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Abstract. A moment map Jr\JiA^>(gl(r) + )* is constructed from the Poisson
manifold JίA of rank-r perturbations of a fixed N xN matrix A to the dual
(&'(r)+)* °f Λe positive part of the formal loop algebra ^I(r)
= g/(r)®C[[Λ.,Λ,~1]]. The Adler-Kostant-Symes theorem is used to give
hamiltonians which generate commutative isospectral flows on (g/(r)+)*. The
pull-back of these hamiltonians by the moment map gives rise to commutative
isospectral hamiltonian flows in JίA. The latter may be identified with flows on
finite dimensional coadjoint orbits in (g/(>)+)* and linearized on the Jacobi
variety of an invariant spectral curve Xr which, generically, is an r-sheeted
Riemann surface. Reductions of JίA are derived, corresponding to subalgebras
of gl(r, <C) and sl(r, C), determined as the fixed point set of automorphism
groupes generated by involutions (i.e.,jdl_the classical algebras), as well as
reductions to twisted subalgebras of s/(r, (C). The theory is illustrated by a
number of examples of finite dimensional isospectral flows defining integrable
hamiltonian systems and their embeddings as finite gap solutions to integrable
systems of PDE's.

1. Introduction

In 1979 Moser [32] showed that a number of well-known completely integrable
finite dimensional hamiltonian systems could be uniformly understood in the
framework of certain rank 2 isospectral deformations of matrices. The problem he
considered involved hamiltonian flow (x(t\ y(ή) in R 2 " which, for a fixed nxn
matrix A and real constants, a, b, c, d, leaves the spectrum of the matrix

L = A + ax® x + bx®y + cy®x + dy®y

invariant. Among the results he obtained were:

* This research was partially supported by NSF grants MCS-8108814 (A03),DMS-8604189, and
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(1) The elementary symmetric invariants of L, regarded as hamiltonians on
R 2", give rise to flows which are mutually commutative, and hence isospectral,
obeying equations of Lax type:

(2) Associated to these flows is a certain invariant hyperelliptic curve X. The
quotient of an invariant dense submanifold of the isospectral manifold by a
1-parameter group (or, in certain cases that of a codimension 1 constrained
submanifold) is identifiable with the Jacobi variety #{X) so that the flows are
identified with linear flows in f{X).

(3) The systems are completely integrable.

In further related developments, Adler and van Moerbeke [6,7], and others
[13,37], recast the Lax equations for finite dimensional systems in the framework
of loop algebras, where the spectral curve and linearization of flow on its Jacobi
variety is very natural. Reyman and Semenov-Tian-Shansky [38,39] have shown
the relevance of the Adler, Kostant, Symes (AKS) theorem [5, 24, 44] to the
linearization of isospectral hamiltonian flows in loop algebras, but did not
examine the relationship to Moser's isospectral flows. The algebraic approach to
integrable systems of PDE's developed by Sato [41] and the Kyoto school [9] has
also been related to isospectral flows in loop algebras [11, 14, 42, 49]. Through
inverse spectral methods, integrable systems of PDE's may be interpreted in terms
of constrained harmonic oscillators in infinite dimensions [10, 32, 33] and
solutions of "finite gap" or multi-soliton type derived algebraically from linear
flows in Grassmanians and Jacobi varieties [8,9,12,15,21,25-28,31,34,36,45,46,
50, 51]. The PDE's that arise may be interpreted as integrability conditions
implied by the commutativity of pairs of isospectral flows in loop algebras [11,14,
42, 49].

The principal purpose of the present work is to provide a systematic link
between finite dimensional integrable systems, flows in loop algebras, and
integrable systems of PDE's through the use of moment maps. The construction of
such maps allows us to apply the results of the AKS theorem to deduce a large class
of commuting flows of isospectral type generalizing Moser's results to perturb-
ations of arbitrary rank. As a consequence of our construction, not only can a
much wider class of integrable finite dimensional systems linearizable on Abelian
varieties be derived, but the intrinsic finite dimensional structure of the "algebraic"
solutions to integrable systems of PDE's admitting a zero-curvature formulation
can be determined and expressed in terms of commuting flows of finite
dimensional systems. In many cases these systems are of interest in themselves.

More specifically, we consider the generalized Moser problem:

Given an nxn matrix A, consider a general rankr perturbation

where F and G are maximal rank rectangular nxr matrices. In the space of such
pairs (F, G), endowed with the symplectic structure ω = tv(dFτ /\dG\ derive a
maximal Poisson commuting (i.e. completely integrable) set of hamiltonian flows
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(F, G)-+(F(t), G(ή) which give rise to isospectral deformations of L, and prove that
these flows linearize on the Jacobi variety of a suitable spectral curve.

The solution of this problem through the moment map construction together
with the AKS theorem is the main content of Sects. 2-4. In Sect. 2 we consider
various hamiltonian group actions on the space of (F, G)'s. We define moment
maps for these actions and derive in particular a moment map into the space in
which the relevant AKS flows reside, the dual of the positive component of the
loop algebra gl(r). This construction is central for all the subsequent development.
We also address the question of invertibility and show how quotienting by certain
hamiltonian group actions gives rise to a Poisson manifold on which the moment
map becomes an immersion. In Sect. 3 we prove the basic theorem (3.2) showing
why hamiltonians generating isospectral flows of AKS-type in (g/(r)+)* pull back
to hamiltonians which fulfill the requirement of the generalized Moser problem
(i.e. that they be isospectral for LA and that they Poisson commute), both in the
form stated above and in a slightly generalized version (Theorem 3.6). In Sect. 4 we
study the spectral curves, which in general are r-sheeted for the rank r case. We
show how the results of Reyman and Semenov-Tian-Shansky [39], concerning
complete integrability of flows in finite dimensional orbits of loop algebras, and
methods of Krichever and Novikov [25,26,27], and van Moerbeke and Mumford
[31], concerning linearization in Jacobi varieties, can be applied to our situation to
deduce complete integrability and linearization when the affme part of the curve is
nonsingular. In Sect. 5 we discuss the problem of reductions of such systems under
finite groups of automorphisms, in particular, reductions of gl(r, (C) by involutive
automorphisms to the classical Lie algebras and reductions to the twisted
subalgebras of loop algebras. Finally, in Sect. 6 we illustrate these results with a
number of detailed examples involving both finite and infinite dimensional
systems and the links between the two. For the finite dimensional case with rank 2
perturbations, we show how Moser's results may be deduced as particular cases of
our own and we give an analysis of a rank 2 system which fits into another real
form generalizing Moser's framework; namely, the Rosochatius system. We then
proceed to the relation with systems of PDE's, realized as integrability conditions
for commuting flows, treating as examples of the rank 2 case the NLS equation and
the modified KdV equation. We also give, as illustrations of the rank 3 case, the
coupled NLS and the Boussinesq equation.

A sequel to this paper [4] will deal with the generalization of the results in
Sect. 4 involving linearization of the flows and complete integrability for the case
of singular curves as well as presenting a detailed computation of the flows arising
from the examples in Sect. 6.

2. Moment Maps

We first summarize the necessary definitions regarding moment maps (see e.g. [3,
17, 47]). Let (M,ω) be a symplectic manifold. For feC^iM) the associated
hamiltonian vector field Xf is defined by:

df, (2.1)
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and the Poisson bracket in C™(M) is:

{/,g}=-A7(g). (2.2)

Then CCO(M) may be regarded as a Lie algebra with respect to the Poisson Lie
bracket and, denoting the Lie algebra of vector fields on M by χ(M), the map

j8:C°°(M)->χ(M), β{f)=-Xf (2.3)

is a homomorphism of Lie algebras.
Let φ: G x M-+M be a smooth group action preserving ω [written, in short,

0(g, x) = gx, g e G, x E M] and denote by g the Lie algebra of G. The infinitesimal g
action is given by the homomorphism

defined by:

σ(ξ)(x)=-j-φ(exptξ,x)\t=0, ξe&xeM. (2.4)
at

The G action is called hamiltonian if there exists a moment map:

J:M->§*

such that the hamiltonian flow generated by < J, ξ} (where <, > denotes the dual
pairing) coincides with x->φ(Gxptξ,x), i.e.,

X<J,ξ> = σ(ξ). (2.5)

The moment map is equίvarίant if

J(φ(g9x)) = Ad*J(x), VgeG. (2.6)

Let7':g->CCO(M) denote the linear dual of J, defined by

αθ. (2.7)
If we are only concerned with the infinitesimal action (2.4) (i.e., if we do not require
the flows induced by J to be complete) we may take the following as alternative
equivalent definitions of an equivariant moment map.

A map J : M-*g* with J(gx) = Ad*J(x) and βoj: g->χω(M) a Lie
algebra homomorphism. (2.8a)

A map whose linear dual j\o>-^Cco(M) is a Lie algebra
homomorphism. (2.8b)

(The representation of g in terms of vector fields on M is understood to be defined
byσ = βoj)

There is also a third characterization that will be useful. Recall that the space g*
has a natural Poisson structure, called the Lie-Poisson structure [48], given by

(l ϊ / \δφ δψ\\
{φ,ψ} *(μ) = { μ, T—J "τ~ λ φ,ψεC (g*),

\ \_oμ oμ_\l
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where δφ/δμ denotes dφ(μ) thought of as an element of g = g**. We can then
characterize an equivariant moment map equivalently as

A map J:M->g* that preserves the Poisson bracket, i.e. is a
Poisson map with respect to the Lie-Poisson structure; if
φ9ψeC°°(Q*)9 then {J*</>, J*ψ}=J*{φ,ψ}Q*. (2.8c)

Definitions (2.8a-c) remain valid when M is any Poisson manifold.
Henceforth, the term "equivariant" will be dropped since all moment maps

considered will satisfy this condition.
Let CQ(M) denote the G invariant functions on M. Since a symplectic G action

on M preserves the Poisson bracket, it follows that CQ(M) forms a subalgebra of
C^iM). If G acts freely and properly on M, then M/G is a manifold with a Poisson
structure inherited from the one on M through the identification C^iM/G)
~CQ(M). The symplectic leaves of M/G turn out to be the Marsden-Weinstein
reduced manifolds [48], i.e. they have the form

Mμ = J-\μ)/Gμ = J-\Θμ)IG, (2.9)

where μecj*, Gμ is the isotropy group of μ in G and Θμ is the G-orbit through μ.
Recall that the reduced manifold, Mμ, has a natural symplectic structure ωμ such
that i*ω = π*ωμ, where i :J~ί(μ)^M is inclusion and π: J~1(μ)^Mμ is the natural
projection taking points to their Gμ orbits.

Let MN>r be the space of complex N xr matrices, and identify MNiY~M%ίr

through the pairing

(F,G) = tr(FΓG), F,GeMNt,.

