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Abstract. The structure of the current algebra representation in the state space
of fermions in an external Yang-Mills field in 3 -h 1 space-time dimensions is
analyzed; the topology of the vector space is determined by a countable family
of semi-definite inner products. We show that there is no hermitian non-trivial
Hubert space representation such that the energy is bounded from below. The
structure of the Hubert space for the quantized coupled Dirac-Yang-Mills
system is discussed and the existence of the vacuum vector and the cancellation
of commutator anomalies is described in terms of complex line bundles over
infinite-dimensional Grassmannians.

1. Introduction and Notation

We shall study the problem of quantizing a coupled Dirac-Yang-Mills system in
the case when the dimension of space-time is 3 + 1 and the gauge group G is non-
abelian and compact. In particular, we want to 1) determine the structure of the
relevant current algebra representation, 2) discuss the anomaly cancellation in the
Hubert space of the quantized coupled system using previous results on the
structure of complex line bundles over infinite-dimensional Grassmannians
[MR].

Let M be a compact oriented spin manifold of dimension 3 and S a tensor
product of the Dirac spinor bundle over M (fiber C20C2) with a topologically
trivial vector bundle, the structure group of the latter being G. Let L2(S) denote
the space of square-integrable sections of S with respect to a fixed fiber metric of S
and a measure on M. Let DA denote a covariant Dirac operator in S defined by a
vector potential A taking values in the Lie algebra of G. Locally we can write

Σ *«rk + Ak) + γ0m, (1.1)
k = l
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where αk = y0yk and the yμ's are the Dirac matrices; Vk is the co variant derivative
(determined by the spin connection form) in the kth coordinate direction. We define
a splitting L2(S) = HΛ (A}@ H _(A\ such that H + (A) consists of linear combinations
of eigenvectors of DA corresponding to non-negative eigenvalues and H _(A) is the
orthogonal complement of H +(A). Let MG be the group (under point- wise
multiplication) of smooth maps M h-» G. We have a natural action of the group of
gauge transformations MG in L2(S] defined point-wise, (g ψ) (x) = g(x) ψ(x). With
respect to the splitting defined above, we can write the linear operator in L2(S)
defined by the gauge transformation g in the block form

where a:H+^H + , b:H_-+H+, c:H+-*H_, d:H^^H_ are continuous linear
operators. Denote by Ip the Schatten ideal of linear operators T satisfying
tr I T\p < oo . It is known that the blocks fr, c of g belong to J4 and α, d are Fredholm
operators, [C, PS]. We denote by GL2 the group of all invertible linear operators
of this type. Thus we have a homomorphism MG-»GL2, and it follows that a
representation of GL2 gives automatically a representation of the group of gauge
transformations.

In 1 + 1 dimensional field theory the representation of the current algebra in
the Fock space of the second quantized Dirac field is not a true representation but
a projective one. It is a true representation of a central extension of the current
algebra. The central extension is precisely an affine Kac-Moody algebra when G is
a compact simple group. In the 3 + 1 dimensional case the situation is worse than
that. One has to define an extension of the current algebra by an infinite-
dimensional abelian ideal ("operator valued Schwinger terms"), [Ml, F, S]. (This
type of Schwinger terms were derived perturbatively in the case of an abelian
vector potential in [J].) For this reason one has to go from the Fock space to a
bigger space; the Fock space is simply not invariant under gauge transformations.
In [MR] a study of the representations of the appropriate extension GL2 of GL2

was initiated. A linear representation of GL2 was constructed in the space of
sections of a complex line bundle DETf over an infinite-dimensional Grass-
mannian Gr2. The space contains the Fock space (= the space of holomorphic
sections) as a (non-invariant) subspace. However, the question whether there is an
invariant inner product in the representation space was left open.

This paper grew out from an effort to construct an invariant inner product in
the space Γ of sections of DETf . In that respect the result is negative: We prove
that there does not exist any non-trivial hermitian representation of the Lie
algebra of GL2 such that the energy is bounded below (Proposition 3.21). The best
we can do is to define the topology of the space of sections with a countable family
of semi-definite inner products. We analyze the structure of the space Γ and we
show how it decomposes to "highest weight" representations of the infinite-
dimensional general linear Lie algebra gl(oo). These are not highest weight
representations in the standard terminology since we are using a "triangular
splitting" of the Lie algebra which differs from the standard splitting to upper
triangular, diagonal and lower triangular matrices, hence the quotation marks.
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We need some notions and results from [MR]. The Grassmannian Gr2 is
defined as the homogeneous space GL2/JV, where N is the group of operators g
with c = Q. The points on the Grassmannian are infinite-dimensional planes
W = g Ή+ with the properties i) the orthogonal projection W-+H+ is a Fredholm
operator, and ii) the projection W->H_ is in /4. A Grassmannian plane W is
uniquely determined by a unitary hermitian operator F such that F\w = l and

ί F F \
When written in the block form F=[ n 12 the operators

Fί2,F2ί 6/4 and Flί — 1, F22 + 1 6/2. Fix an orthonormal basis e = {ef}ίeN of // + .
The Stίefel manifold St2 consists of all admissible basis of all Grassmann planes: a
basis w = {wJieN of PF is admissible if the matrix w+ defined by

prH^i= Σ (w+)^; (1.3)
jeN

is of the type 1 +k with fce/2. We denote by GL2 the group of all invertible
operators in H+ of the form l+/c, /ce/ 2. 77ιe determinant bundle DET2 is
St2 x (C/GL2, where the action of GL2 is defined by

(w, A) ί = (wί, Aω2(w + , ί)) . (1 .4)

Here ω2 is a cocycle for the right action of GL2 on St2 given by the formula
ω2(w + 5ί) = det2f exp( — tr(w+ — l)(f — l)), where det2ί is the renormalized deter-
minant which can be defined as the limit n->oo of detίw exp( — tr(ίn — 1)) for any
sequence {tn} of operators in 1 +/ x such that ίn-> ί in the /2 topology. The action of
ί on w is defined by wj = X w^, the matrix elements tjt being defined with respect to
the basis e.

