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Abstract. This paper reports the solution of the problem of finding which
inputs for a function of discrete variables will result in any specified output
for the set of binomially determined nearest neighbor additive cellular automata
defined on finite or half-infinite sequences. In computing the solution to this
problem a process which is the discrete analog to backward integration is
defined. This process is determined in terms of an operator which exhibits an
interesting period multiplying property.

I. Introduction

A cellular automaton consists of a finite or infinite lattice with values at each
lattice site drawn from a discrete set, together with a deterministic local rule which
specifies the site values at time t + 1 in terms of site values at time t. They were
initially introduced by Von Neumann [1] in an attempt to find simple mathematical
systems which exhibited some features of life. Applications of cellular automata
have been made in modeling heart fibrillation [2]; as parallel processors [3,4]; as
prime number sieves [5]; in image processing and pattern recognition [6,7]. More
recently, work of Wolfram [8,9,10] has stimulated a renewal of interest (see, e.g.,
papers in Physica 10D) and it has been suggested [11] that cellular automata may
have a major role to play "complexity engineering;" i.e., in the design of complex
systems which exhibit specific properties.

Before such applications can be realized, however, there are several problems
which must be solved. One of these is the predecessor problem [11]: is it possible
to determine the predecessor states for any given state of an arbritrary cellular
automata? As Wolfram points out, there may be no general solution to this problem
as it is, in the general case, NP-complete.

This paper presents the solution to the predecessor problem for the special
case of binomially determined nearest neighbor additive cellular automata defined
over Zp, where p is prime. Although this is a limited subset of the set of all cellular
automata, the solution presented is significant for several reasons: it is a first step
in attack on the general case; it is a direct analog of backwards integration; an
interesting period multiplying property emerges; and, most of the current results
appearing in the literature are based on analysis of additive cellular automata—
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indeed, the algebraic approach in terms of characteristic polynomials developed
by Martin et al. [12] works only for this subset.

The solution presented is based on a new approach to analysis of cellular
systems in terms of operators on an appropriate state space [13,14]. The basic
idea behind this approach is sketched in Sect. II. Section III introduces an operator
B and indicates how, for certain nearest neighbor additive cellular automata a
process defined in terms of this operator, analogues to backwards integration,
yields all possible predecessor states for any given automata state. The analogy
to integration suggests that, although there may not be any general procedure for
"inverting" cellular automata evolution, it may be possible to find particular
procedures for other classes of cellular automata than those dealt with in this paper.

II. Nearest Neighbor Additive Cellular Automata

We first consider finite automata. Let p be prime. A finite cellular automata over
Zp is represented as a set of n cells located on a circle. Each cell contains a value
chosen from Zp. If the value of cell i at time t + 1 is determined only on the basis
of the values of cells i—1, ί, and i+ 1 at time t then the automaton follows a
nearest neighbor rule. The set of pn possible automaton states is denoted En. The
evolution rule for a given automaton is naturally represented as an operator
Q:En->En [13]. In this approach a particular automaton, with evolution rule
represented by an operator β, is denoted (<2, En). If, for all μ,μf in En, and all
k, Qk(μ + μ') = Qk(μ) + Qk(μ'), then Q is said to be additive.

If μf denotes the value of the /ιh cell in the state μ then the general component
form for the operator representing an additive nearest neighbor rule is

[β(μ)]ί = Wi-i + y^i + ^μi+1, (π.i)

where x, y, and z take values in Zp and all sums and products are reduced modulo
p. (Note, however, that subscripted component indices are reduced modulo n
corresponding to periodic boundary conditions.) There are p3 distinct operators
Q defined by (II. 1). If I is the identity on En and σ~\σ are respectively the right
and left shift operators, then (II. 1) is equivalent to the operator equation

β = x σ - 1 + j / / + zσ, (Π.2)

which yields

in which the Trs(k + 1) are the trinomial coefficients of (x + y + z)k reduced modulo
p. In component form this becomes

lQk(μ)li = Ύ τrs(k + l ) x Γ / - ' - V μ ( i _ r + S ) . (II.4)

If only one of x, y, z is non-zero, then Q will be a combination of a multiplication
and a shift. (If y is the non-zero element this is only a multiplication.) If two of
x,y,z are non-zero the coefficients in (II.4) reduce to the entries in the (k + l)-st
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row of Pascal's triangle modulo p. Such automata will be said to be binomially
determined.

For p = 2 and 3 the possible additive operators are shown in Tables 1 and 2,
respectively.

Following the notation used in Tables 1 and 2 we define operators D(r s) and
D~irtS) on En by D ( r > s ) - rl + sσ and D" ( l , s ) - rl + sσ~K

Now consider a state space E + which consists of all right half-infinite sequences
of values drawn from Zp. (By reflection symmetry similar results will hold for the
state space E~ of all left half-infinite sequences.) Since these sequences are bounded
on the left some of the operators defining specific automaton evolutions must be

Table 1. p = 2 Nearest Neighbor Additive Cellular Automata

(x,y,z) Operator Component Form Rule *(Wolfram, [8])

0

μ,-i 240
204

{ 170

t» + μ,-i 6°

+ μί + 1 102

•μι-1+μi + ι 90

- i + μ , + /i, + i 150

(0,0,0)
(1,0,0)

(0,1,0)

(0,0,1)

(1,1,0)

(0,1,1)
(1,0,1)

(1,1,1)

0
σ
I
σ
D
D
D
A

Table 2. p = 3 Nearest Neighbor Additive Cellular Automata

(x,y,z) Operator Component Form

The cases for which (x,y,z) take values in [0,1] are identical to those given
in Table 1 with the exception of the operator D~D. Operators which are
multiples of p = 2 operators are: (2,0,0), (0,2,0), (0,0,2), (2,2,0), (0,2,2), and
(2,2,2). (2,0,2) = 2d.

(1,0,1)
(2,1,0)

(0,2,1)
(1,0,2)

(2,0,1)
(0,1,2)

(1,2,0)

(2,1,1)

(1,2,1)

(1,1,2)
(2,2,1)

(2,1,2)
(1,2,2)

d

0-(i,:

0(2,1)

0 (2,:

0"0(:

0(1,2)

0 (2,:

A + σ

I + Δ
A + σ
A + D
A + δ
Δ + D

ίD(

[(1



434 B. Voorhees

redefined. The operator σ ~1 is defined on E+ by

All operators defined in terms of σ are similarly modified.
The spaces En embed in E+ as the subspaces of all half-infinite sequences with

period n, and properties of operators not involving σ~ in their definition are
preserved from the finite case.

III. The Operator B and the Predecessor Problem

Let (Q,E + ) be as described in Sect. II. In general the map Q:E+ -+E+ may have
several attracting sets. If C is an attractor of this map we wish to discover the set
Mc having the property that for all μ in E + , μ is in Mc if and only if there is a
k> 0 such that Qk(μ) is in C. That is, we want the basin of attraction of C. The
solution of this problem is presented in several steps of increasing generality.

An operator B:E+ -+E+ is defined by

[Biμn^^μj. (III.l)

B cannot be defined on a finite automaton since if μ has period n then B(μ)
will, under conditions to be made precise in Sect. IV, have period pn, requiring a
p-fold covering. Nevertheless B is additive.

Under iteration B has components given by:

where p{k\ is the ith entry of the feth row of Pascal's triangle mod(p). The operator
B can be shown to be self-accumulation (i.e., in the natural topology on E +

continued iteration of B comes arbitrarily close to past iterates) but not solipsistic
(i.e., B has accumulation points other than its own past iterates), and to have no
dense orbits [14].

Theorem 1. The general solution of D{r p_r)(μ) = β is

where oc1 has one in the first position and zero's in all other positions, μ1 is an
"initial condition" chosen from Zp, and b satisfies the conditions 1 ^ b <p;
b(p — r)= lmod(p).

Proof. Let μ be the sequence (μί,μ1 + bίβ1+π1,μ1+bιβί+b2β2 + K2>'-)
having general term μx +b1β1 + [-bi_1βi^1 +πt-u where μ l 9 the bh and the
πf are chosen from Zp. It is possible to write any sequence in E+ in this form,
although such representation is obviously not unique. The general term of
D{χp_r){μ) is computed to be rπi_1 + (p — r)lb^t + π j . If μ is to be a solution this
must equal β(. Multiply by a number b which satisfies 0 < b < p, b(p — r) = 1 mod(p)
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to obtain brUi _ x + b$t + π£ = ft/^. Since ft(p — r) = ftp — ftr = 1 mod(p), ftr =
ftp — 1 = — 1. Thus πf = π f _ ! + (ft — ft^A Substituting this recursively into μ gives
the general term of the solution μ as μt = μx + &(/?! + — h ^ f _ 2 -f βi-i), which is
identical to (III.4). ||

The only free parameter in (IΠ.4) is μί which takes values in Zp. Hence there
is an immediate consequence of Theorem 1:

Corollary. There are exactly p distinct predecessor states for every state of the
automaton (D(r p _ r ) £ + ), counting fixed points ofD^ p _ r ) as predecessors of themselves.

Iteration of (III.4), noting that B and σ" 1 commute, introducing a basis
{αsl(αs)i = $is} f° r E + , and observing that σ~1(αs) = α s + 1 , yields

Theorem 2. The general solution of D\rp_r)(μ) = β is

μ = bkBkσ-k(β)+ Σ ^ f t 5 " 1 ^ ) . (III.5)
s = l

The same methods used in the proofs of Theorems 1 and 2 can be used for
the more general case of the operator D(rs) with 1 ^ r, s < p.

Theorem 3. Let 0 < ft, r, s < p, αrcd feί ft fte swc/z ί/zαί fts = 1 mod (p). Γften the general
solution of D(rs)(μ) = β is given by

where B(b>r)E
+ -+E+ is the operator defined by

lBM(β)lj= Σ
7 = 1

Theorem 4. The general solution of Dk

irs)(μ) = β is given by

μ = bkBk

(b r)σ~k{β) + £ μ,ftJ~ ι B\b r)(a7), (III.8)
7 = 1

where 0 < ft < p and bs = \ mod (p).
Turning attention to D^ s) we find by direct calculation that this operator

commutes with Bibft), and that

IBMD-(Γiβ)(μ)]f = rμ, + [5 + ft(p - ί)r] ' Σ ίb{p - t)Tj-^y (IΠ.9)
7 = 1

Choosing ft and ί such that s + b(p — ήr = 0 mod (p), and a number c such that
cr = 1 mod(p) yields cB{bt)D~(rs) = 1. Further, although there are several values of
ft and t which will satisfy the required condition it turns out, since all coefficients
in the expansion of Bψ>f) are powers of ft(p — r), that all choices of ft and t which
give 5 + ft(p — t)r = 0 give the same form for the operator B(btΐ). This yields:

Theorem 5. Let 0 < ft, c, £, r, 5 < p am/ feί ί/zese numbers be chosen so that, modulo p,
ί/*e relations cr = 1 and s + ft(p — ί)r = 0 are satisfied. Then cB(bt) is the unique inverse
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IV. Period Multiplication

Suppose that μ is periodic in E+ with period n. By (III.7) the operator B(br) satisfies

lBM(μΏt+i = HP - r)lB(b,r)(μ)l + μi+1. (IV.l)

On this basis it is possible to state a period multiplication theorem:

Theorem 6. Let μ in E+ have period n.

l If C#(b,r)(μ)L = 0, then B{htΊr)(μ) also has period n.
2. If [B(br)(μ)^n Φ 0, let k be the smallest positive integer such that lB(br)(μ)']kn = 0.

Then B{br)(μ) has period kn.
For given n, fc, r it is possible, on the basis of some elementary number theoretic

considerations, to determine the value of k. If p = 2 the only possible value of (r, s)
and (b,r) are (1,1). B(11) = B as defined in (III.l), and we write D{11) = D,

Theorem 7. For p = 2, let μ be a periodic element of E+ with period n and define

μ>n* = (βi,~ ,μά

#i (X*) = number of ones in μπ* taken mod (2).

1. If#i(μn*) = 1, then B(μ) will have period 2n.
2. / / # ! (μn*) = 0 then, for some k(2^k^ n\ Bk(μ) will have period 2n.

Proof. In mod (2) it is clear from the definition of the operator B that if #i(μπ*) = 1
then [2J(μ)]w=l. Thus, for n+ l^i^2n we can write the equality [#(μ)]ϊ =
1 + [£(μ)]i-π. In particular, \_B(μ)~\2n = 0. Hence, for an index; satisfying 2n + 1 ^

j ^ An we have [B(μ)~\j = [J5(μ)]J _ 2 π so that B(μ) has period 2n.
If #ι{μn^) = 0 let μr(l ^ r ^ π) be the last element of μn* which equals 1. Then,

since addition to an even number of ones equals zero, the last non-zero element
of {[^(μ)]^! ^ i^n} will be, at most, \_B(μ)~\r_1. Let μs be the first non-zero
element of μπ*. Then, for all fc, \_Bk(μ)~]s= 1. No iteration of 5 can reduce all of
the first n elements of Bk(μ) to zero unless μ = 0. Thus, for some k between 1 and
r — s, it must be the case that #1(Bk(μ))= 1. The desired result now follows by
appeal to the first part of this theorem. ||

For p an odd prime suppose μ has period n in E + , [J3(b>r)(μ)]π / 0 , and let k
be the smallest positive integer such that [B(btΓ)(μ)]kπ = 0mod(p). For simplicity
of notation take y = b(p — r) and x = / . Expansion of (111.7), taking note of the
periodicity of μ, and rearranging terms now yields

0 = [B(ftfr)(μ)]kB = (l + * + ••• +* k ~ 1 )(y ι ~Vi +/~ 2 /*2 + ••• + μ J (IV.2)

Thus at least one of the two factors on the right must be zero. But it cannot be
the second factor since this would imply that [B(ft jΓ)(μ)]kn was zero for all values
of k and we have required that [5 ( & ? r )(μ)]π Φ 0. Therefore l + x + + x f e ~ 1 = 0 .
Further, by definition k is the smallest integer for which this is true. Addition
of xk to each side of this equation yields xk = 1 + x+ —\-x 1 *' 1 + xk =
1 + x(l + x + + xΛ~x) = 1. In number theory x is said to have order k modulo p.
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Lemma. Let p be prime, 1 ^ x < p. Then x has order k> 1 modulo p if and only if

1 +x + x2 + ••• + x f e " 1 = 0 modulo p.

Proof. The if portion of the lemma has already been demonstrated. Suppose that
x has order k modulo p, then x + x2 + ••• + xk = 1 + x + x 2 + ••• + x^"1 or
x ( l + x + . + x f c " 1 ) = l + x + +x f c ~ 1 . Thus ( x - l ) ( l + x + ••• +x / c~ 1) - 0
mod (p). If x = 1 then x has order 1 so if the order of x is to be greater than one
l + x + + x f c " 1 = 0 and the lemma is demonstrated. ||

The only remaining case is x = 1. In this case 1 + x + — \ - x k ~ x =k which must
be zero mod(p) if [B(b r)(μ)^\kn is to be zero. The smallest positive value of fc for
which this is true is k = p. Thus we have:

Theorem 8. Let μ have period n in E + , \_B{b r)(μ)~]n Φ 0, and x= bn(p — r)n>\ have
order k modulo p. Then B(br)(μ) has period kn. If x= lmoά(p) then B{br)(μ) has
period pn.

We briefly summarize some standard results of number theory [15]:
If x Φ 1 has order k modulo p, then k\(p — 1); the number of distinct values of

x with order k is given by φ(k), which φ is the Euler function; and

Σ Φ(k) = p-l. (IV.3)
k\(p-l)

Since (p — I) 2 = p2 — 2p + 1 = 1 mod (p), p — 1 has order 2. Also, if x has order
fe, then (p — x)k = (— xf = (— l)fc. Hence if fe is even the order of p — x divides k,
while if k is odd (p — x)k = — 1 = p — 1 so the order of p — x is 2k. Table 3 illustrates
the pattern of k values for p rg 17.

Finally, let x = fr"(p — r)" have order k modulo p and consider the quantity

Table 3. Values of k for p prime, 3 ^ p ^ 17

2

3
4
5
6
7
8
9
10
11
12
13
14
15
16

P = 3

2 4
4
2

3
6
3
6
2

10
5
5
5
10
10
10
5
2

L p = 1 3

12
3
6
4
12
12
4
3
6
12
2

p = 1 7

8
16
4
16
16
16
8
8
16
16
16
4
16
8
2
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That is, an element of En is defined by breaking B{br)(μ) into k blocks of n elements
each and summing elements which are congruent modulo n. After a good deal of
computation, making extensive use of the periodicity of μ, we obtain

Denoting the constant term in brackets by K (IV.5) can be written as a matrix
equation λ = KYμ,

I λΛ

\ hi

i 1

= κ
\Γ

f-
1

ytι

y

n-2

y

n-3 1

(IV.6)

The matrix Y is a circulant. It is easy to compute Det(Ύ) = (1 — yn)n *. Suppose
that y φ 1 has order d modulo p. Then Det(Y) = 0 if and only if d\n. If this is the
case rank (Y) = 1 and

l = K

If y = 1 mod(p), then for all i,

If d does not divide n, then
automaton induced by Bibfr).