We shall consider several group actions on MNtr x MNtf which are hamiltonian
with respect to the symplectic form

ω = tr(dF A dGτ). (2.10)

For n^Nkt

Gn

r = GL(r, C) x ... x GL(r, (C) (n times) (2.11)

be the direct product Lie group and

9Z = gZ(r,C)Θ...Θgί(r,C) (n times) (2.11')

n

its Lie algebra. Let fel5 ...,fcw be positive integers with kt<r and £ k^N. For
i=ί

FeMN r let Ft denote the fe^xr block whose/*1 row is the(kι + ...+/c I _ 1 +j)th row
of F; i.e. F has the block form

F =



456 M. R. Adams, J. Harnad, and E. Previato

(GΛ

Expressing similarly G = : with each Gt a k{ x r block, define a hamiltonian G"

\GJ
action on MNmf x MNfK by

(2.12)

Let a":g"^/(M N r xMN r) denote the corresponding infinitesimal action. The
associated moment map

is given by

Jn

r(F,G)(Xu ...,*„) = - Σ tτ(FjXjGj), (2.13)
7 = 1

where the traces in the right-hand sum involve kj x k} matrices.
Identifying gl(r, (C)* with gl(r, (C) through the trace of matrix products, and

hence (g?)* with g", we have

Jn

r(F,G) = - ( G [ F l 5 . . . , GT

nFn)Ggr". (2.14)

Restricting the G" action to that of the diagonal subgroup Gr = {(g,..., g) e G"}
~ GL(r, (C) gives the action Gr: M^ r x MΉ^^MN^r x MN r, defined by

g(F,G) = (Fg-\Ggτ), geGL(r,(C) (2.15)

with moment map

Jr(F,G)(X)= -tr(GτFX), X 6 9 r = g/(r,q, (2.16)

or, through the above identification of g/(r, (C)* with gl(r, C),

j r ( F , G ) = - G Γ F . (2.17)

Now let gl(r) = gl(r, (C)®(C[/l, A~x]] be the loop algebra of semi-infinite formal
Laurent series in λ with coefficients in gl(r, (C); i.e., with elements X(λ) e gl(r) which

are formal series of the form X(λ) = £ αî -'> β ; e g'(r> Q> a n ( 3 Lie bracket with

Y(λ)= Σ bjλj given by
7 = - o o

m + l

[X(λ),Y(λ)-]= Σ Σ [ f l i , ^ ] ^ , (2-18)
k= — co i+ j = k

(the inner sum being finite and the outer one formal).
The algebra gϊ(ή has a nondegenerate, ad invariant inner product given by

(X(λ\ Y(λ)) = tv((X(λ)Y(λ))0)= res t r ^ - ^ Y W ) , (2.19)

where (X(/l)Y(Λ,))0 denotes the constant term in the formal series X(λ)Y(λ), or
equivalently the formal residue at λ = 0 of λ~ιX(λ)Y(λ).
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Let ^ϊ(r}+ denote the subalgebra of gl(r) given by the polynomials in λ and
- 1

gl(r) ~ the subalgebra of strictly negative series i.e., series of the form Σ aft> We
i = — oo

can write ^Kjή as the vector space direct sum 'gϊ(r) = gl(r) +®gl(r)~. The inner
product (2.19) then gives the identification

(gWΎ~(W)Ύ=W)o , (2.20)

where gϊirjo denotes the subalgebra of gl(r) given by λgl(r)~.
Fix n distinct complex numbers, α l 5 α 2 , ...,αw. Since X(λ)egl(r)+ is a poly-

nomial we can evaluate at λ = αf to obtain X(αf) e g/(r, (C). This gives a Lie algebra
homomorphism

defined by

. (2.21)

n

The kernel of this map is a(λ)gl(r) + , where a(λ)= Π (A — αf). Hence we have the
i=ί

exact sequence of Lie algebra homomorphisms

where i is inclusion. The dual sequence is thus

^W^W+)*^0, (2.23)

where, if we identify (g")* with g" by using the trace componentwise, and (g/(r)+)*
with g/(r)o~ as in (2.17), we get

Lemma 2.1.

Λ/*(y1,...,yj=λ Σ y ^ - = Σ (Σ ^ ) ^ ~ k (2.24)

Proof. This may be verified by applying both sides to an element X(λ)e^ϊ(r)+ and
comparing coefficients. The easiest way to see the result, however, is by viewing the
second expression as a meromorphic function and using the interpretation of the
inner product (2.19) as a formal residue at λ = 0. •

Since stf is a Lie algebra homomorphism, it follows that J / * is a Poisson map
with respect to the Lie-Poisson structures on (gj?)* and (g/(r)+)* Hence the map
Jr:MN,rxMN^@(rj+)*, defined by

Jr = stf*oj», (2.25)

is a moment map in the sense of (2.8c) with respect to the infinitesimal action of
gl{r)+ on MNrxMNr defined by σ r:g/(r)+-^χ(MM ? r x MNtr)9 σr = σn

ros>/.

Remark. We use this generalized definition of a moment map because the algebra
gl(r)+ does not have an easily described group. The construction we have given in
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terms of formal series and polynomial algebras is the simplest for our present
purposes. However, it is easily modified to permit a genuine group action as
follows (see also [35]). Let GL(r) denote the loop group H^S1, GL(r, (C)) for some
s > 1/2, where Hs is the L2 Sobolev space with s derivatives. The Lie algebra gl(r) of

GL(r) is the set of Fourier series £ atλ\ λeS1, with a{ e gl(r, (C), which converge

in Hs. Let GL(r)+ be the subgroup of GL(r) given by loops which are Hs boundary
values of GL(r, (C)-valued holomorphic functions on the interior of the unit circle.

The Lie algebra gl(r)+ of GL(r)+ is given by Fourier series of the form £ atλ\ so

gl(r)+ Cgl(r) + . Finally, if we assume the αf's satisfy |αf| < 1 (by rescaling, if necessary),
then we can define a group homomorphism

by

since g(λ) e GL(r)+ converges inside the unit circle. The composition of a with the
action of G" on MNtf. x MN > r gives a symplectic action of GL(r)+ on MN r x MNtr.
This action has a moment map /,: MNtf x M N r-»(g/(r)+)*, which when composed
with the projection (gl(r)+)*—>(gl(r)+)* is Jr. In what follows we continue to use the
formal algebras since it is standard in the literature.

Combining (2.14) and (2.24) we obtain the following expression for the moment
map Jr

Proposition 2.2. For (F, G)eMN r x MNff., we have

n XQTF
Jr(F,G)= Σ —^-, (2.26)

OC λ

where we identify (g/(r)+)* with gl{r)0 .

Note that the restriction of Jr to the subalgebra gl(r)Cgl(r)+ reproduces the
moment map Jr of (2.17).

We now wish to describe the image and fibres of the moment map

Jr:MNtrxMNtr->@(rj+)*.

Since <stf* is injective it is enough to describe the image and fibers of J":MN r

x MiVjΓ->(g|ί)*~cj!ί. To describe the image of J" first consider Eq. (2.14). Since the
rxr matrix GjFt has rankfef or less, we may identify ImJ"C(g")*~g" as the set

ImΓr - {(Xl9..., Xn) E g;| \Xt has rank kt or less}. (2.27)

Now define H to be the direct product group

H = GL(ku <C) x ... x GL(kn, C) C GL(N, (C), (2.28)

where the inclusion is along the diagonal. Restricting the natural GL(N, (C) action
on MN > r gives rise to the hamiltonian H action on MN>r x MNίf, defined by

{HF,G))i = {hiFi,KιTGd, (2.29)

where

h = (hu...,hn)eH, l i ,€GLfeC).
Let

I) = g/(/c1,(C)φ...φg/(/cn,C) (2.30)
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denote the Lie algebra off/ and ϊ)* its dual. If we identify ί)* with ί) by taking traces
componentwise, the moment map for the H action (2.29) is given by

JH(F,G) = (FιG
τ

u...,FnGΪ). (2.31)

Since the H action commutes with the G" action, we conclude

Proposition 23. Jn

r(h(F,G)) = Jn

r{F,G) and Jr(h(F,G)) = Jr(F,G) for all heH and

That is, the inverse image of any point under J" or Jr is invariant under H. In
fact, the inverse image of any point is exactly the H orbit when we restrict to an
open, dense set Jίk C MNtr x MN r labelled by the partition k = (fcl3..., kn) of N (with
k^r — 1), and defined by

J(* = {(F, G)eMNίrx MN,r | Fh Gt have rank fcj .

Clearly both H and G" leave Jίv invariant and the two actions commute.
Moreover, since (Fh Gt) are of maximal rank, it follows that:

Proposition 2.4. H acts freely on Jik and

(JT\rr(F,G)) = {h(F,G)\heH}=J;\Jr(F,G)) for (F,G)eJΐk. (2.32)

Combining this with Proposition 2.3, we conclude

Corollary 2.5. The infinitesimal gl(r)+ action on J(v reduces to an infinitesimal
action_on the Poisson manifold Jίk/H with injective moment map Jr0:Jίk/H

+ by

)]H) = JΓ((F,G)), (2.33)

where [(F, G)]H e MkjR denotes the H-orbit of (F, G) e Mk.

Remark. Notice that the H action and the G" action are not entirely distinct since
the center of G",

(2.34)

and that of H,

(2.35)

(where It denotes the / x / identity) may be identified, together with their action on
MNtr x MN r. The corresponding Lie algebras bΛ and b'n may be identified with (C",
and the moment map

is given by

[ jJ. (2.36)

Moreover, bπ is the image under $4 of the center b e g/(rj+, the latter consisting of
polynomial multiples of the rxr identity matrix, Ir. Therefore, the part of Jr which
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generates this algebra is also just the trace

Now, let

, . . . ,α 1 ,α 2 , . . . ,α 2 , . . . ,α Λ , . . . ,α I I ) (2.38)

be the complex diagonal N xN matrix with eigenvalues αf repeated ki times. Then
Eq. (2.26) can be rewritten as

Jr(F,G) = λGτ(A-λiy1F=- £ GτAkFλ~k. (2.39)
fe = O

Let JίocMN^r x M^ r be the open, dense submanifold

Jί0 = {(F, G) e M M > r xMNtr\F and G have rank ί}, (2.40)

and let

JίA = {A + FGτ\(F,G)eJί0} (2.41)

denote the space of rank r perturbations of A. The group Gr = GL(r,(D) acts freely
and properly on Jί0 and therefore gives rise to a manifold structure on the quotient
space of orbits, JίJGr. Since the projection π\JίQ-^JίA given by (F,G)^>LA

= A + FGT has as its fibers precisely these Gr orbits, we may identify JίA with
JίQ/Gr. Through this identification JiA has a natural Poisson structure with
functions on JίA interpreted as GL(r) invariant functions on Jί0. In the following
section we shall study hamiltonian flows on MN r x MN r which derive from GL(r)
invariant hamiltonians, project within Jί0 to flows on JίA which are isospectral,
and leave Jίk invariant.

As a final remark, notice that the groups H and GL(r, (C) act freely and properly
on the open dense submanifold Jί = Jί*nJi0 cMNtt. xMN r. Hence the preceding
analysis of the H action on Jίk can be equally applied to Jί. The G" action on Jίk,
however, only gives a local action on Jί, and therefore the moment map (2.14)
must be interpreted in the infinitesimal sense.

3. Isospectral Flows

Poisson Commutatίvίty and the AKS Theorem

We now consider flows of rank r perturbations, LA = A + FGT, of the matrix A
defined in Sect. 2, which are isospectral and which arise as projections of GL(r, (C)
invariant hamiltonian flows in Jί0. Define Lk = Lk(F, G), the elementary symmetric
invariants of LA, regarded as functions of (F, G), by:

Since the functions Lk determine the spectrum of A + FGT, we are looking for flows
in MNtr x Mjy r which leave invariant all the Lfc's. We shall describe a large family of
such flows in this section.
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To begin with we need to recall the theorem of Adler [5], Kostant [24], and
Symes [44] (see also [38, 39, 20]). Let g be a Lie algebra with a nondegenerate, ad
invariant inner product <, > (i.e. <[Z, Y],Z> + (Y, [X, Z]> = 0). Suppose g is the
vector space direct sum g = ϊ®I, where ϊ and I are subalgebras. Then g* can be
identified with ϊ*®I* by identifying I* with 1°, the annihilator in g* of I, and I* with
ϊ°. Using the inner product we can also identify g* with g. Correspondingly, ϊ* ~I°
is identified with the orthogonal annihilator I 1 C g and I* with ϊ 1 C g. If X e g we
write X = Xt± + Xι±, where Xt± e f1 and X{± e I1. Using this notation we can write
the ad* maps for I* and I* in terms of the bracket in g. Namely, for Xei and
Yel 1 -!*, we get

[X,Y] μ , (3.2a)

and for U e I and Ve t1 ~ I*, we get

[L/,F] μ . (3.2b)

Let /(g*) denote the ring of infϊnitesimally Ad* invariant functions on g*, i.e.
/e/(g*) iff (μ,lδf/δμ9X]}=0 for all Xeg and μeg*, where δf/δμ denotes df(μ)
thought of as an element of g~g**

Theorem 3.1 (AKS). (1) For / and ge J(g*), let f and g denote their restrictions to
I*~ϊ°. Then {fg}l* = 0, where {,}j* is the Lie-Poisson bracket on I*.