The action of GL2 on Gr2 cannot be lifted to a (projective) action on the total
space of the bundle DET2. Instead, one has to define an extension GL2 of GL2 by
an infinite-dimensional abelian normal subgroup A2 which acts on DET2. The
group A2 consists of all functions exp(^ + trξ(F — ε)) on Gr2, where ^e(C and

ξ= ( n 12 I is any linear operator in //+©//_ such that ^n ?^ 22 6^2 an<^
\S21 S22/

ξ21, ξ12 e /4/3. The action of an element / of ̂ 42 in the fiber of DET2 over W is given
by multiplication by f(W). As a vector space the Lie algebra g/2 of GL2 is the sum
of the Lie algebra g!2 with the abelian Lie algebra α2 the latter is the sum of (C with
the vector space consisting of operators of the form ξ above. The commutators are

where the commutator [X, 7] is the usual operator commutator, X -/denotes the
Lie derivative of the function / to the direction of the vector field X (generated by
the natural action of GL2 on Gr2) and c2 is a two-cocycle defined by

c2(X,y;F) = itr[[Z,ε],[y,ε]](F-ε). (1.6)

Iff(W) = η + tτξ(FΓε)9 then (X f)(W) = η' + tτξ'(F-ε) with η' = M\X,ζ\κ and
ξ' = [X, ζ]. Since GL2 acts on DET2, it acts naturally on the space of sections of the
dual bundle DETf . The important difference when compared to the 1 -f 1
dimensional case is that the space of holomorphic sections is not invariant under
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the group GL2. In the 1 + 1 dimensional case the space of holomorphic square
integrable sections can be identified as the Fock space of the second quantized
Dirac field [PS, Pi]. In the 3 + 1 dimensional case the representation of the current
algebra cannot be defined in the Fock space. The vacuum vector is the
holomorphic section φ(w)^det2w + , but a section obtained from ιp0 by the group
action is in general not holomorphic. Any section can be thought of as a
equivariant function on St2 satisfying ψ(wt) = ιp(w)ω(w + ,t) for ίeGL2.

In Sect. 2 we shall discuss some aspects of the representation theory of finite-
dimensional linear groups and their extensions by abelian ideals using the Mackey
theory of induced representations. The results will be used in Sect. 3, where we
shall study the decomposition of the representation of g/2 in Γ into highest weight
representations of the subalgebra gl(oo) of g/2.

In Sect. 4 we discuss the structure of the Hubert space for the fully quantized
Dirac- Yang-Mills system. The space consists of sections of a vector bundle B over
the space s$ of smooth vector potentials in the 3 dimensional physical space. To
each vector potential A one associates the fermionic vector space Bw consisting of
sections of the line bundle DETf defined using the Dirac operator DA. The space
£0 can be embedded into the Grassmannian Gr2 and the bundle B can be extended
to a vector bundle over Gr2. The vacuum sector Vac of B is twisted and there is no
continuous choice of the vacuum ιpw e Bw for all We Gr2. One has to introduce a
ghost field. Mathematically this means that one has to tensor the bundle B with the
line bundle DET2. The new bundle B has a continuously defined vacuum at each
point WeGΐ2 Furthermore, the vacuum is gauge invariant (invariant under the
group GL2) and the commutator anomalies for g!2 arising from the action in the
fibers of the bundle B and the action on DET2 cancel each other. Thus we have a
true representation of GL2 on sections of B. The Fock space ^WCBW at WeGΐ2

consists of holomorphic sections of DET*. The Fock bundle ̂  over Gr2 is not
invariant under the action of GL2 but the modified Fock bundle 3F = JΓ(x)DET2 is
invariant and Vac is a holomorphic subbundle of 3F . The holomorphic structures
in line bundles over Grassmannians appear here in a similar way as in the
cancellation of diffeomorphism anomalies in string theory, [BR, M2].

2. Some Facts about Representations of Finite-Dimensional Linear Groups

Let GL(JV) denote the group of invertible N x N complex matrices and U(N) the
subgroup of unitary matrices. Denote by etj the matrix with all entries = 0 except
the element at the position (ij) which is equal to one. We shall denote Lie algebras
by lower case boldface letters. A Cartan subalgebra h of gl(JV) is spanned by the
elements ew We shall consider especially the groups GL(27V), and for reasons which
shall become clear in the next section we shall index a basis in C2]V by non-zero
integers in the range —N^i^N.An irreducible finite-dimensional representation
of GL(2N) is characterized (up to an equivalence) by the highest weight
λ = (λί,λ2, ...9λN)λ-N,λ-N+l9 . . . ,/Lj), where the /lz 's are all integers and form a
non-increasing sequence from left to right. Let k+ be the subalgebra of gl(2AΓ)
spanned by the generators

ipe.jt-i with 0<i<j^N; ei^j with ij>0, (2.1)
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and let k_ be the subalgebra spanned by

βfl,e~i -j with 0<i<j^N; e-ij with ij>® (2.2)

Let V(λ) denote the representation space. There is a unique (up to a complex factor)
highest weight vector x(λ) such that

fc + x(Λ,) = 0, eiίx(λ) = λix(λ). (2.3)

The choice of the splitting gl(2iV) = k + φh®k_ may appear a little strange, but the
motivation is clarified in the next section.

