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Abstract. We discuss the exchange algebra of light-cone operators as the
fundamental structure of two-dimensional conformal quantum field theory. It is
necessary in order to account for the locality properties of Wightman functions
of conformal fields. We discuss the consistency requirements of this new type of
algebra, and obtain a classification containing the well known "minimal
models".

1. Introduction

Belavin, Polyakov, Zamolodchikov [1] have classified conformal quantum field
theories in two dimensions, which contain only a finite number of "primary" fields.
They introduced an algorithm, based on Ward identities associated with the
Euclidean conformal invariance, in order to calculate correlations as solutions to
certain differential equations.

Let us concentrate on a peculiar feature of these «-point functions. They have
the factorized structure of a bilinear form in so-called conformal block functions
depending on the coordinates of one light-cone only. It appears as a little miracle
that these blocks can be combined in such a manner, that the full rc-point function
satisfies the requirements of locality. The reason lies in remarkable functional
properties of the conformal block functions.

The aim of the present study is to identify the relevant operator algebra which
lies at the origin of these properties [2]. The operators involved in this "exchange
algebra" are intertwining light-cone operators interpolating between different
representation sectors of the Virasoro algebra. The study of the intertwining
operators should be most important for the understanding of the highly nontrivial
interrelations among the Rocha-Caridi characters [3] of different Virasoro Verma
modules. These interrelations are essential for the existence of modular invariant
partition functions [4]. The existence of interpolating fields is no completely new
issue. Actually they have been discussed in the old days of conformal invariance in
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order to resolve the causality problem associated with the transition from Euclidean
to Minkowski conformal quantum field theory [5].

In Sect. 2 we discuss the analytic continuation properties of conformal block
functions necessary to satisfy the requirement of locality in the full «-point function.
In Sect. 3 we review the origin of light-cone factorization of local /i-point functions
in terms of global vacuum expansions of operator products of conformal
Minkowski fields. We introduce intertwining light-cone operators and the exchange
algebra they fulfill, thus explaining at a more fundamental level the analytic
properties of conformal blocks. In Sect. 4 we discuss the associativity of exchange
algebras and obtain a (partial) classification of such algebras, which are related with
known models in Sect. 5.

On more general grounds (e.g. considering non-observable fields like soliton
operators, which are nonlocal relative to each other), a bilinear operator algebra
relating different operator orderings by means of some "statistics matrix" has been
discussed independently by Frohlich [6]. His analysis of associativity leads to the
same type of conditions (intimately related with the Yang-Baxter equation and
"braid groups") on the statistics matrices, as ours on the exchange matrices.
Frδhlich's concept applies to non-conformal quantum field theory (statistical
mechanics) as well, where clearly the peculiar features of light-cone factorization are
absent. It is only due to the latter that the (anti-)commutation of local observables
can be discussed in terms of more fundamental non-trivial algebras of relatively
nonlocal "constituent" fields (i.e. exchange algebras of light-cone fields).

2. Analytic Continuation of Conformal Blocks

In the Euclidean formalism of ref. [1] it has been derived from conformal Ward
identities that a correlation function of primary fields solves a set of real linear
differential equations. These are equations in the light-cone variables of either light-
cone separately. Hence the most general structure of a local «-point function is

(Φ1(x1)...Φn(xn)>= Σ FMUv)^{F'F) , (1)
α = l

where r denotes the number of independent solutions to these differential equations.
We shall in the next section sketch the argument explaining the structure of Eq. (1)
in a formalism applying directly to local fields in Minkowski space.

In Eq. (1), u(v) denote all light-cone variables of the u = x + t (v = x — t) light-
cone and Fa(μ) (Fa(v)) are the solutions to the u(v) differential equations. Except for
some appropriate common factors ΠufjiJ{Πvδ^iJ\ where uij = ui—uj (vίj = vi—vj),
these functions depend only on anharmonic ratios of light-cone variables. Except
for a common overall complex phase factor depending on the statistics of the fields
involved, they are real in the ordered regions Uι>ui + ί9 Vi>vi + ί of their respective
arguments. With a slight abuse of the notion introduced in [1 ] we shall refer to Fa(u)
and Fa(v) as conformal block functions.