(2) Let /e/(g*) and let f be its restriction to I*. Using the identifications g* ~g
and l *^ ! 1 , Hamilton's equation for the hamiltonian f on I1 is given by

X = [_df{X") + ,χ-\=-idf{X")^X^, Xet\ (3.3)

where, if ξ e g, ξ + , and £_ are respectively the I and I components of ξ, Xb e g* is the
point in g* corresponding to X e g under the identification g ~ g*, and df(X^) e g is the
differential of j at X° considered as an element of g = g**

Now identify g = g/(r), ϊ = gl(r) , and l = gl(r) + . Part (1) of this theorem then
states that elements of the ring of functions

*)} (3.4)

commute in the Lie-Poisson structure of (g/(r)+)*. Since the moment map Jr: MNtf

x MN r-> (g/(r)+)* is a Poisson map, it follows that elements of the ring of functions

{ c C » ( M N 9 r x M N t r ) (3.5)

Poisson commute on MNtt. x MN^r. This leads us to our first main result.

Theorem 3.2. Lke^ for k = 0, ί,...,N— 1. Hence the hamiltonian flow for any
(in particular, for the Lk's themselves) preserves the Lk's, i.e. it is isospectral.

Proof Jdentify gl(r)* with gl(r) by the ad invariant inner product_(2.19). For
X(λ)egl(r), let X^{λ) denote the corresponding element of gl{rγ. Define

(3.6)
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where p{λ) = det(^ - λl) and the right-hand side denotes the coefficient of λk in the
1

Γformal series p(A)det( / + -^X(λ)). Let φk = Φk\(gί{^+)*' We then have,

(3.1)

This follows directly from Eq. (2.39) and the identity

τ-λI) = det(Ά-λI)det(I+Gτ(A-λiy1F). • (3.8)

Although we defined the Lfc's as functions on MNtf. x MNtr they may also be
regarded as functions on the manifold J(A = {A + FGτ\{F,G)eJί0} [recall that
Jί0CMNίr x MNtf is the open dense submanifold consisting of (F, G)'s that have
maximal rank]. In fact this may be done for all functions in # \

Proposition 3.3. // fe #", then f is GL(r, C) invariant. Hence, έF\Mo is projectable to
a ring of functions 3FA on JtA whose elements commute in the Poisson structure for

Proof Let GL(r,(C) act in the natural way on gl{r)*~gl(ή, i.e.

g(.Σ *iA=.Σ ( A d ^ , geGL{r).
1 = — 00

Notice this action leaves (gl(r) + )*~gl(r)0 invariant. If $el(gl(r)*) it is invariant
under this action, hence its restriction φ = φ\(^r) + r is also invariant under the
action. It is clear from (2.26) that Jr intertwines the diagonal Gr = GL(r, (C) action
(2.15) on MNtr x MNtr with the restriction of the above action to (g/(r)+)*~g/(r)o~,
i.e.

l'g = g'Jr. (3.9)

Thus J*φ must be invariant under the Gr action. Π

It also follows from Proposition 2.4 that # Ί ^ k projects to a ring of functions #
on Jίk/H which still Poisson commute. In fact, since we have an injective moment
map J r > 0 : Ji*IH-*(gl(r)+)* we can use part (2) of the AKS Theorem 3.1 to get the
equations of motion on Jίk/H.

Proposition 3.4. Let φ = $\(g[(f) + )* far some $ e l(gϊ(rj*) and let f=J*oφ. Let Xf be
the hamiltonian vector field for f on Jίk/H. Then Xf at the point [(F, G)]H e Jίk/H
is defined by

)UJri, (3.10)

wher^dφ (Jί) = (dφ (JΓ)) + - (dφ (JT)) _ is the splitting of dφ (JT) e gl(r) into its gl(r)+

and gl(r)~ pieces, and

= Jr(F,G)e(gl(r)+)*~gl(r)v . (3.11)

We remark that it is also straightforward to write the equations of motion for
J*φ on all of MNtr x MNtt. by the methods used to describe collective motion in
reference [18].
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Shifted Hamiltonians

A slight generalization of the above formulation is possible which allows us to give
isospectral deformations of matrices of the form

(3.12)

for some fixed a e GL(r, (C). The functions 3F given by the AKS theorem generally
do not preserve the spectrum of this matrix. We can however describe a similar
collection of flows which are isospectral for (3.12) by using a generalization of the
AKS theorem due to Reyman et al. [40].

Let g = ϊ +1 be as in the AKS theorem. An element Y of ϊ* ~ I 1 is called an
(infinitesimal) character of f if adftZ) (Y) = [X, Y ] μ - 0 for all X e I For $ e J(g*)
let φγ be defined by

φy(μ)=Φ(μ+Y), μeβ* (3.13)

and let φγ = (f>\\*.

Theorem 3.5 (RSTSF). (1) Let $ and ψ be in /(g*), then {φγ, ψy}i* = °> where {, }I# is
the Lie-Poisson bracket on I*.

(2) // $e/(g*) Hamilton's equations for φγ through Xel^^ϊ1 are given by

X-[#((X+Y) b ) + , X + 7 ] = - [ ^ ( ( X + Y ) b ) _ , X + Y ] ? (3.14)

where (X + Y)b is the point in g* corresponding to X-\-

To apply this theorem to our situation, first notice that any
~ . ^ ' ^ of the form Y(λ) = λY, Ye gl{r, (C), is a character of gϊ(rj~.

Thus for Yeg/(r, (C) and φel(gl(r)*), we define

(3.15)

and set φγ = ̂ y | (^) ^ }*. If $ and $ are in /(g/(r)*) we see that, since Jr is a Poisson
map, part (1) of Theorem 3.5 implies that Jfφγ and J*ψγ Poisson commute on
MNtt. x MNtr. Define the Poisson commutative rings,

+ r)\φγ=$γ\mΊ1, φel{gl{r)*)} (3.16a)

and

^ γ = {J?φγ\$e^γ

+}cC*(MN,rxMN,r). (3.16b)

Theorem 3.6. Let Yegl(r,<£) be such that / + Y is invertible. Let /<Ξ#~y. Then the
hamiltonian flow of f on MN r x MN r preserves the spectrum of

where a = (I+Yyι.

Proof This follows as in Theorem 3.2, by noting that the elementary symmetric
invariants Lk(a), defined by

~λI)= £ Lk(a)(F,G)λk+ (-λ)N
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may be expressed:

Ua) = 7*Ψk9YeFy9

where ψk(X"W) = a(λ)$k(X\λ)), X\λ) e gl{r)*.

To apply part (2) of Theorem 3.5 we use the one-to-one moment map
Jr o :<Jΐk/H-+(gl(r)+)* to get a result corresponding to Proposition 3.4; namely,

Proposition 3.7. Let fγ = J*oφγ for some <^e/(g/(r)*). Let Xfγ be the hamiltonίan
vector field for fγ on Ji^/H. Then Xfγ is defined by

(3.17)

where Jί = Jί{λ) is Jr{F, G) and (F, G) e Jik.

Proposition 3.3 does not generalize to this case so easily. What turns out to be
the most useful generalization of Proposition 3.3 is the following.

Proposition 3.8. For a = (I+Y)~l let GL{rX)a = {geGL{rX)\gag~ι =a] denote
the stabilizer of ae GL(r, (C) under conjugation. Then the functions ϊFγ are GL(r, (C)α

invariant.

Proof Notice that for geGL(r,(C)α we have gYg'ι = Y, and hence for
g e GL(r, C)α we see

Since Jr is GL(r,(C) equivariant, it follows that Jfφγ is GL(r,(C)fl invariant. •

4. Integrability, Spectral Curves, and Linearization

We say that a hamiltonian function h on a symplectic manifold S, ω is completely
integrable if there exists a ring of functions 3F containing h such that

1) {fg}=0 for all fge^.
2) For any p e S the simultaneous level set Lp = {xe S\f(x) =f(p) for all fe #"}

is a submanifold of S.
3) For all peS the hamiltonian vector fields Xf(p), fe^, span the tangent

space of Lp.
Such a ring J^ will be referred to as a completely integrable ring of functions.

Remark. Notice that l)-3) are equivalent to assuming that the submanifolds Lp are
Lagrangian. When S is finite dimensional this agrees with the usual definition of
complete integrability because under the assumptions 1, 2, 3 we may always
choose a set of 1/2 dimS locally independent generators {f} oϊ^ whose domain of
independence extends to an open set in S consisting of a union of Lp's.

In Sect. 3 we described a ring of Poisson commuting functions 3F on
MNtr x MN r whose hamiltonian flows through the point (i7, G) leave invariant the
spectrum of the matrix A + FGT. The functions in $F are invariant under the action
off/ and GL{r,(£) on MNtfx M N > r Since the GL(r,<L) action commutes with the H
action, and maps JίkcMN^r x MNtr to itself, it reduces to a hamiltonian GL(r,(C)
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action on the Poisson manifold Jί^/H with moment map

given by
)]H) = J r((F,G))= -GTF, (4.1)

where (F, G) G ̂ # k and [(F, G)]H G ̂ k / t f denotes the Ή orbit through (F, G). The
ring JF reduces to a Poisson commuting ring #" of GL(r, (C) invariant functions on
Jί^/H. Let S[(F> G ) ] f ί C Ji^/H denote the symplectic leaf in the Poisson manifold
Jί^/H through [(F, G)]H and let S[{FG)λH denote the Marsden-Weinstein reduction
oίsi(F,G)]H though l(F,G)]H by the GL(r,<C) action, i.e.

where GJr(F G) C GL(r, (C) is the isotropy group of Jr(F, G) = Jr 0([(F, G)]H). This can
be interpreted simply as the Marsden-Weinstein reduction under H of the
symplectic leaf of Jtk/GL{rX) through GTF.

The main result of this section is contained in the following theorem.

Theorem 4.1. Suppose that kb the multiplicity of the eigenvalue αt for the matrix A, is
equal tor — ί for all ί. Then there exists an open dense submanifold M C Jίk such that
for (F, G)eJi the ring ^^p, G)]H

 ί 5 completely integrable on S[(Fj G)]H. The flows of the
ring £\(F,G)]H linearize on the Jacobi variety of an r—ί sheeted algebraic curve.

Remark. This theorem is valid in greater generality (involving all values
1 rgfc^r —1). The proof for the more general case, which involves desingulariz-
ation of singular curves, will be left to the sequel [4,23].

Before giving the proof of Theorem 4.1 we note that as a corollary we can
construct a ring of Poisson commuting functions ^ on Ji, containing #", which is
completely integrable on an open dense subset of Jί. To do this we need the
following generalization of a theorem of Mischenko and Fomenko [29]. A related
theorem may also be found in [19].

Theorem 4.2. Let S,ω be a symplectic manifold with a hamiltonian action of the
semisimple Lie group G, with moment map J: S->§*. Assume that J is a submersion
and S/G is a manifold. Let 3F beaG invariant ring of functions on S which projects to
a completely integrable ring of functions on the symplectic leaves of S/G. Then there
exists a ring of functions <8 containing βF which is completely integrable on an open
dense set of S.

Proof For a semisimple Lie algebra of rank k and dimension 2n + k Mischenko
and Fomenko [30] have shown that there are n functions on g* which Poisson
commute and are independent on generic orbits in g*. Let J f be the ring of
functions on cj* generated by these n functions. Let ^ be the ring of functions on S
generated by J* Jf u J ^ u J*(/(g*)). Since the hamiltonian vector fields generated by
functions in J* J f u J*(/(cj*)) are all tangential to the G orbits the functions in ^ all
Poisson commute. Since J is a submersion, the G action is locally free so the generic
symplectic leaves of S/G have dimension equal to dimS — dim G — rank G.