V. Discussion

y v«-m+i

%. (IV.7)

\-μ2 + ~ +μn) ( I V 8 )

will be called the global period n cellular

The operators Z)~(1 p _ υ and D{p_lΛ) are analogues to derivatives with respect to
sequence index through comparison to the first order Taylor approximation to a
differentiable function: f(x + a) ~f{a) +f'(a)(x — a). For D{p_lΛ) and D ~ ( l p _ 1 )

The role of 5 ( 6 > r ) indicates that this operator is analogous to integration with
respect to the sequence index. This suggests the possibility of integrating
more general difference equations for cellular automata. Equations of the form
(D~{r s))

kDk'{r,fS')(μ) = β can be solved by alternating between the formulas of
Theorems 2 and 5. For example, the equation D~irs)D{r,sΊ(μ) = β yields, by
Theorem 5, D(r^sΊ(μ) = cB(bt)(β), which can be solved by (III.6).

Restricting attention to p = 2, Martin et al. [12] prove that for finite automata,
states μ for which #i(μπ*) = 1 have no predecessors. Theorem 1 now indicates how
to compute predecessors for states of (D, En) and (D~,En) having #ι{μ) = 0. (D,En)
is embedded in (D,E+) and (III.4) is applied for all values of k such that #x{μ)
remains zero, except for the final value of k. For (D~,En) the space of left half-infinite
sequences E~ is defined and (D~,En) is embedded in (D~,E~). The operator B is
suitable redefined and (III.4) is applied. Predecessors for states of (D~D,En) are
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obtaining by alternation of the above procedures. That is, D~D(μ) = β is rewritten
as D~(D(μ)) = β which is embedded in (D~, E~) and solved for D(μ). This is restricted
to En and then embedded in (D,E+) and solved for μ. Note that the automaton
(D~D, En) does not embed exactly in the automaton (D~D,E+) due to the difference
in definition of the operator D~ on the spaces En and E + .

The period multiplying property of B indicates and B defines a one-to-many
mapping En -• Epn -> > Epsn -• it is an interesting question as to whether or
not, in the limits n,p-+oo, this exhausts all of E +. This is equivalent to the question
of whether or not every element of E + lies in the basin of attraction of some cycle

References

1. von Neumann, J.: In Taub A. H. (ed.) J. von Neumann, Collected Works 5, 288 (1963)

2. Flanigan, L. K.: An experimental study of electrical conduction in the mammalian atrioventricular

node. Ph.D. Thesis, University of Michigan 1965

3. Manning, F. B.: IEEE Trans. (Computation) C26, 536 (1977)

4. Hillis, W. D.: Physica 10D, 213 (1984)

5. Fischer, P. C: J. AMC 12, 388 (1965)

6. Rosenfeld, A.: Picture languages. NY: Academic Press, 1979

7. Sternberg, S. R.: In Gelesma E. S., Kanal L. N. (eds.) Pattern recognition in practice. Amsterdam:

North-Holland 1980, p. 35.

8. Wolfram, S.: Rev. Mod. Phys. 55, 601 (1983)

9. Wolfram, S.: Commun. Math. Phys. 96, 15 (1984)

10. Wolfram, S.: Physica 10D, 1 (1984)

11. Wolfram, S.: Physica 22D, 385 (1986)

12. Martin, O., Odlyzko, A. M., Wolfram, S.: Commun. Math. Phys. 93, 219 (1984)

13. Voorhees, B., Weiss, A.: preprint (1987)

14. Voorhees, B.: preprint (1987)

15. Shank, D.: Solved and unsolved problems in number theory (2nd ed.) NY: Chelsea 1978

Communicated by J.-P. Eckmann

Received November 30, 1987