How can this structure be compatible with locality of quantum fields in
Minkowski space ? Consider the case Φi = Φi + 1 = Φ. Compare
<... Φ(xi)Φ(xi + 1) ...> with <... Φ(xi + 1)Φ(xi)...}. The latter can be obtained from
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the former by analytic continuation from the configuration point (... ,xi9xi + ί9...)
to the permuted point (...9xi + ί9xi9...) with appropriate zε-prescriptions for the
variables uii + 1 and vii + 1 of the functions Fa and Fa. On the other hand, locality
requires that the full ft-point function does not change under the exchange xi + ί<r-^χi

if uii + 1vii + 1 = —(Xi—xi + 1)
2>0. This requirement is compatible with the light-cone

factorized structure of the «-point function only if under analytic continuation

F Λ ( . . . u i + ί , u i . . . ) = η Σ A a β F β ( . . . u i , u i + ί . . . ) f o r u i i + 1 > 0 ,
β

F*(. .Vi + ί,vi...) = ήΣBaβFβ(...vi9vi + ί...) for ι>ii + 1 > 0 (2)

and β

BτA = ίr . (3)

The phase factors η = e2πid anάή—e~2πiJ, where d, dare the light-cone dimensions of
the field Φ, have been split off for convenience. For bosonic fields they cancel each
other under simultaneous analytic continuation on both light-cones, i.e. analytic
continuation in the Minkowski variables. For fermionic fields they account for the
anticommutation minus sign.

As long as Eq. (3) holds, the matrices A and B relevant for the exchange of
xί+1<->Xi cannot depend on the coordinates: A, describing the analytic continua-
tion of some functions of the w's, can depend only on the w's, and B can depend only
on the i 's; then B = (A~1)T implies that they are both constant matrices.

Equation (3) ceases to hold if either uii + 1 or vii + 1 changes sign; then the
separation of the two Minkowski points is no longer space-like. It holds again if
both uu +1 a n d Vu +1 are negative. Thus A and B may depend on the signs of uu + i and
vii + 1 respectively.

By definition, Fα(... ui + uut,...) is the analytic continuation of
Fα(...,Ui,ui + ί,...) such that the new value ut of the right-hand argument (wf + x of the
left-hand argument) is approached from the upper (lower) complex half-plane.
Thus, for uii + ι > 0, ut and ui + 1 surround each other with clockwise orientation. For
uii + 1 < 0, the orientation is reversed, hence the analytic continuation is described by
the inverse matrices

F Λ ( . . . u i + ί , u i . . . ) = η - ί Σ ( A - 1 ) α β F β ( . . . u i 9 u i + ι . . . ) f o r u i i + 1 < 0 ,
β

F α ( . . . υ i + l 9 v i . . . ) = ή - 1 Σ ( B - % F β ( . . . v i , v i + 1 . . . ) f o r i ; j ί + 1 < 0 . ( 2 )

β

Since Fα and Fα are real functions (except for a common phase) in the ordered
region of their arguments, we must have

A~1=A* and B^^B* . (4)

If Φ is a hermitian, scalar field, Fα and Fα coincide in the ordered region of their
arguments, but are taken on different Riemann sheets outside, since the iε-
prescription on the v light-cone is opposite to that on the u light-cone. In that case we
have in addition:

B = A* , (5)

which implies together with Eqs. (3), (4) that A is a symmetric unitary matrix.
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The effect of the various light-cone exchange operations on an rc-point function
can be visualized by the following diagram:

The analytic continuation from a space-like separation x to —x takes (FF) into
(FA 1 AF) = (F - F), while the analytic continuation from a forward or backward
time-like separation x to — x takes (FF) into (FA AF) or (FA'1 A~XF) respec-
tively. In particular, a true interaction requires nontrivial exchange matrices A.

We have arrived at the remarkable conclusion that the analytic exchange of two
neighbouring light-cone coordinates within a conformal block of an rc-point
function amounts to a mixing of all conformal blocks contributing to the local n-
point function in question with a matrix A = A*~1 depending on the two light-cone
coordinates to be exchanged only by their relative sign, and depending on the other
light-cone coordinates of the «-ρoint function not at all. This suggests that the
relevant algebra implying Eqs. (2) and (2') is an "exchange algebra" involving just a
pair of "light-cone operators", which reside at the two light-cone points to be
exchanged. The next section will explain what this type of algebra looks like
precisely.

3. Intertwining Operators and Exchange Algebra

Finite special conformal transformations of Minkowski space can take space-like
separations into time-like separations. Hence, fields that transform irreducibly
under all conformal transformations cannot commute with each other at space-like
distances without commuting at time-like distances. This is the Einstein causality
paradox. It has been solved by the observation that in the quantum field theory only
the covering of the classical conformal group is represented, and that local fields
transform irreducibly only under Poincare and scale transformations, but not under
special conformal transformations [5].