Hence 3F locally generates l/^dimS — dim G — rank G) independent hamil-
tonian vector fields on S/G. Since rankG independent elements of J*(/(g*)) give
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trivial flows on S/G it follows that ^uJ*(I(q*)) is locally generated by l/2(dimS
— dim G +rankG) independent functions. J f is generated by l/2(dimG —rankG)
independent functions. Since J is a submersion and the generic orbits in g* fill out
an open dense set of g*, there must be an open dense set of S on which J*#f is still
generated by l/2(dimG —rankG) independent functions. Since the projection to
S/G of a hamiltonian flow generated by an element of J* J f is trivial, and J f is
independent from /(g*), it follows that J* Jf is independent from #"u J*(/(g*)). We
conclude that ^ is locally generated by 1/2 dim S independent functions on an open
dense subset of S. •

This theorem may be applied in conjunction with Theorem 4.1 to conclude
that the hamiltonian functions in J^ generate completely integrable flows in Jίk

itself. To see this, note that the reduced spaces S[{FG)]H which arise by two
sequential Marsden-Weinstein reductions [first by H and then by GL(r, (C)] may
be obtained in a single step by reducing under the action of the product
H x GL(r, <E). Since this group does not act effectively, it is sufficient to use
H x SL(r, (C) instead. There is an //-invariant open dense submanifold Jί(LJik in
which this action is locally free, and hence the corresponding moment map:

Jπ x S L ^ : (F, G)->(JH(F, G), J r(F, G ) - ί/r tr J r(F, G)/)

is a submersion. The symplectic leaves of MjH are just {S^GLFJ and hence the
conditions of Theorem 4.2 are satisfied. Π

We now turn to the proof of Theorem 4.1. This is accomplished by reducing to
an equivalent theorem in (g/(rj+)*. Recall that the moment map Jr0:Jίk/H
—Kg/(r)+)* is injective. This can only happen if J r 0 maps symplectic leaves in
Jik/H to symplectic leaves in (g/(r)+)* (with the Lie-Poisson structure).

Proposition 4.3. The map Jrς)'..Jίk/H->(gl(r) + )* has its image in the finite
dimensional subspace

The image consists of the Poisson submanifold

xμi
ι UC.

and the map J r ? 0 : Jίk/H^>(gl(r)+)£ is a diffeomorphism which preserves the Poisson
bracket. Thus, the restriction of J r > 0 to any symplectic leaf of .//k/H is a
symplectomorphism to the corresponding symplectic leaf in (gl(r)f )£ C(g/(r) + )*. The
hamiltonian flow of a function in $F leaves Jίk invariant.

Remark. The tangent bundle to the symplectic leaves in (g/(r)+)^ is generated by the
ad*/(r) vector fields, and therefore it is reasonable to refer to these leaves as Ad*
orbits, even though the corresponding transformation group is only well defined
on these orbits.
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GJF,
Proof. Jr 0(F, G)= £ A ——τE(gl(r)2)*, since GjFt has rankfc,-. Any rankfc; matrix

i = i ai — λ

μf can be expressed μi = GjFb where the pair of rank/q matrices (FhGι) are
determined up to the equivalence

Thus the map J Γ j 0 is invertible on (g/(/)+)£ and hence a diffeomorphism. The
equivariance of Jr 0 implies it is a Poisson map and therefore carries symplectic
leaves in Jίk/H to those in (g/(r)+)*. Since the symplectic leaves in JίkjH are just
the Gn

r(r) orbits, the corresponding orbits in (g/(r) + )* are of the form
Qn.σΓ ]

V ^-^V, gieGL(r)>. Since any function / e J ^ is the pull-back of one in
= 1 OCi-λ

(g/(r) + )*, its hamiltonian vector field lies in the module generated by the
infinitesimal g" action, and hence is tangential to Jik. Π

Now let jV(λ) = Jr(F, G). By Proposition 4.3 we can identify

where Θ^{λ) denotes the ad* orbit in {gϊ(r)+)* through Jf(X). The map JΓ > 0

intertwines the GL(r,(£) action on Jίk/H with the natural GL(r,<£) action on
(g/(r)+)*-g/(r)0 given by

g: Σ Xfi-* Σ (Ad.X^, geGL(r,(C).

This action on (g/(V)+)*~g/(r)0 is hamiltonian with moment map

defined by

= X0. (4.3)

We thus have Λ,o = ^°Λ,o Letting Θ^{λ) denote the Marsden-Weinstein reduc-
tion of Θjr{λ) through Jί(λ) by this GL(r, C) action, we can identify

Since the ring of functions F is given by the pullback by Jr>0 of the ring of
functions J% on (g/(r)+)* we see that Theorem 4.1 is equivalent to

Theorem 4.4. Suppose k~r-l for all i. For (F, G)eJί let Jf{λ) = Jr(F, G). The ring
of functions F + , reduced to 0^{λ), is completely integrable on Θjr{λ).

A theorem equivalent to this is proved by Reyman and Semenov-Tian-
Shansky in [39] using the theory of Krichever [25,26] (cf. also van Moerbeke and
Mumford [31] concerning linearization of flows in Jacobi varieties). For the sake
of completeness we give a brief summary of this theory here.

Let 5£(λ)egl(r)o be a polynomial in λ~x, i.e.
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Assume Jδf(A) satisfies the following genericity conditions:
1) The spectrum of S£(λ) is simple for all but finitely many λ.
2) j£?0 and S£n-γ have simple spectrum.
3) The affine curve in (C2 described by det (λn ~x i f (A) - z) = 0

is nonsingular and irreducible. (4.4)

Let X be the smooth compactifϊcation of the affine curve det (λn ~1 5£(λ) — z) = 0.
X is called the spectral curve of JSf. If x e X is not a branch point there is a unique
one dimensional eigenspace E^(x)C<Cr of λn~1(x)^?(λ(x)) with eigenvalue z(x), i.e.
2π~1(x)^f(A(x))ί;(x) = z(x)i;(x), where υ(x)eEL(x). Since X is smooth this extends
across the branch points to give a holomorphic line bundle E^^X.

Proposition 4.5 [39]. a) X has genus g = |r(r—l)(n—1) — r + 1 ,
b) E<? has degree —g — r + 2.

Now let Θ# C gl(r) ~ (gl(r)+ )* be the symplectic leaf through i f with respect to
the Lie-Poisson structure of (g/(r)+)*. The elements of Θ^ are polynomials in λ~1 of
degree n — 1. Let T# C 0 ^ denote the elements of Θ# which are isospectral with if,
i.e. ^ e fi^ is in Γ^ if and only if φ(^) = ${Jί) for all $ e /(g/(r)*). Thus J e T ^ has
the same spectral curve as if. The construction above gives a line bundle EM^X
of degree —g — n + 2. The degree zero line bundles over X are isomorphic to the
Jacobian, /x, of X. Thus we can define a map

by

where EJ, is the dual bundle of E^.
Now take φ e J% and let J?t(λ) denote the integral curve of the hamiltonian φ

with initial point ifo(/l) = i f (A). Notice if,(/l) e T̂> for all t since the ring of functions
# + Poisson commutes.

Theorem 4.6. [39]. a) /(iff(A)) is a one parameter subgroup of /x.
b) Every one parameter subgroup of βx can be realized this way.

From this theorem it would follow that # + is completely integrable if we knew
that I.Tjf-^/x were bijective. However, this is not the case. Recall that the
functions in ^+ are invariant under the GL(r,(C) action on (g/(r)+)* ~gl(r)o. Thus
this action maps T<? to itself.

Proposition 4.7 [39]. The fibers of I are the GL(r,(C) orbits in T#.

Let Θg> = J~1(Jέ?

0)/Gg>0 denote the Marsden-Weinstein reduction of the orbit
Θg through J£{λ\ where G^o is the isotropy group of J£o in GL(r, (C).

Corollary 4.8 [39]. The ring of functions # + , reduced to Θ<?, is completely
integrable on Θ^.

We now apply this theorem to prove Theorem 4.4. Because we assume
k = r — 1, i.e. each of the eigenvalues αf is repeated r—ί times, for (F,G)eJίk,
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Jί{λ) = Jr{F, G) has the form

JT(λ) = λ £ / * - , (4.5)

i = l A — GCi

where μiEglir,^) has rankr — 1. Let

JS?(A) = A"wfl(A)^r(A), (4.6)

where a(λ)= \\ {λ — a^. Then JSf(A) is a polynomial in A"1 of the form
i l

with det (λn ~1 i f (/I)) having simple zeros at λ = αί5 / = 1,..., n. If we let (F, G) vary in
,/#k the μ/s can be arbitrary rankr—1 matrices so we are able to get arbitrary
polynomials if(/l) = ifo + ... + ifn_ 1A" / ί + 1 with d e t μ " " 1 ^ ^ ) ) having simple
zeros at λ = (xb i=ί,...,n. Since the conditions (4.4) on ^(λ) are generic we
conclude that there must be an open dense set J(ζ_Jtv such that J£(λ) satisfies (4.3)
as long as (i7, G) e ̂ #.

Let Θjr{λ) and ^ ( λ ) be the symplectic leaves of (g/(r)+)* through Jί{X) and 5£{X)
respectively. Let T^{λ) and T^{λ) be the intersections of Θjriλ) and ^ ( λ ) with the set

{X(λ)e(^)+r\φ(X(λ)) = φ(^(λ)) for all φe^+},

and let T^(A) and T^{λ) denote the reductions of T^{λ) and T^(A) by the GL(r, (C)
action on (gϊ{rj+)* at the point J{jr{λ)) = JΓ0 = &Q = J{&{λ)). Corollary 4.8 says
that the reduced flows of J^+ through J£(λ) span a neighborhood in

Proposition 4.9. 7α/ce 0 e # + and consider the hamiltonian flow ^t{λ) for φ with
JS?O(Λ) = =^(/l). T/zer̂  is aψe J^+ w/zoŝ  hamiltonian flow Jίt{λ) with J^0(λ) =
satisfies

λn{λ)Jί{λ) ^{λ) allt.

Proof First take φ to be of the form $jk\(^r) + )*, where

jk(X{λ)) = 1 tr ((λjX\λ))0),

Then ^J.fc(Arμ)) = λ / X k - 1 ( 4 so &t(λ) is determined by

Define

then

dψjk(X(λ)) = λ\λ - na{λ))k- 'X*-1 (λ)

so ^Vt(X) satisfies
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Multiplying by λ~na(λ) gives

j t (λ~nciλ)JTlλ)) = l(λ\λ-nciλ)JTlλ)f - ι ) + ,λ~na{λ)^t{λ)\ ,

h e n c e λ " na(λ)Jίt{λ) = <£t(λ\

To prove the proposition for general φ e J%. we notice that the φjk's determine
the spectrum of i f (/I), and hence they generate the ring J%. when restricted to

Since multiplication by λ na(λ) is injective on gl(r)0, we conclude that the
reduced flows of # + through the point Jί(λ) span a space of dimension
\r(r — 1) (n -1) - r + 1 in T>α ), i.e. there are at least \r(r — 1) (n - 1 ) - r + 1 functions
in J^+ which are independent on Θjr{λ). If we show Θjriλ) has dimension
r(r — 1) (n — 1) — 2r + 2 we can conclude ϊF+ is completely integrable on &jr{λ). Recall
that Eq. (4.1) gives

Σ-
i= 1

gieGL(r,(C), i =

Since the orbit of a generic μegl(r,(E) of rankr—1 has dimension r(r— 1) we
conclude that for (F,G)eJ%, dim Θjr(λ) = nr(r— 1).

Finally, to compute the dimension of ^ ( λ ) = J ~ 1(y(/

0)/G^0 first notice that for

the value J(Jί) = Jί0 is arbitrary in gl(r, C) except that

= tr Σ g^g;ι (some g i e GL(r, <C))

Σ Σ
i = 1 i = l

Hence, assuming J^o is generic, ^ " H - ^ o ί ^ ^ α ) has dimension nr(r— 1) — (r2 — 1).
Furthermore, since J ^ is generic, G^o is an abelian group of dimension r in
GL(r,(Π). However, the action of the one dimensional group {clr |ce(C\{0}} is
trivial in (gϊ(/Γ+)*, so we conclude

This completes the proof of Theorem 4.4. •

Remark. To this point we have considered the flows of 3F+ on (g/(r) + )* mainly as a
tool in understanding isospectral flows in J(A. Of course it is also useful to go in the
other direction^ Namely, let i f (λ) = if0 + ... + JSf„ _ 1 λ ~~n + : be a polynomial
element of g/(r)o Let α1 ? ...,αn be n zeros of d e t ^ " " 1 ^ ^ ) ) . Then Jί{λ)

1 / " \
= - — /l"if(i) with a(λ) = f] (2 — oί;) is in the image of Jn where the fcf's are

Λ(Λ) V ii /
determined by fet = rank (if (o )̂). We can now consider a symplectic leaf in Ji^/H as
a model for the symplectic leaf in gl{r)ΰ through Jί(λ) and the flows of Jf(λ)
determined by hamiltonians in J% can be interpreted as hamiltonian flows in
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There is some ambiguity here in terms of the choices of the αt 's. Usually the
most convenient choice is to take the αt 's to be the highest order zeros of
det(An" ι<£(λ)). Generic flows in Jί^/H are of course given only when all the other
zeros of άQt(λn~ι^{λ)) have order one.