An irreducible representation λ of GL(2N) decomposes to a direct sum of
irreducible representations of the subgroup GL(2N — 1) consisting of matrices with
Aίι = \,Aiί = Aiι=Qϊoτi φ 1. The highest weights λ2N~1 of gl(2JV — 1) which occur
in the reduction are those which satisfy the inequalities λί^λlN~l^λ2

^^i^"1^ ... ̂ ^_ 2^λl^~ 1=^-i5 each °f Λese representations λ2N~l occur
with multiplicity = 1 in the reduction. Thus with the help of the subgroup chain
GL(1) C GL(2) C ... C GL(2N) one can label a basis in the representation space V(λ).
A Gelfand-Zetlin pattern (λ{) consists of rows of integers λ\, where the row index
1 ̂ j ̂  2N refers to the subgroups GL(j), each row being a highest weight of an
irreducible representation of the corresponding subgroup, the top row is λfN = λι,
and the allowed values in the jth row are obtained by inequalities similar to those
above from the values the /Γs in the (/' + l)th row (see Fig. 1); each λ{ is between the
two /I's immediately above. To each Gelfand-Zetlin pattern there corresponds a
vector in a basis of V(λ). One can define an inner product in V(λ) such that the basis
labelled by the GZ patterns is orthonormal. The representation of the subgroup
U(2N) is unitary with respect to this inner product. Furthermore, the restriction to
U(2N) is irreducible.

Fig. 1. Gelfand-Zetlin pattern for the reduction L7(2JV)D t/(2IV-l)D... } 17(1)

We need also some information about the reduction of a representation λ of
GL(2N) to the subgroup GL(N}+ x GL(JV)_, where the first subgroup transforms
only the components of a vector in (C2jv with positive indices and the second with
negative indices. Suppose first that A _ 1 ^ 0 . (In this case λ^O Vi.) There is a
graphical rule which tells us which of the representations μ x v of GL(N} +

x GL(JV)- occur in the reduction, [L, R]. Namely, draw a diagram containing μ^
boxes in the first (top) row, μ2 boxes in the second row, ...,μN boxes in the last
(bottom) row (see Fig. 2). Add to the ends of the rows first v _ N boxes labelled by 1,
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Fig. 2. Pattern for computing the multiplicities mλ

μv

then v_N+l boxes labelled by 2,..., finally v _ j boxes labelled by N, where v _ N

^ v _ N + 1 ^ . . . ^ v _ 1 , μ 1 ^ μ 2 ^ . . ^μ#, with the following restrictions: A) No label
should occur twice in the same column, B) At each step the lengths of the rows in
the diagram should form a non-increasing sequence, from top to bottom, C) When
reading from the right to the left and from the top to the bottom, at each step the
number of Γs should be ^ the number of 2's ^ ... ̂  the number of N's. The
number of different ways how the box diagram with the row lengths
(Λ,1? λ2, , /--1) can be obtained from the data (μ, v) is equal to the multiplicity mλ

μv

of the representation μ x v of GL(N)+ x GL(JV)- in λ. Obviously a necessary
condition for m*v φ 0 is Σ Λ = Σ fa + Σ vί The general case (when some of the //s
may be negative) is obtained by noting that the multiplicity of μ x v in λ is equal to
the multiplicity of μ' x v' in λ'9 where μ'i = μi — λN, v = v, — λN, λ'—λ^-λ^.

We shall need the multiplicities when μ = (1,1,..., 1) and v = (0,0,..., 0). Using
the graphical rules one arrives at the following result:

Lemma 2.1. — 0 or — 1 and the non-zero values occur when λ-l — \ for

Let Gr(JV) be the Grassmannian of JV-dimensional complex planes in the space
(C2/v. Define the maps ftj : Gr(JV)-»(C by ///F) = tr etjF, where we have parametrized
the JV-planes W in C2N by unitary hermitian 2N x 2N matrices F such that Fz = z
for zεW and Fz=—z for zeWλ. The group U(2N) acts on the functions
/:Gr(AO-»(C by ( g - f ) ( F ) ^ f ( g ^ ί F g ) . In particular,

k, i

We define U(2N) as the semidirect product of U(N) and the abelian group UA(N)
consisting of maps exp(^ + Σ ζijfij)-* where η e zΊR, (ξίV) is an antihermitian 2N x 2JV
matrix and the multiplication in UA(N) is defined pointwise. The complexification
GL(2N} = GL(2N}xA(N] is defined by letting η,ξ be arbitrary.