The conformal group contains a compact subgroup U(l) ® U(l) generated by
the "conformal Hamiltonians" Lo and Lo. Its elements act like rotations on the unit
circle, if the light-cone (= real axis) is mapped by a Mόbius transformation onto the
unit circle. The symmetry of the quantum theory is the covering of the conformal
group,_i. e. the rotations by 2π are represented by nontrivial operators Z = e~

2πiL°, Z
= e2πiLo. In the "heaven and hell" picture [7] the unit circle is unwrapped into a 2π-
interval of the real axis, such that a local field resides on a covering of the
Minkowski world. Z and Z transform the local field irreducibly, shifting however its
(compactified) light-cone coordinate by 2π into another sheet.
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We prefer to avoid the "heavens and hells", working with the following
equivalent picture [5]. The copies of the local field living in other sheets are traded
for a Fourier decomposition of the field with respect to the central elements Z and
Z. Let us describe this in modern language. Z, Z are diagonalized with eigenvalues

e-2πih^e2πih o n s e c t o r s j#>φ o f the Hubert space which are generated from the
vacuum by primary fields Φ and their descendents with light-cone dimensions
d=hmodΈ, d^hmodΊL. The sector J«fφ is a representation of two independent
Virasoro algebras generated by the two light-cone components T(u) and T(v) of the
energy-momentum tensor field, and has therefore the structure of a direct product
of two Verma modules J^Φ = J^H= Vh® V^ where H=(h,h) are the light-cone
dimensions of the primary field Φ = Φh^=ΦH. (The notion "Verma module" is
strictly accurate only in the Euclidean formalism of [1]. We prefer to denote in the
following Vh and FΛ~by "T- and Γ-modules", instead.)

The spectral decomposition of a local conformal field with respect to Z and Z
yields a number of "nonlocal parts":

The values of the numbers ξ, ξ e IRmodZ contributing to this sum depend on the
interactions of the field Φ. In contrast with the local field, its nonlocal parts
transform ίrreducibly under conformal transformations. The transformation law
for special transformations exhibits a complex phase behavior determined by the
Z, Z transformation laws,

^ Z - " Z ' n = e^2ninid-ξ)e2niKii~ξ)Φ^(x) . (7)

For more detailed formulae we refer the reader to ref. [8].
From Eq. (7) we deduce the selection rules

<φd,dMίφd^>*ΰ only if ξ = d-d, + d3modZ , ξ=d-dΐ+d3modZ .
(8)

We shall thus consider the nonlocal part ΦJ| as an "interpolating field", and
denote it by (Φ)H1H3' ^H3-^^H11 (hi,fΐi) = (di,3i)modZ. Take as an example
the Ising model. The Hubert space is the orthogonal sum of three sectors
je = ̂ 1®^σ®J^?

ε. The order field σ has four nonlocal parts σσl: ^
-+jeσ,σεσ:jeσ-+3fε, and σίσ = σ^uσσε = σε

+

σ.

In an «-point function <Φi... Φπ> only the part (Φi)o#x of Φί and the part (Φn)Hno
of Φn contribute. For n > 3 every local field "in the middle" will in general have
several nonvanishing contributions. Thus the local «-point function is a sum of
terms where each term corresponds to one chain of interpolating fields leading from
the vacuum sector 2tfγ back to the vacuum sector; e.g. {σσσσ} = {σίσσσlσlσσσl}

An operator product ( Φ I ) H ' H 2 ( X I ) ^ 2 ( ^ 2 ) | 0 ) of two nonlocal parts acting on the
vacuum state can be globally expanded into an integral over states Φ'(x')|0>. The
integral extends over the entire Minkowski space [5, 8]. The integral kernels
factorize into a product of two kernels, either one depending on the coordinates
(and the dimensions d and phases ξ) of one light-cone only. It is seen by repeated
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application of this vacuum expansion that then every chain contributing to the local
«-point function factorizes, too:

<(*l)θH1fe) (*2)H1H'fe) • ftkθW)=ίM * PM (9)

This light-cone factorization allows us to represent the interpolating fields
(= nonlocal parts) as products of independent light-cone operators:

(Φ)HlH2(x) = ai

l?l(u)-a?l(υ) afi,2:Vhι^Vhι , άf^ : *--> V;, , (10)

where Vh, V^ are the Γ, Γ-modules introduced above. Every conformal block Fa

corresponds to one chain of light-cone operators:

<Mi) • • • <o\un)> (11)

For the Ising field σ we have to introduce four operators on either light-cone:

a(u):V0^Vin6,b(u):Vlli6^V1/2,a
 + (u),b + (u) and d(v),S(υ),ά+(v),5+(υ) .

These operators are the intertwining operators mentioned in the introduction.
Their algebra clearly is no commutator algebra of local fields. Instead they fulfill an
exchange algebra to be specified in an instant, which implies the analytic
continuation properties Eqs. (2), (2') of the functions FΛ [Eq. (11)]. In turn, as we
have seen in the preceding section, these properties guarantee the locality of full n-
point functions of the local primary fields.

Consider now, in order to study the exchange algebra of a field Φ, the conformal
blocks Fa(u) contributing to a 4-point function (Φ^ΦΦΦ^y. Fa(u) is uniquely
associated with an "intermediate" Γ-module Vha:

The algebra Eq. (2) describing the analytic exchange of the variables u2, u3 can now
be translated into the exchange algebra satisfied by intertwining operators:

< L ( « 3 ) < U « 2 ) = ̂ Σ A Λ ( « 2 ) < U « 3 ) for u2>u3 . (12)
β

Clearly, the matrix A (even its size) depends on the choice of the two "external"
Γ-modules Vhί and Vh4.

As an example we give the exchange algebra of the Ising field σ [2]:

a+{u')a{u)

b(u')a(u)

a(u') « »

b + (u')b(u)

b(u') b + (u)

= eιπβ a + (u)a(u')

= eiπl8(-i)b(u)a(u')

\ iπβ 1 /e-
iπ/4eiπl4

= eiπ/8 b(u)b+(u')

\ ίa{u) a + (u

•) \b + (u)b(u')

for u>u' .

For intertwining operators belonging to different local fields, the argument is
similar. The exchange algebra gives the product of two intertwining operators at
u',u belonging to the respective fields as a linear combination of products of
intertwining operators at w, u' belonging to the same fields in the reversed order. A



Exchange Algebra 681

mixing is only possible among operator products with common initial and final
Γ-modules.

The important point is that the exchange matrices describing the analytic
continuation of 4-point conformal blocks must also determine the analytic
continuation behaviour of all higher rc-point conformal blocks. In practice, neither
the Ward identity differential equations can be solved for n > 4, nor seem the (very
restrictive) analytic continuation properties alone to be helpful for the explicit
determination of n>4 conformal blocks. However, combining the analytic
continuation properties with the order /disorder duality and with the knowledge of
equal-time correlations, all mixed order/disorder 2«-point functions of the Ising
model have been determined explicitly [2].

In the next section we shall discuss intrinsically the associativity conditions on
the exchange algebra coefficients, comparable with the Jacobi identity for a Lie
algebra. In the present case the structure of these conditions turns out to be that of a
braid algebra [9]. In solving the conditions in a typical situation, we shall see that
even the 4-point conformal blocks need not to be known explicitly. Some of the
exchange matrix coefficients can, with the help of 3-point functions alone, be
computed from the dimensions of the fields involved, while the remaining ones are
determined by consistency.

4. Associativity of the Exchange Algebra

We have argued in Sect. 2 that the transposition (z, z + 1) of two neighbouring
coordinates wί? ui + ί within a conformal block function is associated either with an
exchange matrix Aii + 1 or with its inverse depending on the sign of u{ — ui + ί . Every
such matrix should satisfy Eq. (4). The fact that general permutations of the light-
cone coordinates of a conformal block can be effected by inequivalent products of
transpositions, but must induce a unique analytic continuation, imposes strong
consistency conditions on the numerical exchange algebra coefficients.

Consider a set of rc-point conformal blocks Fα(... ίuί,ui + ί,ui+2f...) at a con-
figuration Ui>ui + ί>ui+2. The transposition of a pair of neighbouring coordinates
is described by two exchange matrices Ai = Aii + 1 and Ai + 1=Ai + li+2 with entries
determined by the bilinear exchange algebra relations for the intertwining operators
involved:

Fa(..rui9ui+2,ui + ί . . . ) = η £ (Ai + ί)aβFβ(... uu ui + ί, ui+2 . . .) . (13)

The ordering of the three coordinates can be reversed by applying either At first,
thenAi + l9 t h e n ^ , oτAi + ί first, then Au then Ai + ί . For the result to be unique it is
thus necessary and sufficient that

AiAi + 1At = Aι + 1AiAi + ι . (14)

We shall abbreviate this type of matrix equation by the notation
Exchange matrices describing the transpositions of disjoint pairs of neighbouring
coordinates commute obviously. This algebra of n — 1 matrices A{ is known as the
braid algebra 3n [9].
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The first issue describing an exchange algebra (e.g. the size of matrices Eq. (12))
is a "scheme" that tells among which pairs of Γ-modules the field under con-
sideration interpolates. This scheme determines the general structure of the con-
sistency conditions to solve. To be specific, we shall in a moment discuss a typical
scheme which occurs in every one of the minimal theories of [1]. The result will be
that there is only a finite number of consistent algebras for this scheme. If this holds
true (we don't doubt this) for every (finite) scheme, the problem to find a local field
with different schemes of interpolation on the two light-cones is highly nontrivial in
view of Eq. (3). On the other hand, nonscalar primary fields should be of this type.
We believe that this problem is related to the question of nonscalar primary fields
contributing to "nondiagonaΓ modular invariant partition functions [4].

The scheme we want to discuss explicitly is the following. We assume a
finite number q — 1 of Hubert space sectors J f 1 = vacuum sector, J f2> ? ^ - i
and a primary field Φ interpolating only between neighbouring sectors:
ΦMp

i^J^?

i-1®J^i + ί . In a minimal theory [1] with central charge c = c(p,q) = \
— 6(q—p)2/qp this is the field Φ12 of dimensions h = h = hlt2(c)9 and Jfj are the
sectors with Lo modΈ = Lo modΈ = hlΛ(c), hntm(c) being given by the Kac formula.
We shall, however, not refer to this particular realization of our assumptions.

According to the spirit of the preceding section, we consider Jf7; = Vt ® Vt as the
direct product of two light-cone T, Γ-modules and introduce intertwining light-
cone operators at: Vi-*Vi + 1 and a* ,i=l,...,q—2. The complete exchange algebra
is then parametrized by the following relations:

at{u')ax{u) =η aΐ(u)ai(u')

0i + i (">»(") =ηωiai + 1(u)ai(uf)

ai{u')at(u) \ (*tβ

at+1(u')ai + 1(u)J

u>u' . (15)

We shall assume all exchange matrices to be symmetric, i. e. ŷ  = /?;. Since, as it turns
out, the consistency conditions (14) impose restrictions only on the products βiγh

the full generality can be recovered in the end by similarity transformations with
diagonal matrices. These must (and can) be chosen in agreement with Eq. (4).

The complex phases η and ωt are related with the dimensions of the fields
involved (see Sect. 5). η is not relevant for the consistency. We shall consider ω = ωx

as a so far free phase parameter, and determine all remaining coefficients as
functions of ω. The requirement of a finite number of sectors will in the end quantize
the parameter ω, and thus the dimensions.

Due to the selection rule of matching initial and final Γ-modules for the
exchange algebra, all consistency conditions Eq. (14) can be discussed within the
sets of trilinear products of intertwining operators with common initial and final
Γ-modules. Select a set of nonvanishing products of three light-cone operators
α,b,c out of [at,af \ί= 1,...,q — 1} with common initial and final Γ-modules,
residing at points u>u' >u" \a{a){ύ)b{a){u')c{a){u"), α = l,... ,r. The transposition of
neighbouring coordinates is described via the exchange algebra in terms of two rxr
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exchange matrices which must be read off Eq. (15):

β

The inversion of the ordering of the three coordinates gives a unique result, as has
been argued above, provided

^12^23^12=^23^12^23 , i.e. ^12*^23 (17)

This set of consistency conditions (one for each pair of initial and final Γ-modules)
can be solved explicitly. The independent conditions arise from the following cases:

α) abc: Vi^>Vi+3; /= 1 , . . . , # — 4. There is only one operator product
ai+2ai + ιai, and the exchange "matrices" are A12 = ωi + ί,A23 = ωi.

β) abc: V1->V2. There are two products a1aχaί, a2 a2ax and the exchange
matrices are

fa βΛ A
\βi <W

γ) abc: Vi~+Vi + 1 i = 2,... 9q—3. There are three products a^i-xat-i, atata^
/ω,.-! \ /Ott-! βi-χ \

a?+1ai + ίai , a n d A ί 2 = l α f βt , