo=—3[L_,,F,],

(Def.b) L, =3{F,Fi},

(Def.c)  Ly=3[L,L-4],

(Def.d)  Lo=3[Ly,L-4],

(Defe) F_y=—2[L_y,Fol,

(Def.f) L_,=3{F_,F_},
supplemented by the recursive definitions (6) and (7) for n> 2, together with the
analogous ones

2

(Del) Fyoy =5 =5 [F L] for n>0, (28)

for the positive indices larger than one, and

(Def) F [F_,,L_,] for n>0, (29)

1T 2

for the negative indices smaller than minus one. M
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In order to simplify the proofs, we note the Ramond “parity” algebra
automorphisms:

Lemma 10. The commutation relations (1) and (4) are invariant under the symmetry
operation (10) complemented by

F,—iF_,. (30)

They are further invariant under a mere sign change of the fermion operators F,,
resulting from two applications of (30). F,—» —F,. N

As in the Virasoro case,

Lemma 11. All the commutation relations with L, follow iteratively from the two
conditions
(Cond.a) [Fy,Lo]=F;,

(Cond.b) [L_,,Ly]=—L_,, (1)

and the definitions.
This again follows from repeated application of the graded version of Lemma 3,
ie. use of J1(0,m,n) and J2(0,m,n). M

In this case of the Ramond algebra, to evaluate all commutators involving the
initial set of operators defined in (27), namely L,,L,,Ly,L_;,L_,and F,,F,,F_,
within itself, only one new condition has to be imposed. Indeed,

Lemma 12. With the condition
(Cond.c) {Fo,Fo}=2Ly—c, (32)

all the relevant commutation relations which remain within the starting set are fixed,
and all the relevant Jacobi identities are satisfied.

Given the previous lemma, the proof of this one is direct, through a lengthy
set of sequentially allowed Jacobi identities:

jl=J2(-1,1,1) j2=J2(—1,1,0)
3=J2(—1,0,0) jA=J3(1,1,—1)
jS=J3(1,—1,— 1) j6=J3(0,0,1) 33)
=022, — 1, — 1) j8=J3(0,1, — 1)

9=J,010,-1,-1)

The following Table (I) indicates which definitions, conditions, or Jacobi identities
have been used in the obvious graded commutators entries. The dot entries below
the diagonal are the symmetric to the ones above. x indicates that the entry is
missing, as it falls outside the set in question:

Moreover, all the remaining commutation relations can be deductively
determined, from merely two further conditions

(Cond. d) [L4,F0] = 2F4,

(Cond.e) [L_, Fo]l=—2F_,, (34)

as there are more (graded) Jacobi identities which can be used. The proof follows
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Table I

L_, L_, L, L, F_, Fo Fy
L_, 0 X Jjo j7 X X Jj5
L_, . 0 def.d def.c X def.e def.a
L, 0 X j8 j6 X
L, 0 j4 X X
F_, . : . : def. f Jj3 J2
F, : : : : : cond.c Jj1
F, : : : : : : def. b

the same lines as in the Virasoro case. We first look at the positive level, starting
with the commutators of the s with the F’s.

Lemma 13. All the commutators of fixed total level k =m + n, with m>0, n 20,
between the positive Ls and the non-negative F’s can be obtained from the definitions
(27-29) together with conditions (31,32, 34).

Proof. This is again proved by induction on k. Define as in (14) above the r — 2
first X®, t=1,...,r —2 for k=2r even; and the r — 1 first X®,t=1,...,r — 1 for
k=2r+1 odd. Now complete this set by r+1 X¥s t=r—1,...,2r— 1, for k
even:

XEm ={F i, Faoyo i (35)

and by r+ 1X®’s, t=r,...,2r for k odd:
X2t V={F,_ F3y_ 11} (36)