5. Reduction to Subalgebras

In the previous sections we have shown a correspondence between complex rankr
isospectral perturbations of the matrix LA = A + FGT and the hamiltonian flows of
elements in # + on finite dimensional orbits in (g/(/) + )*. Since there is an injective
moment map Jr0:Jfk/H-^(gϊ(r)+)*, we can consider the symplectic leaves of
Jίk/H as models for the finite dimensional orbits of (g/(r)+)*. In this section we
show how to modify our spaces to provide appropriate models for the finite
dimensional orbits in the duals of various subalgebras of g/(rj+.

The first class of subalgebras we consider are given as follows. Let i C g/(r, (C) be
a subalgebra and fcg/(r) the corresponding formal loop algebra. The decompo-
sition gϊ(r) = gl(r)+ ©gl(r)~~, restricted toT, gives the corresponding decomposition
T = ΐ + ® ϊ ~ , where ΐ + =g/(r)+nT and T~ =gϊ(r)~πT are subalgebras. The moment
map Jr:MN r x MN,r->(g/(/)+)* corresponds to the infinitesimal action

given in block form by

- G ^ f a ) ) , i=l , . . . ,n, (5.1)

where we have made the usual identification T(F G)(MN r x MN r) ~ MN r x MN r.
We can restrict this to an infinitesimal action of t + ,

with corresponding moment map

Jt:MN<rxMN^(Ί+)*

given by

Jt = πoJr, (5.2)

where π:(g/(r) + )*-»(T+)* is the dual of the inclusion map T+-»g/(r) + .
The subalgebras ί we consider will be such that there exists a reductive

decomposition g/(r,(C) = I φ I with I an ad rinvariant complementary subspace to
ϊCg/(r,(C). This determines a decomposition (g7[r)+)* = (T+)*©(T+)*, where we
identify (ϊ + )* ~(T+)°, (T+)* ~(ϊ + )°. The map π is given by projection to (T+)* along
(ΐ+)*. [More generally, we consider a nested sequence of subalgebras ίo = gl(r, C)
D ϊ i D ί2 D such that each lt admits a reductive decomposition lt = lt +1 © If + x. The
arguments that follow apply equally to each subalgebra of the sequence.] Let

and let Jik = JίtnJίk so that Jr maps Jί\ into ( ϊ + )* with J~ \Jr{F, G)) given by the
H orbit of (F, G) for (F, G)e^# f

k. Since I is adf invariant, the adft action on (T+)*
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C(g/(r)+)* is the restriction of the a d ^ + action to (f+)*. Furthermore, Jr is
equivariant for the gl(r) + actions on MN γ x MN>r and (g/(r)+)*. It follows that Mx is
invariant under the T+ action on MNtr x MNff (i.e. the vector fields in Imσ f are
tangent to Jίt). Since this action commutes with the H action we also have a l +

action on Jί^/HcJi^/H. \{Jίk/H is a Poisson submanifold of JKk/H (i.e., a union
of symplectic leaves), this action is hamiltonian with moment map Jt 0 : Jίk/H
->(ϊ+)* given by

7 — 7 i ,
Jl,O~Jr,O\Λΐk/H

Hence, in this case the symplectic leaves of Jί\jH are the appropriate models for
the symplectic leaves in (T+)*. This situation occurs only if I is the center of gl(r).
More generally, for subalgebras g/(r)3ϊ 1 Dϊ 2 3. . , it occurs if I ί + 1 Cϊi is central.

In general, when Jik/H is not a Poisson submanifold of Jίk/H, we proceed as
follows. By restricting the αf's if necessary, we find a T+ invariant symplectic
submanifold We Ji\ along with a subgroup HtcH leaving Winvariant such that
W/Ht = JίkIH. In other words, we reduce the //-bundle Jίk^Jik/H to an
//Γbundle W-*W/Ht so that the total space is T+ invariant and symplectic.
(Actually we shall often have different connected components of Jί\jR. That is,
Jik/H will decompose into the union of a finite number of components

with Wt the components of W and H\ a subgroup of H leaving Wt invariant. In
this case the following arguments must be applied to each component separately.)
It follows that W/Ht is a Poisson manifold with a hamiltonian T+ action whose
moment map

is given by JrtO\j(k/n under the identification of Jίk/H with W/Ht and (ϊ + )* with
(T+)°. Hence the symplectic leaves of W/Ht are the appropriate models for finite
dimensional symplectic leaves in (ϊ+)*.

Poisson Submanifold Reduction: gl(r, (C) Dsl(r, (C)

The first case we consider is f = sl(r, (C). If we split gl(r, (C) = Ϊ0I , where I = {clr\c e <C}
ajid^use the pairing (2.19) to^identify (gϊ(rj+)* with gl(r)o , we get an identification of
(sϊ(rX)+)* with 5/(r,C)o =s/(r,(C)ng/(r)o τ h e projection π:(g/(r) + )*->(ί/(f,<C)+)*
is then

π(X(λ)) = X(λ)- -tτ(X(λ))Ir, X{λ) eW)ό

Thus, in this case (5.2) becomes

J^F, G) = Jr(F, G)--r tr(Jr(F, G))lr. (5.3)

The space Jίx is given by {(F, G) \ tr(Jr(F, G)) = 0], i.e.
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Since this must hold for all λ, it is equivalent to requiring

473

^O or

Since functions of the form φ o JH, where φ: ί)*->(C is Ad£ invariant, project to
central elements in the Poisson algebra on Jίk/H, their simultaneous level sets are
Poisson submanifolds. But {φi(μ) = tvμb where μ = (μ1? ...,μn)eί)*} are such Ad£
invariant functions. Hence Jίf/HcJi^/H is a Poisson submanifold.

Reductions of gl(r, (C) and sl(r, (C) by Automorphisms

Besides sl(r, (C), we consider the other classical complex algebras (so(r, (C), sp(n, (C))
and the real forms (g/(r,R), s/(r,R), ufaq\ sufaq), ofaq\ sofaq), spfaq), sp(n,ΊR),
su*(2n\ so*(2ή)). These algebras can all be described as the fixed points in gl(r, C) or
sl(r, (C) of a finite group of automorphisms generated by one or two linear or
antilinear involutions.

The involutive automorphisms required are of the three forms (see e.g. [22])

σ(X)=-tXτΓί,

σ(X) = tXΓ1

9

(a)

(b)

(c)

(5.4)

* , . , =

σ(X)

se matrices

T

h
0

0

0

yP

0

-h
0

0

( °

= -tXit

°)
-V
0

0

0 -

IP

P 0

0

0

0

-h

)'
(where Ip denotes the pxp identity matrix).

To keep the notation simple we shall only show how to reduce gl(r, (C) by any
one of the σ's. The same procedure may be applied sequentially to reduce any of the
subalgebras of gl(r, (C).

Since σ2 = Id we can split gl(r, (C) into the + 1 eigenspaces of σ. The subalgebra f
is the + 1 eigenspace and we let I denote the — 1 eigenspace. Thus σ gives a natural
splitting gl(r, (C) = Ϊ0I , and we can identify I* with 1° C (gl(r, (C))*. A bit of caution
should be taken here in terms of real or complex duals. Until now we have
considered gl(r, C) as a complex vector space and {gl(r, (C))* as the space of complex
linear functionals into (C. If ϊcg/(r, (C) is a real subalgebra, then by ϊ* we mean the
real linear functionals (into R). In this case, the embedding I* ~ 1° C (gl(r, (C))* must
be understood with respect to the real dual on the right-hand side. To identify I*
with I 1 Cgl(r, (C) we use the real inner product, Re(tr(X Y)), instead of the complex
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one, tr(XY\ to give a pairing between gl(r, (C) and gl(r, (C)* ~ gl(r, (C). This situation
will arise for subalgebras defined by the antilinear automorphisms; i.e. types (b)
and (c).

With respect to the appropriate (real or complex) pairing, σ preserves the
appropriate inner product and hence ϊ and I are orthogonal. Therefore, when we
identify (g/(r)+)* with gΐ{r)~ [using either the inner product (2.19) for the complex
case or the inner product

<X(λ), y(λ)> = Re tr((X(λ)y(A))o) (5.5)

for the real case], we obtain a corresponding identification of (f+)* with
ϊo =Tng/(r)o~. Thus, for each σ the corresponding subspace JίtcMN^r x MNtr can
be described by

Jίt = {(F, G) I σ(Jr(F9 G)) = J r(F, G)},

where σ: gl(r)^>gl(r) is defined by the action of σ on each component of the formal
power series, i.e.

Case (a). For (F, G) to be in Jίt we require

If this is to hold for all λ it is necessary that

GTF^-tFfGiΓ1, i = l, . . . ,n.

We can identify the space Jΐk/H with the set {(G\FU..., Gτ

nFn)\(F,G)eJί*}ί§n

r

since the projection (F, G)->[(F, Gj]H = (G[F 1 ? . . . , GjFJ is a principal H fibration.
Thus Jί^/H is identified with the subspace

{(Gτ

ιFι,...,GlFn)\GfFi=-t(G!Fift-
ί}.

Suppose (F,G)eJί\. Since Ft and Gt have maximal rank, there exists an

i9(C) such that

tFj=-Gjmi,

Combining these two equations yields

If t = Ipq or Kpφ then tτ=^t, so we have

t=-(mT)-1miGiΓ
itτ.

i = — mj.

This is possible in the case that ki is even for all i. Assume this to be the case and set
κ~ί/2kt.

Now if (F, G) - (ΛF, (h " ψG), he His in the H orbit of (F, G), then (F, G) satisfies
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where m^hiYΠihJ, h = (hu...,hn). Since mt is antisymmetric it is possible to
normalize mi to equal yKι by means of this action. That is, each H orbit in Jί\ has at
least one element (F, G) satisfying

Let

W={{F9G)eJfk\F~γKiGiή. (5.7)

It is straightforward to check that this is a symplectic submanifold of Jίv. The
Ή-bundle Jί^Ji^/H reduces to the £ΓΓsubbundle W-+Jί\jH,

eSp(κbC)}. (5.8)

Finally a direct computation shows that the T+ action leaves W invariant, i.e. that

σr(X(λ))(F,G)eT{FM)W

whenJφ)eT + and (F,G)eW.

On the other hand, iίt = yp (so r = 2p), then tτ= -t and we have

mi — mj.

By means of the H action, m^h^^}\ it is possible to normalize to m{ = lk.\ i.e.,
each H orbit in Ji\ has at least one element (F, G) satisfying G = Fyp. Let

W={(F9G)eJlk\G = Fγp}. (5.9)

Again, W is a ϊ-invariant symplectic submanifold of Jiv which is principal bundle
over Jί\jH9 where

{ f } { O ( k i X ) } . (5.10)

Remark. Reductions of gl{r, <C) or sl(r, C) by σ of type (a) alone yield the following
algebras

ϊ = so(r,<C): Reduce sl(r,<E) with t = Ir.

I = sp(p, <E): Reduce gl(r, (C) with ί = yp, r = 2p.

Although t — lpq or Kp ^ leads to a reduction equivalent to t = In when combined
with further reductions under anti-linear automorphisms the result may be
inequivalent.

Case (b). For (F, G) to be in Jtx we require

For this to hold for all λ it is necessary that the αf's either be real or come in complex
conjugate pairs. Ordering the α/s so that α 2 ί = α2i-i> i = l,...,m and αy = αy,

l, ...,n, Eq. (5.11) implies
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(hence k2i = k2i_1\

If t = IPtQ or Xp>g5 then by an analysis similar to case (a) we can take

and Fj = Fjt, Gj=GjtJ = 2m + l,...,n}. (5.12)

This is a ϊ+-invariant real symplectic submanifold of Jίk which is a principal H f

bundle over Mk/H, where

Ht = {(h1,...,hn)eH\h2i = h2i_u i = l , . . . , m a n d hj = Kpj = 2m+ί,...,n}.

(5.13)

On the other hand, if ί = yp, r = 2p, we can take

and Fj = γκFjγ;1

9 G - 7 ^ % ; 1 } , (5.14)

which again is a ϊ+-invariant real symplectic submanifold of Mk fϊbering over
W/Ht~Jf$/H with

j j j ...,ή}. (5.15)

Remarks. (1) Reductions of g/(r, (C) or s/(r, (C) by σ of type (b) yield the following
classical algebras:

g/(r,R): Reduce g/(r,C) with ί = J.

sZ(r,R): Reduce sZ(r,(C) with ί = /.

su*(2p): Reduce sZ(r,(C) with ί = yp, r = 2p.

(2) If we first reduce g/(r,(C) [or s/(r,(C)] to g/(r,R) [respectively s/(r,R)] by
means of a σ of type (b), then further reduce by a σ of type (a), we get

so(p, q): Reduce sl(r, R) with t = lpφ p + q = r.

sp(p, R): Reduce gl(r, R) with t = yp,r = 2p.

When reducing gZ(r, R) to s/?(p, R) a slightly more complicated situation arises.
Taking all αf's real, the space VΓcMN j l.xMN j l. which corresponds to gZ(r,R) is
W=MN r(lR)xMN r(lR), where MN > r(R) denotes the real iVxr matrices. The
subgroup of H which leaves F^ invariant is

i/(R) = GL(/c1? R) x ... x GL(kn, R ) .

The complication that arises in reduction to sp(p, R) is that if mf e GL(/c/? R) with
mi = mf, we are only able to normalize m{ to some IPι>qι, Pi + qi = kb by means of the
H(ΊR) action. In this case, for each choice of (ph qt) we get a different W and a
different Ht, each such W projecting to a different component oiJi\jH\ i.e., there is
a finite stratification of M\jH based on the signatures (pf, qt).
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Case (c). For (F, G) to be in Mx we have

Again, we can order the α/s such that 0L2i = 0L2i-u i=ί,...,m, and δίj = oίj,
j = 2m + l, ...,«. Then (5.16) implies

and

GjFj=-tFjGjΓ1, j = 2m+l9...,n.

In the case t = Ipq or X p β we find that for each fixed choice of pp qp j = 2m +1,..., n,
with pj + qj = kj we can take

j ]^Pjtqj . . . 9 n } 9 (5.17)

and

j Pjqfl]pjqj ..9n}. (5.18)

Again WcJ^k is a real symplectic submanifold and Jt\jH is the disjoint union of
the submanifolds W/Ht corresponding to the various choices of signature (pp qj).

In the case t = γp we find that for each fixed choice of integers (p^qj),
j = 2m + 1 , . . . , n, with p} + q^ = kp we can take

and F}= -Ip.,q.Gjγp,j = 2m + ί,...,n} (5.19)

and

and hj = IPjJhrγiPjqj,j = 2m+\,...,n}. (5.20)

Again, Jί^/H is the disjoint union of the submanifolds W/Ht corresponding to
the various choices of signatures (pp q^.

Remark. (1) Reductions of gl(r, (C) or s/(r, (C) by σ of type (c) yield the following
classical algebras:

u(p,q): Reduce gl(r,C) with t = IPtq9 p + q = r.

su(p,q): Reduce sl(r,(D) with t = Ipφ p + q = r.

(2) The algebra so*(2p) is obtained by reducing so(2p, C) by a σ of type (c) with
t = yp and the algebra sp(p, q) is obtained by reducing sp(p + q, (C) by a σ of type (c)

The reduction conditions corresponding to involutive automorphisms are
summarized in Table 5.1.
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Table 5.1. Reductions by involutive automorphisms

σ(x) t tf = {Mi=i,...,n W {a,-}, i = l , . . . , n

a ) -tXτrί IPtqoτKPtq Λ,eSp{κhC) F. ̂ G.-ί α,ε(C

yp MO(fc, ,C) G = F y p

b) ί X r 1 /P J 9 or X p , ? h2i = h2ι_1eGL(ki,(L) F2ι = F2i_ιt, G 2 t = G 2 ι _ 1 ί α 2 i = α 2 i _ j e C ,

( FJ = Fjt, Gj = Gjt / = l , . . . , m
and

) F 2 ί = F2/_1f, G2ί = G2 ί _ 1ί α,e]R,
F^γ^FjΓ1, GJ = yκGjΓ

ι j = 2m

2 I = (/Γ2I

1_1)
TGGL(/C1,C) F ^ ^ G ^ ^ J ^ G ^ ^ V ^ ^

jeU(ppqj) F^Y-II^GΓ1 i = l,...

j + <lj = kj a n d

Twisted Algebras

To conclude this section we discuss a class of subalgebras of g/(rj+ which are not of
the form T+ for some f Cg/(r,(C); namely, the twisted subalgebras of gl(ή+ [or

Let σ be an automorphism of gl(r, (C) [or s/(r, (C)] of order fc and let q = e2πi/7c.
Define an automorphism σ on g/(r) by

si i xμη= ί
\j = - oo / 7 = - QO

and let g^(r)CgI(7ί be the subalgebra defined by the fixed points of σ, i.e.

e gl(r) I σ(X(A)) = X(A)}. (5.22)

If we decompose g/(r,(C) into feeigenspaces g7 , j = 0, ...,fe — 1, of σ with eigenvalues
σ|βj = ̂ , then

£ ^ (5.23)
l=-co j

Since σ is an automorphism of order k, we can also split gl(r) into k eigenspaces,
§/,.7 = 0, ...,/c-l, with σ|gj = ^ ' so

g^=ke§i ( 5 2 4 )

with § 0 = gl(r). Relative to this splitting we may identify

gM*=k®Qj, (5.25)
7 = 0

where §f is identified with the annihilator of © cj,.
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Since σ is an automorphism it preserves the (real or complex) inner product on
gl(r, (C). Hence σ preserves the inner product (2.19) when σ is linear, and (5.5) when
σ is antilinear. This gives the identification

(5.26)

Letting gl(r)± = gl(r)±ngl(r), we also get the identification

r-{gΐ(r)Ύ=W)o, (5.27)

where ^gl(r)^^ ^^
Let π\gj{ή*^gj{r)* denote the projection dual to the inclusion ί':gϊ(rj->g/(r).

Under the above identifications π is the projection of g/(r) to glj/J relative to the
decomposition (5.24).

. ^ fc-l

Lemma 5.1. The projection π:gl(r)->gl(r) along @ §7 is given by
. 7 = 1

π(X(λ))=\k^ σ\X(λ)). (5.28)
K j = o

Proof. Direct computation. •
Notice π(g/(^o ) = g/(r)o\ The infinitesimal gl(r) + action on MNfrxMNtr

restricts to an infinitesimal action of the subalgebra ^/(r) + . This action has a
moment map J/.MN rxMN r^(g[{r)+)* given by

Jr = n o Jr.

Proposition 5.2. Assume ql(xt φ α̂  for all ij91 For (F, G) e Ji0, J~ \Jr{F, G)) is the H
orbit through (F, G). Thus, since the H action on Ji^ commutes with the g/(rj+ action,
Jr reduces to an injective moment map Jr 0\Jik/H^(gΐ(r)+)*.

Proof It is enough to show that π is injective on the image of A*: (cj")*-Kg/(r)+)*.

( n γ \
Suppose π\λ Σ -,—ι— =0. By Lemma 5.1 this implies

V ί = i / - α f /
k-l ( γ\ σ(γ

The assumption qιoii + α7- assures that all of the poles qjoci are distinct. Thus (5.29)
implies Y — 0 , / = 1 , . . . , H . D

From Proposition 5.2 we conclude that as long as the qjat are distinct the
symplectic leaves oϊJίk/H give appropriate models for finite dimensional orbits in

6. Examples

To illustrate the results derived in the previous sections, we now consider in detail a
number of integrable hamiltonian systems. In particular, we show how Moser's
[32] examples are recovered in the r = 2 framework and also consider the
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Rosochatius system [16] which, though briefly mentioned in [32], requires our
extended framework for full details.We then also show how the analysis is related
to completely integrable PDE's, treating the nonlinear Schrόdinger (NLS) and
modified Korteweg-de Vries (mKdV) equation as illustrations of the r = 2 case and
the coupled nonlinear Schrόdinger (CNLS) and Boussinesq equations as examples
for r = 3. The relationship of these PDE's to our framework resides in the fact that
commutativity of any pair of hamiltonian flows in the loop algebra framework
entails integrability conditions which can be expressed in terms of PDE's for the
matrix coefficients.

A. Mosefs Examples
(Finite Dimensional 5/(2, IR) Flows with Shifted Hamiltonians)

For these examples we take r = 2 (so k—ί, z = l, ...,n, and

H = ® = {(d1I2,...,dnI2)\die<E\0})9

the αf's are taken to be real, and we reduce g/(2) to s/(2, IR). This reduction is done in
two steps. First the reduction of gZ(2) to gl(2JR) is given by the reality conditions

F = F9 G = G9 (6.1)

where F,GeMn 2.
The group //reduces to {(dj2,..., dj2) \ dt eR\0}. Secondly, the reduction of

g/(2, R) to s7(2JR) is given by the condition J@ = 0 which in this case reads

GrFt = 09 f=l , . . . ,n. (6.2)

Since r = 2 we can write

where

(i.e. G; is the sum of a vector parallel to Ft and a vector perpendicular to Ff). The
condition (6.2) implies at = 0. Furthermore, the H action transforms

hence, choosing d/^Q/ί^j)"1, we can reduce the fibration J@1(0)^>J@1(0)/H to a
fibration W^J^1(0)/H, where W is given by

and the fibers are given by the orbits of the finite subgroup of//, {( + 1 , . . . , ±1)}.
The different components of W, determined by a choice of + or — signs for

each i, all project onto J@l(0)/H. Henceforth we restrict our attention to the
component
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If we let I —^x, —,-y\ denote the column vectors of F, then G has column vectors

\]β ]β )
1 1 \
— v, — 3c and the symplectic structure on M becomes

1/2 ]/2 /
(o = dx Λ dy

when restricted to Wo.
Now, for Ye sl(2,1R), consider the class, ^ y , of translated hamiltonians

where φe/(s/(2,]R)*)|(^2^') + )* By Theorem 3.6 and Proposition 3.8, such func-
tions pulled back under

generate commuting isospectral flows for

L = A + FaGτ = A + ax(g)x + bx(g)y + cy(g)x + dy®y,

where

2 ( c d ) = Λ 7 l = ( / + Y ) " l y i ( 6 ' 3 )

In particular, the elementary symmetric invariants Lk of L belong to this class.
There are n of these and the space Wo has dimension 2n, hence they must generate
the entire ring J^ y and comprise a completely integrable system.

From (6.3) the matrix Y is given by

W-c-2zf a

2Δ \ -d b-2AJ9

where A =ad — bc.
For Y to be in 5/(2, R) we must have b — c = 4. On the other hand, the spectral

curve X is given by

Thus by translating the spectral parameter z by 2 —— 1 I we can replace Y by
Y with V 4Δ J

b + c a d
where b' = , a' = ~τ,d'= —. If we next replace z by λz/2, we can write (6.4) as

Qλ(χ,χ)-d Q(χy) + b'z) '
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where, following Moser's notation,

Qλίn)= Σ r ^ (6-5)

for ξ=(ξl9...9ξάη = (ηu...,ηJ

The moment map for the SL(2, IR) action on Wo is given by

Let SL(2,R) r denote the stabilizer group of Y' in SL(2,ΊR). According to the
general construction of Sect. 4 the Jacobi variety f(X) on which the flows linearize
is given by the Marsden-Weinstein reduction of the joint level sets of the invariants
Lt by the action of SX(2, R ) r . In particular if 7' = 0, SL(2,R) r = SL(2,R), so we
reduce by the whole SL(2, R) action. Setting

*-?=<*, \\y\\2=β, \\χ\\2=y,

where α, /?, and y are constants, #{X) is given by quotienting the intersection of
these joint level sets with those of the Lf's by the one parameter subgroup generated
by

i.e. the hamiltonian flow for

If, however, 7'ΦO the group SL(2,R) r is one dimensional. The conserved
quantities are given by the restriction oϊ JSL{2>ΈC)(x,y) to s/(2,R) r, i.e.