For each complex 27V x 2N matrix σ we define a one-dimensional represent-
ation ρσ oϊA(N) by ρσ(εxp(η + J] £ij/u)) = exp(/? + ttσξ). The group GL(2N) acts on
the parameter σ in the dual oϊA(N) through σ\-^g~1σg. The stability subgroup of
GL(2N) at the point σ = iε,

(N times 1 and N times — 1 ) is GL(N) + x GL(N) _ . We fix the representation μ x v of
the stability group by setting μt = 1 and v = 0. Let D denote the representation
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(g4,,g_,/z)h-»detg + ρiε(h) of the semidirect product (GL(N)+ x GL(N).)xA(N)
and let T be the representation of Gί(2N) induced by the representation D.
According to the Mackey theory the representation T is irreducible. From the
Mackey subgroup theorem it follows that an irreducible representation λ of
GL(2N) occurs in the representation T with equal multiplicity m£v as the
representation μ x v oϊGL(N) + x GL(JV)_ occurs in the reduction of the represent-
ation λ to the subgroup GL(N)+ x GL(JV)__.

The restriction of T to the subgroup U(2N) x UA(N) is unitarizible. The
Hubert space V which carries the representation T consists of the square-
integrable sections of the dual determinant bundle DET* over the Grassmannian
Gr(ΛΓ). The sections of DET* are by definition functions ψ on GL(2N) which satisfy
the condition

ψ(gί) = φ(g)detα for t=Γ b\ (2.5)

where α, b, d are N x N matrices. Equivalently, a section is a function ψ : U(2N)-+<C
such that the above relation holds for all unitary matrices g, ί. The inner product of
two sections ψ, ψ' is given by

<φ,t//> = j ψip'dm,
Gr(N)

where dm is the U(2N) invariant measure on Gr(Λ7). The vacuum vector is the

section ψ0(g) = dQta, where g= ( I . In the reduction of the representation T
\c a)

with respect to the subgroup U(N)+ x U(N). this is the vector (unique up to a
constant) which transforms according to the one-dimensional representation
μxv. Since the representation T is irreducible, a complete basis in V can be
obtained by applying the elements of the enveloping algebra ^(gl(2JV)) to the
vacuum. We shall now describe in detail how an orthonormal basis is constructed.
In fact, it is sufficient to construct an orthonormal basis in the subspace
V+ = {x e F|k + x = 0} of highest weight vectors for the subalgebra gl(2JV). Namely,
one can apply the known methods (lowering operator technique, for example)
from the theory of finite-dimensional representations of unitary groups to obtain a
basis inside of each representation of gl(2JV) labelled by the highest weight λ. To
obtain a basis in F+ we apply the theory of step algebras (which is a generalization
of the lowering operator technique [NM]), [M3, H, Z]. For each pair of indices
— N^iJ^N there is an element stj in the enveloping algebra of gl(2JV) such that

V z e k + . (2.6)

From the second relation it follows that V+ is invariant under the action of the
elements stj. From the general theory of step algebras follows that any element of
V+ can be written as a polynomial in the elements stj acting on the vacuum vector
ψ. Since the only representations λ of U(2N) which have non-zero multiplicity
satisfy λf + /L — l, the action of the operators stj with iφ —j gives zero. Thus a
basis in V+ is given by the vectors

7- »?:-!«!?- 2- sft
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where the non-negative integers pi are related to the highest weight by λt = pt 4-1
= — Λ.- i+l for ί=l,2, ...,N. The C/s are normalization constants. The vectors
ψ(λ) corresponding to different /Γs are orthogonal to each other since they are
eigenvectors of the hermitian generators eti. From [M4] we obtain the following
formula for the operators sίt _ f :

i - 1

Σ Σ
W k > μ f c - ι > . . . > μ ι = l v ι> v i - i > ...> v i = -i

Π
\J

ί-1

Π f -
- i+l

where ttj = e f ί — e^ -M — j — 1. Note that because of cancellations the operator s f > _ f is
in fact a polynomial in the elements ίmj .

Let θ be the antilinear antiautomorphism of ^(gl(2JV) + a(JV)) defined by
θ(eij) = eji and θ(fij) = fji. The inner product in F satisfies

Oφ0, ι;φ0> - <ψ0, θ(u)ι;ιpo>

(by unitarity relations for the subgroup U(2N) x UA(N)cGL(2N)} x A(N). This
allows in principle a determination of the normalization coefficients Cλ. However,
things get very complicated pretty soon by increasing the exponents pt and we do
not have a closed formula, valid for all /I's.

3. Highest Weight Representations of the Extension GL2

Let Γ denote the space of all smooth sections of the dual determinant bundle
DETf. By definition, a section of DETf is a smooth function ip: St2-»C such that

φ(wί) = ψ(w)ω(w + ,ί) ίeGL 2 . (3.1)

We shall use the metric constructed in [MR] for the bundle DET2. If (w,/l)
represent a point in DET2, then the length of (w, λ) is equal to \λ\ /(w), where

(This is not quite the formula given in [MR] because a different cocycle ω was used
there.) We have to check three things:

1) The hermitian part of the operator in the exponent is really a trace class
operator: We can write w+ = 1 +A, where AeI2. Then

which is in/!. Thus we have to show only that ||F21|
2 — |w_ | 2 is in / t. In [MR] it

was shown that |F 2 1 —w_ =w_J5, where BεI2. Thus

since F21 and vv_ are in /4. This completes the proof of 1).



Dirac- Yang-Mills Theory 269

2) We have to show that |(w,/l)| = |(wί,lω2(w + ,ί)~1)| for ίeGL2. But this is
equivalent to

|̂ Hω2(w + ,ί)|, (3.3)

which can be checked through a simple computation.
3) The function / is strictly positive; this is obvious from the definition.
For each N e N we shall consider GL(2N) as a subgroup of GL2 by extending

A e GL(2N) to an infinite matrix such that Atj — dtj = 0 for \i\>N and |j| > N. Since
the Grassmannian Gr(N) is the quotient of GL(2N) by the subgroup of triangular

matrices ( 7 I , the embedding GL(2N) C GL2 defines also an embedding
\0 dj

Gr(]V)cGr2. Similarly the finite-dimensional Stiefel manifold St(JV) can be
embedded into the space St2 of admissible basis in Gr2. We denote by ψ(N) the
restriction of ψ e Γ to the submanifold St(JV). For each N we can define a positive
semi-definite inner product in Γ by

<V,V'>N= ί v/NV™/(wΓ2dro, (3.4)
Gr(JV)

where dm is the normalized invariant measure on Gr(JV). The integrand does not
depend on the basis w but only on the corresponding point on Gr(JV); this is a
consequence of (3.3). The formula (3.4) defines a positive definite inner product in
the space of sections of the determinant bundle over Gr(JV). Since the definition of
a section over Gr(ΛΓ) differs from the the description in (2.5) this point needs some
clarification.

In the finite-dimensional case we can write

, β(w + )-e-irw+. (3.5)
P(w + )

To a section φ(AΓ) over Gr(N) we can associate a function φ : [7(2JV)->C by

, ( f f } l y
Φ( λ =Ψ( ΛV)β(w + ) le8 2 , (3.6)

where w+ =α, w _ =c, and F21 = 2w_w^ =2ca*. Then

for ί= °W(2N), (3.7)

and therefore φ is a section in the sense of (2.5). Furthermore, if φ' corresponds to
ιpf(N\ then

<φ(ΛV(Λ%= ί Φfrfm. (3.8)
Gr(7V)

The formula above follows directly from (3.2) by observing that |w + 12 + |w_ |2 = 1 in
the unitary case.

We shall study the action of an abelian extension U2 of the unitary subgroup
C/2 of GL2 in Γ. Let (g, q, λ) be a triple such that geU2,qE GL2 n [7(H + ) = U2 and A
is a smooth function on Gr2 satisfying
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where w is any admissible basis at F e Gr2, [MR]. The action on φ e Γ is defined by

(T(g, g, X)φ) (w) - ιp(g" 1 wq) λ(g~ 1 F) α(g, <?; g~ 1 we/)" l ,

The elements (1 , g, (det 2 4 ~ *) ~ ] ), where q e U2 act trivially in Γ and the group U2 is
the quotient of the group of all triples (g, q, λ) modulo the subgroup consisting of
the elements (1, q, (det2g~ 1)~ *). Since already the smaller group consisting of the
triples (g, g, λ) with

-i ilI + t r ί (F_e)> _ ξ ^ ξ f l 2 /4/3

W V 4 / 3 ;2

acts in Γ we shall restrict the definition of U2 to these elements. The condition (3.9)
guarantees that the action of U2 preserves the metric, i.e.

|(gw^-1,α(g,^w)^(F))| = |(w,l)|. (3.11)

if we had an U2 invariant measure dm on the infinite-dimensional Grassmannian
Gr2, then (3.11) would imply that the following inner product in Γ would be
invariant under the action of U2:

(ψ,ψfy= j ψψ'l(w)~2dm. (3.12)
012

Since such a measure is not known (in contrast to the case of Gr l 5 see [Pi]) we shall
use only the topology determined by the family < - , - > * of semi-definite inner
products; the inner product < , }N is invariant under those elements of U2 which
are represented by triples (g, q, λ) such that g e U(2N).

As a vector space the Lie algebra u2 of U2 is a direct sum of the vector space u2

and the vector space consisting of the pairs (η, ξ) above. We shall extend the
representation of u2 in Γ (corresponding to the group representation T) by
complex linearity to a representation of the complex Lie algebra g/ 2; this latter
algebra is a direct sum of the vector spaces g!2 and the space consisting of the
(η, ζ)'s with η E (C and ξ an arbitrary complex matrix such that the diagonal blocks
are in I 2 and the off-diagonal blocks in /4/3. The commutation relations are given
by (1.5). In the Weyl basis (e^f^ we have

Oij> eki] = δjkCii ~ δuekj + c2(eip ekl) , (3.13)

where the cocycle c2 is defined by

^fc/ii-i^Λj + ̂ A. ij>0>kj

} = 2 δjkfii ~ 2 δnfkj - Win kJ > 0 > U

[0, otherwise,

The functions f^ commute among themselves but

leififul-δjJu-δuftj. (3.14)

The hermiticity relations following from the unitarity properties of the group
action are

<Ψ,eίψ">N = <elψ,ψ'yN for \i, \j\ZN (3.15)
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and fo is the hermitian conjugate of ftj with respect to any of the inner products

< , v
As in the finite-dimensional case we define the Cartan subalgebra hcg!2

spanned by the generators eίi9 0 φ i e TL and the "triangular" subalgebra k + spanned
by the vectors eit _ j with ij > 0 and by eip £ -7 , - f with 0 < i <j. The subalgebra k _ is
the complement of h0k+ in g!2. This is not the standard splitting; the latter is
defined by the basis eit _ 7 with ij > 0 and ejb e - i, - ; with 0 < i <j of the subalgebra
k + . These two splittings are not connected by any inner automorphism.