Moreover, define the k — 1 commutators
YO =[Lyy, Fieioi] (37

fort=1,...,k—1.
The k — 1 commutators Y® satisfy the matrix equation

NOY® =¥ F,, (38)

where the first k — 2 rows of the matrix N® are obtained from the Jacobi identities
JI(l,s+ 1,k—s—2)fors=1,...,k—2, and the last row from J3(1, 1, k — 2) (these
are allowed, as the commutators X and Y are known for lower levels by the
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induction):
7-2k =2 0 0 0 0
0 9—2k —4 0 0 0
0 0 11-2k 0 0 0
NO=| : S I D)
0 0 0 -1 6-2k 0
0 0 -0 1 4 —2k
1 0 0 -0 2 0

while the vector n®® has components
n® = (k —3s —3)(2k—3) (40)
for its first k — 2 elements, and
¥, =0 (41)

for its last element. The determinant of the matrix is

det N® = (k — 2)<2k-2(k 3 (- 1)’(26—"((2](]‘_—‘17))!!) (42)

and is nonvanishing for k > 4, hence Eq. (38) can be inverted to give the Y®’s in
terms of F, in agreement with (4).

The k= 2,3, and 4 cases are treated individually. For k =2, Lemma 12 ensures
that J3(0,1,1) is allowed, and this fixes [L,, F,] in terms of the definition of F,.
Fork=3,J1(1,2,0)and J3(1, 1, 1) dictate the vanishing of [ L,, F; ] and fix [ L5, F ]
in terms of the definition of F5. For k=4, J1(1,2,1) and J3(1,1,2) lead to the
same identity, which, together with the only remaining allowed one, J1(1,3,0),
amount to two relations for three unknowns: this is why (Cond.d) had to be
imposed in (34). B

For the X® unknowns, the even and odd cases are separated.

Lemma 14. All the X®’s, ie. the commutators of two positive level L's and
anticommutators of two positive level F’s at level k > 0 are obtainable by induction
on k.

Proof. 1t is assumed in the induction that the X’s are known for levels lower
than k, while the Y’s are known up to k by the previous lemma. The X ®’s satisfy
a matrix equation:

PR XY =pPL,. 43)

For even k = 2r > 4, the matrix
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P(k=2r)=

4—k -1 0 - 0 0 0 0 0 - 0 0

0 S5—k -2 -~ 0 0 0 0 0 - 0

0 0 6-k -~ 0 0 0 0 0 0 0

0 0 0 —r 3—r 0 0 0 0 0

0 0 0 0 1—r 0 0 0 0 0

0 0 0 0 0 2%-3 -1 0 0 0 (44)

0 0 0 0 0 0 2%k-5 1 0 0

0 0 0 0 0 0 0 2k—7 0 0
0 0 - 0 0 0 0 0 - k=1 k-3

2 0 0 - 0 0 0 0 0 - k=4 0,

The first » — 2 rows follow from the allowed J(1,s + 1,k — s — 2), the next r rows
from J2(1,s —r + 1,3r — s — 2), and the last row from J2(2,7 — 1,7 — 1). The vector
p%=2" has

pE=2 = (25 + 3 — k)2 — k) (45)
for its first r — 2 components, s=1,...,r — 2;

p= = 4(k —2) (46)

for its next r components s =r —1,...,k —2; and p¥~=?” = 0 for its last one.

_ (k—4) 2k —3)!
det P&=2n —(_y+1 . 47
. S N ] @7
(k=2r)

is nonvanishing, so that the unknowns X are determined in terms of L,.

The k = 2 case is specified by (Def. b) and J2(1, 1,0). k = 4 requires a nontrivial
bottom row, such as (1, —3,0) which follows from J2(3,1,0), and yields a
determinant of 14.

For odd k=2r+1>7, the (k—1) x (k—1) matrix P¥=2*Y is a block-
reduction—a direct sum @ —of a (r — 1) x (r — 1) matrix P¥=2"*1 which turns
out to be identical to M*=2"*1 of the Virasoro case (19), and a (r + 1) x (r + 1)
matrix P=2"* 1, Specifically,

pk=2r+1) _
k—4 1 0 -0 0 0 0 0 0 0
0 k-5 2 -0 0 0 0 0 0 0
0 0 k—6 3 -0 0 0 0 0 0 0
0 0 0 k-7 - 0 0 0 0 0 0 0
0 0 0 0 For=2 0 0 0 0 0
8—k k-7 0 1 0 0 0 0 0 0 0 (48)
0 0 0 0 0 0 2k-3 —1 0 0 0
0 0 0 0 0 0 0 2k-5 1 0 0
0 0 0 0 0 0 0 0 2k-7 0 0
0 0 0 0 0 0 0 0 k k—4

0 0 0 0 - 00 0 0 0 o 0 2k—4
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The first *—2 rows follow from J(l,s+ l,k—s—2), the r—1'th row from
J(2,3,k —5) (for k> 7), and the last r + 1 rows from J2(1,s —r + 1,3r —s — 1). The
vector p*~2"* 1 has components

pE=2rD = (25 43— k)2 — k) 49)
fors=1,...,r—2; p*~ 2"V =0; and
plm2rt D =4k —2) (50)

for the remaining r + 1 components. The determinant,

k(k —7) ((r —2))*(2k — 3)! 51
3271 (k—4)!(k —3)! (1)
is again nonzero. The unique result (4) follows as usual. Note that for k=9 the
third row is (1, — 2,1) instead, but the conclusion holds.

Cases k=1, 3,5, and 7 are treated individually. k = 1 is included in the starting
set. k=3 has only two unknowns, fixed by J2(1,0,2) and J2(1,1,1). For k=5,
there are four unknowns, specified by J2(1,0,4),J2(1, 1, 3), J2(1,2,2), and J2(2,0, 3).

detP(k=2r+1):(__)r+1

07 -1 0
00 5 1
5) —
P 00 0 6" .
22 0 1
whilst
p(s) — (12’ 12’ 12, 0), (53)

and the determinant is nonvanishing (— 420).
Finally, for k=17, J(1,2,4), J2(1,s,6 —s), for s=0,1,2,3, and J2(2,0, 5) yield

6 2 0 0 0 0

0 o 11 -1 0 O
0 0 0 9 1 0
(7) —

P 0 0o 0 O 7 3 (54)

0 0 0 O 0 10

2 0O 4 0 -1 0

with nonzero determinant (27720), and

" = (20,20, 20, 20, 20, 0). (55)

Lemmas 13 and 14 extend to negative levels by the “parity” automorphism of
Lemma 10 which holds for the assumptions underlying their proof.

Lemma 15. All graded commutators between positive and negative level operators
also satisfy the Ramond algebra relations.

The proof includes that of Lemmas 7 and 8 and extends it to {F,,,F_,} and
{F,,F{_n} inductively through J2(1,m, —m) and J2(— 1,m + 1, —m), starting
with m=1. {F,,F_,} for all positive n<m follows inductively in m from
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J2(1,m, — n) and the above, starting with m =2, and likewise for its parity image.
[F,.,L_,] is also specified inductively in m: if it is known for all positive n, for a
given m, then it follows for m + 1 through J1(1, — n,m), the induction basis being
m=0, known by Lemma 13, whilst its parity image of Lemma 10 follows
likewise. MW

The above lemmas are finally assembled to yield

Theorem 2. Given L_, and F, and the definitions of (27-29) together with the five
conditions (31,32, 34), the Ramond algebra of (1) and (4) is satisfied. W

The Neveu-Schwarz Algebra

We finally treat the Neveu—-Schwarz algebra (1,4) where the indices a and b run
over the half-integers. Following convention, the fermionic generators are called
G. The simplest set of starting generators consists of the operators G;;, and L_,.
Define the initial L,’s and G,’s through the iterative definitions

(Def. o) [Gs/zaL—z]ng—uz,
(Def. f) {G_1/2,G_y2}=2L_4,
(Def. y) (G, L1 1= 2G1/2,
(Def. 9) {Gy2,Gy2}=2L,,