The quotient of the joint level sets of F(x,y) and the Lk's by SL(2,JR)Y. may be
identified with any conveniently chosen section transversal to the fibers, giving rise
to a second constraint, G(x,y) = 0. This constraint need not be invariant, but
transversality requires that {F, G}Φ0.

For example, for the Neumann oscillator we take

o o t

giving F(x,y)= — \\x\\2, and take the level set | |x| |2 = l together with the section
x jf=0, defining T*^"" 1 . (This may be regarded as a special case of the
Rosochatius system, cf. part B of this section.) The hamiltonian is

"* OC X w h e r e
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More generally, Moser's constrained systems, which are given by a pair of
relations

may best be understood in the sense of Marsden-Weinstein reduction as follows.
Quotienting by the 1-parameter invariance group HF generated by F(x,y), and
taking a zero level set for its moment map JF (i.e. F = 0), we choose a transversal
section to the fibration Jfr

1(0)->Jpr
1(0)/i :ί i7 whose image in Jp1^) is defined by

G(x, y) = 0. This is applicable whether or not F(x, y) happens to be a part of the
JSL{2)R) moment map, as long as it is a conserved quantity.

To see the relationship between the two formulations, note that Moser's
constrained hamiltonian is of the form :hc = h-\- μF, with μ chosen so that {/z, G} = 0
on Jf1^). Since the projection J f 1(0)->Jf 1(0)/HF restricted to the section

defined by G(x,y) = 0 is a symplectomorphism, the flow of hc in J f *(()) w n <l
correspond to that of h in JF

 ι(0)/HF, provided Xhc [which is tangential to im(σG)]
and Xh (which is not) project to the same vector field on JF

 1(0)/HF. Since F = 0 on
JjΓ^O), we have Xhc = Xh + μXF9 and hence this is the case. It follows that the
constrained system satisfies the same isospectral equations and linearizes on the
same Jacobi variety as the unconstrained one, provided we determine the flow in
JF \ϋ)/HF and map it to JF \0) by σG.

B. Rosochatius System [Finite Dimensional M(1, 1) Flows] [16,32]

For this example the phase space is still τ*Sn~1 as for the Neumann oscillator, but
an additional inverse square potential is added to give the hamiltonian

^ > Σ Λ 2 . (6.6)

We again use r = 2 but now reduce g/(2) to M(1,1) by the involution σ(X)
= y1X

τy1. This corresponds to a definition of u(l, 1) taken with respect to the off
diagonal hermitian form

-i 0/ '

chosen to simplify the reduction of the resulting system to the Neumann oscillator.
Assuming the αf's are real this gives the reality condition

W={(F,G)eJίk\G = Fγί}.

If we denote the columns of F by —= (z, p), then the columns of G are —- ( — p,z).

The reduced group Hk is given by U(l) x ... x £7(1) (n times) and has moment map
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We consider the Marsden-Weinstein reduction of W at

i.e. JH1(γ — 2(μu ...,μn))/H. The quotient has a transverse section given by

requiring zt = xt to be real. Since I m f o p ^ j / — 2μi we can write

Pi y i

and the constrained symplectic form is

ω = dxΛdy.

On the constrained space, the moment map

the form

• Vo i \χϊ \o o

To obtain the hamiltonian consider the translated invariant

where

= MΣ xf) (Σ yf) - i(Σ wr+(Σ *ί) [Σ ^ ) ) + e Σ « Λ ? - (Σ μ;)

For εφO the stabilizer in [7(1,1) of εI I is generated by ί 1. The

projection of Ju{ίΛ)(x,y) onto this subalgebra is

\x\\2

This function generates the flow

x, y + tx) on R 2".

We reduce 1R2" by this 1R action at F(x, y) = j . This gives an IR-fϊbration π: F~ x(
of which a cross section is given by
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Hence, the constrained space we consider is

with projected hamiltonian Hε (such that π*Hε = Hε\F-i{1)) given by (6.6). Note that
choosing μ = 0 corresponds to a further reduction to the subgroup su(l, 1) ~ 5/(2, R)
giving back the Neumann oscillator of the previous section.

The spectral curve X for this system is defined by

Defining a new parameter w by

α2(λ)

is given by w2 = Sε(λ\ where

a\λ)

x<y<\2

From this it is evident that if ε Φ 0 the genus of X is n — 1 and if e = 0 the genus is
n-2.

One can rewrite (6.7) as

S%λ)_ F, μf

a\λ) 2 L + L

where

are n invariants with one relation £ Ff = ε.

Remark. For the degenerate case ε = 0, the stabilizer is the entire S 1/(1,1) generated
by Σ .xf? £ xfj;ί5 and Σ(yf/2 + μf/xf) = H°. Thus these are all constants of motion.
Setting Σ xf = 1 and ̂  xtyt = 0 gives an invariant symplectic submanifold on which
the flow linearizes on the (C*-extended Jacobi variety of the genus n — 2 curve.

Fixing H° = E = const and quotienting by the stabilizer of I J gives a constant

(in the ordinary Jacobi variety), i.e. the flow is entirely vertical in the extension [and,
in fact, strictly periodic, i.e. generated by a (7(1) action]. This corresponds to
geodesic flow on S""1. For full details regarding the flow for the general case,
expressed in abelian integrals, see [16].
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C. Nonlinear Schrδdinger Equation
(Finite Gap Solutions from ϊl(% C) and Reductions)

The NLS equation is a PDE determined as the integrability condition for a
commutative pair of flows on the dual of a reduced loop algebra ί+ C s/(2, (C) + , (see
e.g. [14]). The "finite gap" solutions are determined by flows on finite dimensional
symplectic leaves in (ϊ+)*. Using the moment map Jk these flows can be pulled back
to isospectral flows of matrices which can be interpreted as finite dimensional
hamiltonian systems (cf. [36]).

The NLS equation has two distinct forms

^ Z M 2 ! ! , (6.9a)

-2\u\2u. (6.9b)

These arise from the complex form of NLS:

υxx-γ^ίvt = 2uυ2. (6.10)

by setting v = ΰ or v = — ύ.
The reduction of gI(%<C) to s/(2Γ<C) is given by the condition J ^ = 0; i.e.,

J@ ι(0)/H gives the appropriate model for finite dimensional symplectic leaves in
(sl(% (C)+)*. By an argument similar to that in part A of this section, the fibration
J^M-tJ^iOyH can be reduced to a fibration W-tJ^/H, where

W={(F9G)eJίk\G = Fyί}

is an 5/(2, (C)+ invariant symplectic submanifold of J^{ϋ) and the fibers of
are given by the orbits of the finite subgroup

Let the column vectors of F be denoted by —^(x, y), 3c, y e <C". Those of G are

1 ^
then — - ( — y,x) and the symplectic form is given by ω = dxA d/when restricted to

1/2
W. The moment map for the SL(2, (C) action on P^ is

where Qλ is given in (6.5).

T Pt λΓ(ϊ\=. 7 (Ύ V\ 3Πrl CP(V\— ^ ' λr(l\— CP J^ Ĉ? 1 - 1 _L J^ O? 2 - n + 1

Consider the ad* invariant functions on (s/(2, (C))* given by

If we let tk denote the time parameter for the hamiltonian flow of φk we have as
usual
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or equivalently,

~j?(λ)=t(λkj?(λ))+,nλκ. (6.11)

dtk

In particular

/ (6.12a)

/ (6.12b)
αί 2

The leading term if0 is given by the value of the SL(2, (C) moment map, i.e.

and is thus an invariant of the flows. To get NLS we choose the level set

£ x 2 = 0, Σyf = O, and Σxiyi = ]/~ 1 (6.13a)

and define

where

« = - Σ ¥ ? s ^ = Σ ^ 2 , and s = iΣαi^»—i/^Σα/ (6 1 3 b)
Because of our choice of i? 0 it follows that

s = - L — (tr/lL2)0 and uι?-]/- lS = i
2

and therefore we can choose 5 = 0, i.e.

ΣβΛvVi= 1/~~ 1 Σαί> a n d S = l/—lwt;. (6.13c)

Letting x denote tί and t denote t2, the commutativity of the two flows imply
Eq. (6.10).

The real form (6.9a) comes from a reduction to tί=su(2), i.e.

l1 = {Xεsl(2X)\X=-Xτ}.

Applying the results of Sect. 5, case c, requires the α/s to appear in complex
conjugate pairs and the following relation,

* 2 » - i = -J>2i> *2i = y2i-i' ( 6 . 1 4 a )

The real form (6.9b) comes from a reduction to I 2 = SM(1, 1), i.e.
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where t= ί ). Again applying the results of Sect. 5 we may for this case

choose the αf's to be real, together with the reality conditions

(6.14b)

An analysis similar to that in part A of this section gives the curve X and the
Jacobi variety f(X) on which the flows linearize. Furthermore, a study of the
reality conditions (6.14a) and (6.14b) leads to the linearization of the flows for (6.9a)
and (6.9b). These computations have already been done in [36]. Note that to
reconstruct u,v explicitly it is necessary to do a further integration of the
hamiltonian equations corresponding to the restriction of the moment map to the
stabilizer of Jf0 = j£?θ5 i.e. φ0. The nonreduced isospectral manifold then becomes a
(C* extension of f{X) as discussed in [36].

D. Modified Korteweg-de Vries Equation [The Twisted Loop Algebra 5/(2, IR)]

The mKdV equation

ut — 6u2ux + uxxx = 0 (6.15)

is determined as the integrability condition for a pair of commutative flows on the
dual of a subalgebra of g/(2) + . In this case the subalgebra is a twisted loop algebra
[14,49]. _

We begin with the reduced algebra s/(2, IR) as in part A of this section and thus
restrict attention to the sl(2, IR)+ invariant symplectic subspace W^>J?k given by

W={(F,G)eJ?k\ F = F and G=-Fγί}.

As above, we write F = —=(x,y) with x,yeJR.n so that G= —zr( — y,x) and the

1/2 1/2
symplectic form of J( becomes ω = dx A dy when restricted to W.

Now define the twisted loop algebra "s/(2JR) by

5/(2,R) = {X(λ)E5/(2,R) I tX(λ)t = X(-λ)},

where t= ί I. An element ξ(λ)es/(2^Rj n a s t n e f ° r m

ξ(λ)= Σ ξtλ\ ξt G5/(2,R),
i= — oo

where ξt is a multiple of I I if i is even and ξt is off diagonal if i is odd.

We identify s7(2,R)* with sZ(2JRj using the inner product (2.16). This gives an
identification

^ is the subalgebra of s/(%R) consisting of elements of the form

x(λ)= Σ xfi.
j=-co
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Under this identification the moment map

J2: W->(3(2JKJ+)* ~~sί(2JR)o

for the Ίΐί(2JR) + action on W is given by

λ
λ 12 . 2

i = 1 A — α t

n

/Σ
n

λ2-ot
λx

l A 2 —

2

Vi

α2

Let JT(λ) denote J 2 (F ? G) and

where α(A) = Π (^2 ~ α?) Notice i f (A) e"5/(2^R)0̂  because α(/l) is a polynomial in A2.

Define φke7(s/(ξRj*) by

Let ίfe denote the time parameter for the hamiltonian flow of φk\0(27R) + )*, then

^ 2 f c (6.16)

The flows are isospectral for both Jf(λ) and JSf(λ), and hence det(yΓ(/l)) and
det(j£?(Λ)) are invariant. The spectral curve X is hyperelliptic with affme part given
by

The leading term

0 _v,.... , (6 Πa)

is an invariant of the flows which we choose to be zero.
It follows that

is also an invariant, which we fix by

Σ*ύ>ϊ = U Σ«Λ 2 = 1 (6.18)

Define
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where

u=ϊΣ*ϊχtyi> p=τΣ"ϊyf-τΣ*ϊ>
(6.20)

«=-iΣ<*?*?+ίΣα?, w=Σ«ΐχϊyϊ-2uΣ*t
The function

is also a constant which we set equal to zero.
Letting x denote the variable tί and t denote t2, it follows from the

commutativity of the flows for φx and φ2 that u satisfies the mKdV equation (6.15).