According to [MR] the space Γ contains a (unique up to a multiplicative
constant) vacuum vector φ0 which is characterized by the property that

eijψo = e-it-jψ0 = eit-j'ψ0 = Q (3 16)

for all ij > 0. in particular, k + φ0 = 0. Explicitly, φ0(
w) = det2 w + , which shows that

φ0 is in fact a holomorphic section of DET*. Define a set of new elements in g!2 by

(3.17)

otherwise.

From (3.13) and (3.14) we get

K^J-Vί/"^/- (3.18)

Thus the elements e'ti generate the Lie algebra gl(oo) consisting of all finite linear
combinations of the primed vectors. We define the operators sj ; in the enveloping
algebra of g!2 as in the finite-dimensional case except that the generators etj are
replaced by the generators β j. From the commutation relations (3.18) if follows
that the modified operators s'^ satisfy the relations (2.6). (Note that the e^s satisfy
the same commutation relations with the /k/s as the generators e^.) Thus the
following vectors are annihilated by k+ =k+ :

where the weight λ e h* is given by λ{ = pf = — A _ , for 1 g i ̂  N and λ{ — 0 for |/ | > N;
λι is the eigenvalue of eu.

Let us define the g!2 invariant subspace of algebraic sections Γalg = ̂ (^2)ψo C >Γ^
Denote by k'_ the Lie algebra spanned by the vectors e'^ with e f j e k _ . The
following proposition gives a decomposition of Γ into representations of the Lie
algebra gl(oo). Note that the vectors ψ(λ) are not extremal vectors in a highest
weight representation of gl(oo) in the normal sense since our k'+ does not define a
triangular splitting equivalent to the standard splitting to upper and lower-
triangular matrices in gl(oo).

Theorem 3.19. The direct sum V of the subspaces ^(ί'_)ψ(λ) is dense in Γalg with

respect to the topology defined by the seminorms \\Ψ\\N~ ]/(ψι Φ)N« Here the weight
λruns through all the values such that λ, = — / L _ t , λ± ̂ /2^ ••• and λt = 0 when |i|>0.

Proof. Let φ e Γalg. The mapping ψ h-> ψ(N} maps Γalg surjectively to the space of
algebraic sections over the finite-dimensional submanifold Gr(N), that is, onto the
space of sections <%(gl(2N))ψ(Q\ In the case of gl(2JV) we know that the space



272 J. Mickelsson

^(g/(2iV))tp0 decomposes to a sum of subspaces of the type <^(k_)φ(λ). It follows
that there is an element φNεV such that the restriction φffl is equal to φ(N\ But this
means that

= V, for

so that lim \\Φ — ΦN\\M^® for a^ M. D
N—>• CO

Suppose that the basis vectors ei in L2(5) are eigenvectors of the Dirac
Hamiltonian ffl = £ αkDk(y4) -h y0

m on a 3-dimensional spin manifold; A is a vector
potential corresponding to a compact gauge group G acting on the internal
symmetry indices of the Dirac spinor. Let εf be the eigenvalue of Jf associated to et.
We assume that the basis is labelled in such a way that . . . ε 2 ^ ^ ι < 0 ^ ε _ 1 ^ ε _ 2 . . . .
The second quantized Hamiltonian acting in Γ is then

3ί?=Σεieii (3 2°)

The vacuum φ0 is an eigenvector with eigenvalue 0. However, the representation
theory of GL2 differs from the representation theory of linear groups associated to
gauge groups in 1 + 1 dimensional quantum field theory in an essential way: The
highest weight vector ψ0 is not a vector of lowest energy! The second quantized
Hamiltonian is not even bounded below! This property is not restricted to the
representation in Γ but it is much more general; we shall here give a proof for any
unitary Hubert space representation, but one can generalize this to the case of a
denumerable family of semi-definite inner products under suitable conditions on
the seminorms.

Proposition 3.21. Let a hermitian representation of gl2 be given in a vector space V
with positive definite inner product. Then there is no vector 0 φ v e V of lowest energy.

Proof. Assume that v is an eigenvector of ffl corresponding to the smallest
eigenvalue μ. If i ̂  0 >j, then ftjv is an eigenvector to the eigenvalue μ + εf — ε^ < μ,
and therefore ftjv = 0. Similarly, etjv = 0 for i ̂  0 >j. Now

since the /J/s commute among themselves. Thus also /}/!; = 0 for
Furthermore,

when k φ / ̂  0 and j < 0. Similarly,

for / c Φ / < 0 and;>0. Since fίi-fjj=[.eijjjί'] we have (fii-f.J)v = Q for i^
Since £ α fe f ί is in g/2 for any bounded sequence of numbers αί5 we know that

Σ αf<ί;, euvy converges (3.22)
for such a sequence.

Let α1 ?α2, ... be a sequence of complex numbers such that lαj 4

+ α2 |
4+ ... <oo. Now aie-ΐi is in §'
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where we have used the fact that (fii — f_it-i)v = Q. The first term on the right in
(3.23) converges by (3.22) but the second term diverges for a typical element in /4, a
contradiction. Π

4. The Second Quantized Coupled Dirac-Yang-Mills System

In a previous article [M2] we described a geometric formulation of string theory
when the background space is a compact group manifold and especially the role of
the homogeneous space ΌiffSi/S1 and its holomorphic structure. Here we want to
show how the same method can be used to describe the anomaly cancellation for
the second quantized Dirac-Yang-Mills system. Let us quickly recapitulate the
main idea of [M2]. We consider first a classical system whose phase space is the
group LG of smooth loops in G. The dynamics on LG is defined by the classical
Hamiltonian

I <f(ΦΓ1ff(Φlf(ΦΓlf(Φ)>dφ9 (4.1)
s1

where < , > is the Killing form of G and feLG. The symplectic form on LG is

(X, Y) = const x J (X(φ\ Yf(φ)y dφ, (4.2)
s1

where the tangent vectors on LG are thought of as maps from S1 to the Lie algebra
of G. The system is quantized by constructing a complex line bundle E with a
connection such that the curvature is equal to the symplectic form. The quantum
Hamiltonian H is the covariant Laplacian acting on sections of the line bundle E.
The operator H does not commute with the group DiffS1 which acts on the
holomorphic sections of the bundle E through the Sugawara construction.
Equivalently, the group DiffS1 does not leave invariant the metric and the normal
ordering prescription which are used to define the quantum Hamiltonian; only the
subgroup S1 commutes with H. Thus one is forced to consider a whole bundle B of
quantum systems parametrized by the manifold M = DiffS1/S1. The fiber of the
bundle B is the space of holomorphic sections of the bundle E. Strictly speaking,
the fiber is different at different points on the base space M, but the base is
topologically trivial, and therefore the bundle can be trivialized, that is, the
different fibers can be identified in a continuous manner. The group DiffS1 acts in
the bundle through the natural action on the base space and the Sugawara
construction in the fiber. Because of the central term in the Virasoro commutation
relations there is no invariant vacuum vector. This is reflected also as the non-
vanishing of the curvature of the bundle B. The curvature can be canceled by
tensoring B with a canonical holomorphic line bundle over M. The central term of
the Virasoro algebra acting on the sections of the new bundle vanishes and there is
a DiffS1 invariant vacuum.

Let M be a compact three dimensional spin manifold and D0 the Dirac
operator on M. We assume also that there is compact gauge group G acting on the
Dirac spinors, and we denote by A an associated vector potential which takes
values in the Lie algebra of G (for simplicity we assume that the vector bundle
where G lives is trivial). We denote by jtf the space of all smooth vector potentials
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A. Let DA denote the Dirac operator corresponding to the vector potential A. We
write the space H of square integrable Dirac spinors as a direct sum H = H + ©H _
of positive and negative energy subspaces with respect to the free Dirac operator
D0. We can define a similar decomposition H = H+(A)®H_(A) for each smooth
vector potential A. One can show slightly modifying the proof in [MR, Sect. 2],
that the difference DQ — DA has off-diagonal blocks, with respect to the decompo-
sition H = H+@H_, belonging to the Schatten ideal J4. From this follows easily
that the projection of H + (A) to H_ is in /4 and the projection H + (A)^H + is a
Fredholm operator. This means that the plane H+(A) is an element of the
Grassmannian Gr2 defined by the decomposition H = H+@)H_. The mapping
A h->• H+(A) is not quite continuous; it has a discontinuity at those points A where
one of the eigenvalues of the Dirac operator DA crosses the zero level. However,
this problem can be treated by the following observation, [Se]: Let α be any real
number, A a smooth vector potential and ^(α) the Fock space formed with
respect to the splitting of the spectrum of DA to the half-lines [α, oo[ and ] — oo, α[.
Then ^A(oc) and 3?A(β) are canonically isomorphic up to a multiplicative phase
factor.

Each point WeGΐ2 defines a fermionic vector space consisting of sections
Γ(W) of the bundle DET*(1¥); let B be the vector bundle with base Gr2 fiber Γ(W)
at We Gr2. The pull-back of the bundle B with respect to the mapping A\-+H + (A)
from jtf to Gr2 is the vector bundle needed for describing the interacting Dirac-
Yang-Mills system. However, it is more convenient to work with the bundle B than
with the pull-back because of the complications due to discontinuities mentioned
above (strictly speaking, the pull-back exists only as a bundle of projective
fermionic vector spaces).

Fix a point FKeGr2. As before we view sections ψeΓ(W) as equivariant
functions ψ: St2->(C,

ψ(wt) = tp(w) ω2(w, ί). (4.3)

Let {ej l > Obe a fixed basis in H + and define the matrix w + for each admissible basis
w with respect to e as explained in the introduction. The matrix w + is of the type
1 + a Hubert-Schmidt operator. The reader might object that we have now defined
the space of sections at the point W with respect to the reference frame at H + and
not with respect to a frame at W. This does not really make any difference for the
following reason: If {ej} is an admissible basis of W (with respect to the basis (ej),
then a basis {wt } of any Grassmannian plane is admissible with respect to {e^} if
and only if it is admissible with respect to {ej. The bundle B is topologically trivial,
B^BH x Gr2. However, the vacuum sector of B is non-trivial. The vacuum vector
in BH+ is the holomorphic section of Detf which can be characterized by either of
the following conditions:

(1) It is an eigenvector of $ corresponding to the (lowest) eigenvalue 0,
(2) it is projectively invariant under a certain triangular subgroup N of GL2.
The subgroup N is a homomorphic image of the subgroup of GL2 consisting of

the block triangular matrices τ , where the blocks of g are defined with
c d

respect to the decomposition H = H+@H_. The vacuum at W = H + is explicitly
given by the formula

φH+(w) = det 2 w + . (4.4)
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We define now the vacuum vector at W = gH+ to be the section ψw (unique, up to a
constant) which is projectively invariant under the group Nw which is defined
similarly as N but using the splitting L2(S) = W@ WL. In other words, the vacuum
at W=gH+ (where g can be chosen to be unitary) is the lowest energy section for
the quantization of the Hamiltonian gD0g~ ί. Note that the vacuum is the same for
all g's which differ from each other by a left multiplication by a unitary operator of

the type ( J so that the vacuum really depends only on the base point W and
\0 dj

not of the operator g.
Let Vac denote the vacuum bundle; by definition, Vac is the complex line

bundle over Gr2 such that the fiber at WE Gr2 is the complex line in Bw spanned by
the vacuum vector.

The subbundle VacCB is not invariant under the action of GL2. Namely, let
WE Gr2 be arbitrary and ψ e Vac^. The action of an element of GL2 on a section of
DETf is given by the formula ψ t-» φ',

ψ'(w) = μ(g~1 F)~l α(g, q;g~1wq)~1 ψ(g~lwq) , (4.5)

where g= ( . , μ is an arbitrary function on Gr2, q is a linear operator such
\c dj

that aq l — 1 is in 72 and α is the cocycle defined in (3.10). The section ψ' is not
even holomorphic because of the non-holomorphic factor α. The situation differs in
this respect from the 1+1 dimensional case. In that case one can put % = Q and
the relevant (central) extension of GLί acts in Vac. However, there also Vac is
twisted and there does not exist any non-zero section invariant under GL t.

In order to define an invariant vacuum we shall proceed as in the string
theoretic example. We shall define a new bundle B as the tensor product of the
Fock bundle B with the line bundle Det2. The sections of the bundle B can be
considered as maps ψ : St2 x St2-»C such that

ψ(ws, ft) = ψ(w, f) ω( w + , s) ω(/+ , f~ * ) , (4.6)

for all w, / e St2 and s, t e GL2. For each fixed / e St2 the function wh-»φ(w, /) gives
an element in the fiber Bw over the base point W=pr(w)eGΐ2 In order to make
the structure of the bundle B a bit more transparent we shall redefine the cocycle in
(4.6) using the mapping \p h-> ψ', φ'(w, /) = tp(w, /) exp(tr(/+ — w£ — 1 + w+)), where
for any w, / e St2 w ζ. denotes the matrix defined by

j

In particular, w + is the same as w + . The primed functions satisfy the conditions

φ'(wί, /) - ιp'(w, /) ω(w £ , ί), V>'(w, ft) = ψf(w, f) ω(w ζ. , ί ~ 1 ) . (4.8)

Here the cocycle defining the space BwatW = pr(f) is fixed "relative to the frame of
reference" /. For different frames / at the same base point W the spaces are
isomorphic but not naturally isomorphic. Note that ψ' is invariant under
simultaneous right multiplication of w and / by an element teGL2. After this
redefinition of the wave functions we shall drop the primes.
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In the bundle B the vacuum line bundle is trivial. A global everywhere non-
vanishing section is

V>0(w,/) = det2wί. (4.9)

Of course, ιp0 has zeros as a function of the two variables w and /, but as a section
of B it is everywhere non-vanishing since at no point / the map w i— > ψ0(w, /) is the

zero function. An element g = I \e GL2 acts on the sections of the bundle B by
\c dj

(g ψ)(w,/) = φ(g-1wς[,g-1/ς[), (4.10)

where q is any operator such that aq~l — 1 e/2. The right-hand-side does not
depend on the choice of q, since φ(wί,/t) = ι/;(w,/) for f e GL2. The matrix w{. is
invariant under simultaneous action of (g, q) on w, /, and therefore gψ0 = ψQ for all

As we have remarked, the space of holomorphic sections of DETf is not
invariant under the action of the group GL2. Let us define the Fock bundle &* C B as
the vector bundle over Gr2 such that the fiber at the point W consists of the
holomorphic sections of the bundle DETJ. The modified Fock bundle is
3F = 2?® DET2, and it contains as a subbundle the vacuum line bundle Vac. The
sections of the bundle 3F form the space of states for the quantized Dirac- Yang-
Mills system.

For each sequence (ί) = (iι,i2>h> •••) °f integers such that the sets N\(i) and
— Nn(i) are finite we define a holomorphic section of DETf by the formula

V?(ί)(\v) - det2 w(z) etτ (vv(0 ~ v v + }, (4.1

where w(z) is the matrix obtained from the TL x N matrix by selecting theV w _ y
rows labelled by the integers (i). In particular, when (i) = N, we get φ(ί)(w) = det2 w +.
We define an inner product in the space of holomorphic sections of DETf by
declaring that the vectors ψ(ί) form an orthonormal system.

We can now define a fiber metric in 3F such that the functions Ψ(ί)(w,/)
= det2w^(ι) form an orthonormal system of sections of 3F. If we had a
(quasi) in variant measure am on the Grassmannian Gr2 we could now define an
inner product in the space of square integrable sections by setting

<Σ«ΛΣ0Λ> = ί Σ^β^dm,
Gr2

where α ( f ) and β(i^ are measurable functions on Gr2. There is a quasi-invariant
measure on the Grassmannian Grj modelled by Hubert-Schmidt operators [Pi];
however, it is not clear whether one can generalize the approach of [Pi] to the case
of Gr2.
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