56
(Del.e)  [G-13.Li]= —Gupas 0
(Def. {) {G1/2, Gs/z} =2L,,
(Def. 1) [Gx/zaL—z]ng—z./z,
(Def. 0) [L,,L_;]=2L,.
Further define the higher L,’s recursively through (6) and (7) for n > 1;
2
(Def) G,.1=——-[G,,L;] for a>1/2, (57)
2a—1)
for the G’s of positive half-integer index larger then 3/2; and also
2
(Def) G_,.1=—+———[G_,,L_,] for a>1/2, (58)

(1—2a)

for the G’s of negative half-integer indices smaller than — 3/2. The Neveu—Schwarz
algebra also has the automorphism of Lemma 10 with the integer n replaced by
the half-integer a.

Lemma 16. All the commutation relations with L, follow iteratively from the two
conditions:

(Cond.«) [Lo,Gy2]1= "%Ga/z, (Cond.B) [Lo,L_,]1=2L_,. (59)

The proof is again a repeated application of Lemma 3 through J1(0,m, a), J2(0, a, b)
and the definitions (56-58). MW

Lemma 17. In order to close the initial set of operators defined in (56), namely
L_,,L_y, Lo, Ly, Ly, G_35, G_y )3, Gyja, Gy, within itself, three conditions have
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to be imposed. With the conditions

(Cond. y) [L,,L_,]=4L,+ 6c,
(Cond.d)  {G35,G_y)p} =2L,, (60)
(Cond.e) {G_3,,,G_y,}=2L_,,

all the relevant commutation relations within this set are fixed, and all the relevant
Jacobi identities are satisfied.

Given the previous lemma, the proof is direct, based on the following sequence
of Jacobi identities:

i1=J3(1/2,1/2,1/2) i2=J2(1, — 1/2, — 1/2)
B=J3(=1/2,—1/2,—1/2) id=J1(1, — 1, —1/2)
i5=J2(—2,3/2,1/2) i6=J2(—1,3/2,1/2)

i17=J3(3/2, — 1/2,1/2) i8=J3(3/2, — 1/2, — 3/2) (61)
i9=J2(—2,1/2,1/2) i10=J2(1, — 1/2, — 3/2)

i11=J3(3/2,1/2, — 3/2).

The following Table (IT) summarizes the expressions specifying each graded com-
mutator entry, in analogy to Table (I):

In order to close inductively the full algebra, four more conditions have to be
imposed; for example,

(Cond. () {G3/2:G32} =2L;, (Cond.n) {G3/2,Gpp} =2Ls,
(Cond.f) {G_35,G_3,}=2L_5, (Cond.1)) {G_;,,G_;,}=2L_5.
Lemma 18. All the commutators of fixed total level d = q + 1/2, where q is an integer,

between the positive Ls and the positive G’s can be obtained from the definitions
(56-58), together with the conditions (59,60, 62).

(62)

Table II

L, L_, L, L, G_3), G_ip Gip Gy,
L_, 0 X 9,10 cond. y X X def.n def. o
L_, : 0 def. 0 i6 X i3 i4 def.y
L, 0 X i8 def.¢ il X
L, 0 i1 i7 x x
G 3, - : : : X cond. ¢ 9,10 i5
G_yp : : : : def. i2 cond.d
Gy : : : : . . def. & def. ¢
Gy, %
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Proof. Define the g — 1 unknown commutators Y between the positive Ls and
the positive G’s of total level d =g + 1/2 by

Y§d=q+1/2):_—_[Ls+1,Gdfs~1] (€3)

for s=1,...,9 — 1. As before, for the X’s separate the even from the odd cases.
For k= 2r even, let the r — 2 first X%*=27s (t=1,...,r — 2), i.e. the commutators
of two positive Ls, be given by

X =L,y Ly 1), 9

and the next r unknowns X%~2" (t=r—1,...,2r —2), the anticommutators
between two positive G’s, by

X(rk:m = {Gs/z+hr:G3r—r—3/z}- (65)
For k=2r+ 1 odd, let the r — 1 first X*=2"*1 with t=1,...,r — 1, be given by
ng:2r+1)E [Lt+1>Lk—'t—1]7 (66)

and the next r + 1 unknowns, for t =r,...,2r, be given by
ng:2r+1) = {G1/2+l*r,7G3r—t+ 1/2}- (67)

Assume that the X’s and the Y’s are known for all positive levels smaller than
d =g+ 1/2. It is then proved that all the Y*~9* /%) are determined.
For g > 5, the g — 1 unknowns Y obey the matrix equation

pyUsat 2 yd = @ Gy, (68)
where the g — 2 first rows of the (g — 1) x (g — 1) matrix V“@=9*1/2) are given by

the g — 2 Jacobi identities J1(1,1 +s,d —s —2) fors=1,...,q — 2, and the last row
by the identity J3(3/2,3/2,d — 3):

3¢ -1 0 0 0 0 0
0 4-—q -2 0 0o 0 0
0 0 5-q -3 o 0 0
0 9 0 bmg e 000 69)
0 0 0 0 - —13-q 0
0 0 0 0 e 0 0 2—q
0 2 0 0 -0 4 0
The first g — 2 components of the vector v are
oI = (g —2~35/2)(g - 1) (70)
for s=1,...,q— 2, and the last component is zero
Pz = 0, (71)

Since the determinant of V' is nonvanishing,
det VAT 12 =2(3 — g —(-)12)(g —2)!, (72)

the equation (68) can be inverted, yielding the desired result.
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The case of g=1 (i.e. d=3/2) is already contained in the initial set. For the
case ¢=2 (i.e. d=15/2), the only unknown, [L,,G,,,], is obtained from the
definition of G;;, through the use of the Jacobi identity J3(1/2,1/2,3/2). For the
case of g=3 (ie. d=7/2), the two unknowns [L,,G;,] and [L;,G,,,] are
determined from the two Jacobi identities J1(1,2,1/2) and J3(1/2,3/2,3/2). For
q = 4 the last row is (0,2,0), also linearly independent, and the determinant is 4.
For g =35 the last row is (0,2,4,0), which is proportional to the second row, so
J3(1/2,3/2,7/2) is used instead, producing an independent last row (1,0, 1, 1), and
the determinant is —12. H

The X unknowns are obtained by similar arguments.

Lemma 19. All the commutators of a given total level k between two positive Ls
and the anticommutators between positive G’s follow from conditions (60).

Proof. Assume that the X’s and the Y’s for all positive levels below k are known.
The X unknowns satisfy the matrix equation

VXY =uPLy. (73)

It is again convenient to separate the even and odd cases.

For the k = 2r even case, (k > 4) the (k — 2) x (k — 2) matrix U%=2" has its first
r — 2 rows determined by the Jacobi identities J(1,s + 1,k —s—2),(s=1,...,r — 2),
and its next r rows specified by J2(1,3/2+s—r,3r—s—5/2),(s=r—1,...,2r = 2).
In some analogy to P*~2*1)_ it is a block-reduction of a (r — 2) x (r — 2) matrix
U%¥=2" and a r x r matrix U%~2", Specifically,

k—4 1 o - 0 0 0
0 k=5 2 - 0 0 0
0 0 k-6 - 0 0 0
URTR= o r oM (1)
0 0 0 r+1 r—4 0
0 0 0 0 roor—3
0 0 0 0 0 r-—1
and
k—2 0 0 0 0 0 0
0 k-3 1 0 0 0 0
0 0 k-4 2 - 0 0 0
_ 0 -5 ..
Uk=20— 0 : O k : > : O 0 0 . (79)
0 0 0 0 or+1 r—3 0
0 0 0 o - 0 r r—2
0 0 0 o - 0 0 2(r—1

The vector u*~2" has as its first »r — 2 components
uk= =3 4+ 25— k)(k—2) (76)
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for s=1,...,r —2; and as its r next components,

u¥=2 =2(k - 2) (77
for s=r—1,...,2r — 2. The determinant of U
_ (k—4)!(k—2)!
det U%=21 —1 S 78
ot =2l —2)] (78)

is different from zero. Hence (73) can be inverted, producing the proper unique
result.

The case k=2 is already contained in the initial set. The general case also
extends trivially to the case k =4: the matrix U’ is simply absent and the two
unknowns {G,,,G,,} and {Gs,,Gs,, } are obtained through the U'" part of the
matrix only.

The case k=2r+1 odd is more complex. Indeed for k>7, using the
r—2 allowed Jacobi identities J(1,s + 1,k—s—2) for s=1,...,r —2 to fix the
r—2 first rows of the matrix U%=2"*1 J(2,3,k—5) to fix the (r— 1)th row,
J2(L12+s—rk—s+r—3/2)for therowss=r,...,2r — L and J2(k — 3,3/2,3/2)
for the last, 2r’th, line yields

U(k=2r+ J)
k-4 1 0 0 0 0 0
0 k=35 0 0 0 0 0
0 0 k-6 0 0 0 0
0 0 0 k=1 4 0 0 0
0 0 0 0 k-8 0 0 0
0 0 0 0 0 r+l r=3 0 .
0 0 0 0 0 0 roor=2 . :
8~k k=7 0 1 0 0 0 0 . . . (79)
: k-2 0 0 0 0 0
0 k-3 1 0 0 0 0
0 0 k-4 2 0 0 0
0 0 0 k-5 0 0 0
Q 4 0 0 r+l1 r-2 0
0 0 0 0 0 r r—1
0 -2 0 0 o - 0 0 0 0 6-k 0 0 -0 0 0

Note that the dotted blocks are zero matrices of dimension (r—1) x (r + 1) in
the upper-right corner, and r x (r — 1) in the lower-left corner above the last
row, respectively.

The vector u*=2"*1 has

u*=2* Y = (3 + 25 — k)(k—2) (80)
for its first r — 2, i.e. s=1,...,r ~ 2, components; zero
uk=2r =0 (81)
for its r — 1’th component;
uk=2rth =2(k —2) (82)

for its next r components, ie. s=r,...,2r—1; and zero again for its last
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component
ug=rrH =0, (83)

The determinant of the matrix U*=2r+1

det U =2+ = k(k — 2)2(6 — k)(k — T)(r — 1)!(r — 2)!/3! (84)

is nonvanishing and hence the usual result follows.

The cases of k=1,3,5,7 are treated individually. k=1 is in the starting set.
For k =3, there are two unknowns, X = {G,,,,Gs,} and X% = {G;,, G, }.
The two allowed Jacobi identities J2(1,1/2,3/2) and J2(2,1/2,1/2) lead to the
same relation, fixing only X{. Hence (Cond.{) and its parity image (Cond.0)
are introduced.

For k=35, for the four unknowns X©' =[L,,L;], X9 ={G,;,Go;},
X9 ={G;,,,G,}, and X9 ={Gs),Gs)}, the six allowed Jacobi identities,
namely J2(1,1/2,7/2), J2(1,3/2,5/2), J2(2,1/2,5/2), J2(2,3/2,3/2), J2(3,1/2,3/2),
and J2(4,1/2,1/2), give only three independent relations, as can be checked
directly. Hence, (Cond. ) and its parity image (Cond. 1) are required.

Finally, the case k=7 can be solved without further constraint. The six
unknowns obey the matrix equation (73), where a 6 x 6 matrix U is, for
example, provided by the following six Jacobi identities: J(1,2,4), J2(1,1/2,11/2),
J2(2,1/2,9/2), J2(2,3/2,7/2), J2(2,5/2,5/2), and J2(5,1/2,3/2).

-3 -1 0 0 0 O

0 0 5 0 0 O
4 0 7 0 -1 0
™ _
v 4 0 0 5 0 1 (85)
2 0 0 0 30
-2 0 -1 =2 0 0
with
det U7 = — 140, (86)
and the vector u'” has
u = 10, 87)

for its first two components s = 1,2, and zero for its remaining four components
for s=3,4,5,6,
ul” =0. (88)

Extension to the negative level parity images proceeds in the standard
manner.

Lemma 20. All graded commutators between positive and negative level operators
also satisfy the Neveu—Schwarz algebra.

The proof includes that of Lemmas 7 and 8, and parallels that of Lemma
15 {G,,G-,} and {G,G,_,} follow inductively from J2(1,a, —a) and
J2(—1,a+ 1, — a), starting with a=3/2; then, {G,,G_,} for all positive b<a
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follows inductively in a from J2(1,a, —b) and the above, starting with a = 3/2.
[Gy2,L_,] for all positive n follows from J1(1, —n, —1/2) and the parity
image of Lemma 18; [G;,,L_,] is determined inductively in n through
J1(—1, —n,3/2), starting with n = 2. Hence, starting with a = 3/2, induction in a
determines [G,, L_,] for all positive n through J1(1, — n, a); likewise for its parity
image. W

All the preceding lemmas are collected in the following theorem:

Theorem 3. Given the starting generators Gz, and L_, and the definitions (56-58)
and the nine conditions (59,60,62), the entire Neveu—Schwarz algebra (1,4) is
satisfied. A

Discussion and Conclusions

It has been demonstrated so far that the Virasoro, Ramond, and Neveu-—
Schwarz algebras are built out of a mere subset of two generators, subject to
a finite number of conditions: both the definitions of the remaining generators
and the conditions imposed consist of nested (graded) commutators of these
two starting generators.

It is evident however that, within the initial anadromic operator sets in the
proof of the above theorems, there is an ambiguity concerning which are the
starting operators, which are the definitions, which are the imposed conditions,
and which are the derived relations. This suggests some freedom to reassign
the status of selected relations in this set. For instance, in the Virasoro case,
we could have started alternatively from three instead of two generators, namely
L,,L_,,and L_,. The definitions are then

(Def 1) Ly =3[L,, L],

(Def.2) Lo=%[L,,L_,], (89)

together with (6) for n > 1 and (7). There are then nine conditions:

(Cond.1l") [L,,Ly]=2L,

(Cond.2") [L_,,Lo]l=—-2L_,

(Cond.3) [L_,Lo]=-L_, , (90)
(Cond.4') [L,,L_,]=4L,+ 6c¢

(Cond.5") [L_,,L;]=-3L_,

and the four conditions of (13). Both the number of starting generators and
the number of conditions have increased by one. The bulk of the inductive
proof of Theorem 1 remains unchanged.

In a somewhat different vein, also in the Virasoro case, note that Condition 4
could be turned into a definition of ¢, now regarded as an abstract operator.
One way of writing this would then be to replace Condition 4 by an alternate
definition and two alternate conditions:

(Alt.Def.5)  e¢=%i([Ly,L_,]—2[Ly,L_1])
(Alt. Cond. 4) [c,L;]=0 (91)
(Alt. Cond. 4) [¢,L_,]=0.
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With this alternate set, ¢ belongs to the center of the enveloping algebra and hence
can be diagonalized. This way of defining ¢ as a new abstract operator rather than
as a multiple of the identity increases the number of conditions by one.

Exploring the general properties of such reassignments is beyond the scope of
our present paper. In such a study, it should be interesting to search for invariants
of reassignments, as extra starting generators may obviate definitions but, as in
the above example, increase the number of conditions. A topological or graph-
theoretical meaning to the numbers of conditions found above is not excluded.
At this point, however, we have not shown in complete generality that no other
choice of starting generators and conditions could reduce the size of the above
sets. What we will explore below is the adequacy of starting sets of generators for
defining the infinite algebras.

Consider the bosonic Virasoro algebra first. The general requirement for the
starting set is, of course, that it contain both negative and positive indices, and
that taking sums of the starting indices yield all integers, excluding sums
corresponding to trivial commutators. Naturally, the starting set should be minimal,
in the sense that no subset of these operators should suffice by itself to define all
operators of the algebra. Thus, e.g. if the starting set is to consist of only two
generators, a positive index m is required, together with a negative one—n.
However, neither can have an absolute value of 1, since this truncates the positive,
or negative, subalgebra at that level. Moreover, if m and n have a common divisor
r, then only multiples of r may be reached through the sums specified. We are
thus led to:

Proposition 1. L,, and L _, are an adequate starting set for relatively prime m, n > 1.

This is shown for m > n, whilst the parity image statement follows likewise.
Since L, and L_ ladder to all indices from m and — n, it suffices to reach these
two operators. Positive indices may be lowered by multiples of n, so that we
consider modulo n the n integers 0-m, 1-m,...,(n — 1)m. No two integers in this
set can be equal, since otherwise pm = gmmod n, so that (p — q)m = sn withp — g <n,
which would dictate that m and n share a common factor. Thus, in this set of n
different numbers, 1 and n — 1 (leading to — 1) occur. B

When the assumptions of the above proposition are not satisfied, more starting
generators are required to produce initial operators of the required type and form
a minimal starting set. In general, the largest common divisor of all starting
generators should clearly not be larger than one, as in the example (89-90).

For two starting generators, the Ramond algebra affords two options. Firstly,
the starting set may contain an L_,, and an F,, or the corresponding parity image
choice, with m, n> 0. In this case, m must be odd, otherwise no odd-indexed
bosonic generators would be reachable. Since L,, is reachable, the problem reduces
to the previous one for m and n relatively prime, albeit m = 1 is now acceptable;
for m and n sharing a common divisor, all derived fermions will be indexed by
multiples of that divisor. The second option involves F_,, and F,. In this case,
out of m, n >0, one must be even and the other odd, otherwise no odd-indexed
bosonic operators would be reachable. Furthermore, m and n should be relatively
prime, otherwise only multiples of their common factor would index all bosonic
generators.



614 D. B. Fairlie, J. Nuyts, and C. K. Zachos

For two starting generators, the Neveu—Schwarz algebra also affords two
options. For a starting set L_, and G,,.,, with m, n> 0, it is also necessary that
n>1, as L_, cannot be lowered by G_,,; moreover, n and 2m+ 1 must be
relatively prime, as usual. For a starting set of G_ 1,5 and G, 5, m,n>0, as
above, and it is likewise seen that m and n must be relatively prime. When there
are more than two starting generators, the options are more numerous, but the
generalization is straightforward.

Our construction, by dint of carrying the entire content of the algebra (1)—or
(1) and (4)—implicitly solves an analog of the word problem [5] for these infinite
algebras, namely the algorithmic determination of all “words,” in our case sequences
of nested commutators of the starting generators (or these generators themselves),
and the specification of equivalence of words. Similar constructions may apply to
Kac—-Moody algebras. The significance of the formulation at hand lies in the fact
that every relation involving, e.g., the Virasoro algebra and its consequences may
alternatively be written in terms of the two starting generators subject to the above
8 conditions, and thus any use of the algebra (1) may now be supplanted by Jacobi
identities. Thus several constructions based on the Virasoro algebra may simplify,
and new ones may well emerge. At present, however, we have not utilized this to
explore the representation structure of the algebra, which should be the subject
of a separate investigation. For example, it should be interesting to search for
ways in which ¢ may be constrained, e.g. as it is known to be for special
representations. Given our construction, a natural question which arises includes
relaxing the form of the conditions posited above, in various ways, thereby inducing
extensions of the Virasoro and super-Virasoro algebras, like those of Ref. [6],
or potentially consistent new infinite algebras.

Acknowledgements. We record our appreciation to E Corrigan, Y Meurice, and A. Kumar for
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