E. Boussίnesq Equation [Rankr = 3 Deformations; Constrained s/(3,R) Flows ]

Here we consider the Boussinesq equation [2, p. 232]

= 0 (6.21)

as an example of rankr = 3 perturbations (cf. also [43]).
The x and t Boussinesq flows are given by Lax pairs

where

/0 0 0

= λ\θ 0 0

\1 0 0

jt& = [B, if] , (6.22)

0 1

+ ( 0 0 1 , (6.23a)

<-3uΎ-3v - 3 M 0/

/0 0 0\ / 2u 0 1

= λiί 0 0 + -ux-3v -u 0 , (6.23b)

\0 1 0/ \-uxx-3υx -2ux-3υ ~

and if is a matricial polynomial in λ'1, if ^ifo + ifj/l"1 + . . .+ ifπ/l"".
The commutation relation

yields the equations

uxx + 2vx = ut, uxxx + 3 ^ - 6uux = 3uxt + 3vt,

which, upon elimination of v, yield (6.21).
The Lax pairs (6.22) are obtained by imposing symplectic constraints on AKS

flows in (sϊ(3, R)+)* as follows.
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Consider the hamiltonians

( ^ k \ (6.24a)

χn i ~ - w / (6.24b)

Let

(6.25a)

(6.25b)

generate the x and t flows, respectively, where

tΛ^iX)=z*JV ~\~*yV* \X ι JV^X \ (2.26)

a(λ)
With if(λ) = ^~ Jί{λ) = £?

0 + £?

ιλ~1 + ... + Seλ~n, we have
λ

and

where

and

As usual, JS?0 is preserved by all of the flows so we can choose

/0 0 0\

J5fo= 0 0 0 . (6.27)

\l 0 0/

In general, letting tk denote the flow for Φk and sk the flow for Ψk, we have

4- S£ = l(λk&)+, JSf] = - [(A*JSf) _, JSP], (6.28a)
dtk

4~& = WJSf 2)+, JSP] = - [(λ*JSf 2 ) _ , Jέ?] . (6.28b)
dsk

From this it follows that

j | - J2 ' 1 = [ J 2 Ό . ^ + i] (6 29a)
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Σ
i+j=k+i

(6.29b)

If we take

ί aγ a2 a3

bx b2 b3

N C i C2 C3

it follows from (6.29a and b) that a2, a3, b2, b3 are constants of motion. We choose
a2 = b3 = \ and a3 = b2 = 0, so 5£γ has the form

la, 1 0

JS?!= &χ 0 1

Setting

we have
x c2 c

/0 0 0\ lax 1 0 \

TO+=φ o oUk o l
\l 0 0/ \cx c2 -aj

and

a1bι+cι+B3 b1+c2

c1+A2 — c2aί

- α ,

/0 0 0\

(dH1)+=λlί 0 0
\0 1 0/

To put these in the form (6.23a) and (6.23b) we need to add constraints. Let

= \ tr

F2{JT{λ)) = Ψ1(JT(λ)) = i tr

G1(J^(λ) = bί-A3, and G2{JΓ{λ)) = ax.

Computing Poisson brackets we find

{Fί,Gι} = i, {FuG2}=0,

{F2,G1} = -G2, {F2,G2} = 1.
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It follows that the constraints Fί = F2 = Gι = G2 = 0 define symplectic sub-
manifolds of the symplectic leaves in (s/(3,]R.)+)*. Since Fγ and F2 are commuting
constants of motion, the constrained hamiltonians Ho and H1 are given by

and

0 = H0- {Hθ9 Gι}Fι — {Ho, G2}F2

β1=H1-{Hl9G1}F1-{Hl9G2}F2.

Since the F's and G's vanish on the constrained space, the constrained
hamiltonian vector fields are given by

and

Computing

(dH0)+ = (dH0)+ - {Ho, GJ (dFί)+ - {Ho, G2} (dF2) +

(dG1)+={dH1)+-{Hl9G1}(dF1)+-{Hl9G2}(dF2)+.

d
dx

d

d

{HuG2}=--a1=A2

we find

/0 0 0\ / 0

(dH0)+=λiθ 0 0 + 0

\l 0 0/ \c1+A2-2B3

1

0

c2-A3

and

/0 0 0\

{dHι)+=λ\ί 0 0

\0 1 0/

2b,

cx-A2

0
b1+c2

1

0
\2b1c2-2b\-Aλ-C3 cγ-B3 bt+c2l

Now jSf(̂ ) is traceless so Aί+B2 + C3 = 0, i.e., 2Aί-B2-C3 = 3Aί. Fur-
thermore Φ2(yΓ(/l)) = Abγ + 2c2 is a constant of motion which we choose to be zero.
Thus (dHi)+ takes the form

/0 0 0

(dH1)+=λ 1 0 0

\0 1 0

0 1
0
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Taking

b1=A3=—^c2 = u, cι—A2=—ux — 3v,

cί—B3=—2ux — 3v, B2 = 6u2— uxx — 3vx,

(dH0)+ and (dHί)+ take the form (6.23a) and (6.23b) respectively.

Remark. Since the constraints Fί and F2 are from the set of commuting functions
Φp Ψk it follows that the Φ's and Ψ's still Poisson commute after applying the full
set of constraints Fί=F2 = Gί = G2 = 0. In fact these constraints may be interpre-
ted as a part of the Marsden-Weinstein reduction of the orbits in (s/(3,IR)+)* by
the 5/(3, H) action. Fί and F2 give parts of the s/(3,IR) moment map and G1 = 0,
G2 = 0 defines a section of the Marsden Weinstein reduction by the abelian
subgroup of s/(3,R) generated by the hamiltonian flows of Fί and F2.

We now use the moment map

to interpret these flows as isospectral rank 3 perturbations. For simplicity, let us
assume that the eigenvalues α, are real and distinct; thus kt = 1 for each i. We write
the matrices F and G, (F, G) e Jίk, in the form

F= (6.30)

Pn

where qh ^ e C 3 . The reduction of (g/(3)+)* to (s7(X]R)+)* requires that qh ^
and

Is(F,G) = (q1.p1,...,qn.pn) = 0. (6.31)

The groups H and Q) are the same, and the action is given by ^ ^ α f ^ f , Vi~^^l xPv
O. Thus we can identify the reduced space J@ι(ϋ)/H with the space

~ T * S 2 x . . . x T * S 2 (n times). (6.32)

The symplectic structure induced on W is such that the latter identification is
symplectic.

The moment map, restricted to W, now gives

Writing the columns off and Gas(x, y,z) elR3" and ( ί , ζ w ) e R 3 π respectively [so

ί = fej;

I »Zi) and pi = (ui,vi,wi)'], we have

(xftO) QAΪΰ) Qx(ϊΰ)\
Λ-(λ)=-λ\Qλ(x,v) Qλ{y,v) βΛ(z,t5) (6.33)

l
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where Qλ is given in (6.5). Substitution of this into (6.24a and b) gives the
hamiltonians Ho and Hί on W in terms of (x, y, z, it, v, w). Similarly, the relations
0 = Fι =F2 = Gι = G2 may be regarded as defining constrained hamiltonians Ho

and Hx in W whose flows furthermore leave invariant the submanifold determined
by the relations

/0 0 0\ / 0 1 0\

No= 0 0 0 , JV 1 = u 0 1 , (6.34)

\l 0 0/ U+Σα/ ~¥ 0/

where

Ci+Σ(χi=-ΣxiWi(χi, (6.35)

and
u=-Σxivμi (6.36)

is the solution of the Boussinesq equation (6.21).

F. Coupled Nonlinear Schrδdinger Equation (su(ί,2) Flows)

The CNLS equation is ([2], p. 97)

This is obtained from the complex form

l/-ϊwt + uχχ = 2w(" U + v V),

( 6 3 8 )

with the reality condition U = ύ, V= v. Other real forms may also be obtained as for
the CNLS equation by choosing differing signs U = ± w, V= ± v. As in the
preceding example, Eq. (6.38) is obtained as the integrability condition for a pair of
commutative flows given by Lax equations of the form (6.22), with:

A=*-τ—λ\0 -1 0 + \u 0 0 , (6.39a)

B =

(6.39b)
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These may again be interpreted as flows on (s/(3, (C)+)* generated by AKS
hamiltonians of the class (6.24a, b), with a reduction to the subalgebra t='su(\, 2)
C sZ(3Γ<C). The moment map J 3 will then give an interpretation of the flows on finite
dimensional symplectic leaves in (sι/(l,2)+)* as isospectral flows of matrices.

Using the same notation as in the preceding example, the reduction g/(3,(C)
Dsΐ(X(Π) is given by the condition J^ = 0, i.e.

trJSf—O. (6.40)

The reality conditions ΰ=U, v=V giving (6.38) follows from the reduction of
5/(3, (C) to su(l,2)by

- ί j ^ j r 1 = JSfJ. (6.41)

with

Taking (F,G)eMn 3 x M B ) 3 with rows (Fi = (xi,yhzi), Gt ), (so kt = \) and real
eigenvalues αf, the reduction procedure of Sect. 5 gives:

τ,-yτ,-zτ) (6.42)

from (6.41). Here xb yb z^eC provide complex Darboux coordinates on the
reduced space W = ((£3)n with symplectic structure

ω = ]/ —\ Σ(dx t Λ dxt — άyi A dyt — dzt A dzt).

To implement (6.40) we take the constraint

W 2 - b ; |
2 - N 2 = o , (6.43)

and quotient by the S1 action

g' fa, y* zd = (gXi, gyi9 gzt), g 6 S1

on each of the n copies of C 3 .
This quotient space may be identified with (C2, where Darboux coordinates are

given by ηi = e~v~lθιyi and ζi = e~vrz=rTθιzi, and the phase 0f is given by
xi = e]r=rΊθi\xi\. Since the moment map is independent of this phase we may write it
(and its components) in terms of r\{ and ζi9

-Uι (6.44)

where

ρ . = i/|^.|2 + |ζ. | 2. (6.45)
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The leading term j£?0 is an invariant of the flows since it is given by Jsu(1>2y We
choose the level set

2 0 0

0 - 1 0 1, (6.46)
3 \o o - l

i.e.

and Σ ^ = 0, ΣίiVW+W=0- (6-47)

Furthermore j5fx satisfies (6.29a) and (6.29b). Thus, if we write

( a ΰ v\

u b A
v d cl

we see that with our choice of S£o the entries a, b, c, d are invariants of all the flows.
We choose a = b = c = d=0 where

(6.48)
_ i α ; ) > a n d d = - | / Z Ϊ

Thus

/o a
<£x = \u 0 0 | , (6.49)

\ι> 0 0

where

' " - - • • - > • - - > v _ _y _

(6.50)

Let JS?2 be denoted by

/aι b1 cΛ

^2 = \rl:\\a2 b2 c2 ,

/

and let x denote ίA and t denote t2. The commutativity of the Φ t and Φ 2 flows then
implies

/aί -ΰx -vx\

with (αJ^dttp + N2),, (&2)x = (-|M|2L (c3)* = (-M2L feL = ( - » 4 and
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Setting Φ2(Jί(λ)) = 0, it follows that a ι = \u\2 + \v\2. To get

A = (dφ1(N(λ)))+=λL0 l9

(6.51)
= ( d φ 2 ( N ( λ ) ) ) + = λ 2 L 0 λ L L

in the form (6.39a, b), we must set

b2 + \u\2 = c3 + \v\2 = b3 + vΰ = c2 + uv = 0. (6.52)

These quantities are invariants of all the flows in # + , and therefore this does not

require constraining the hamiltonians. To see this, consider the matrix

Let φ e #"+ and τ denote the parameter for its hamiltonian flow. Then

and — Se\ = Sejje^ dφ(^)_ J + [JS?0, #(JS?)_ J J£\. Allowing arbitrary matrices
ατ

for dφ(3?) _ ! and dφ(J£) _ 2 leaves the lower right-hand 2 x 2 block zero. Since S has

as its lower right-hand 2 x 2 block we see that these quantities are invariants of the

flows.

The detailed computation of the linearized flows on Jacobi varieties of spectral

curves for these and other examples will be presented in the sequel [4].
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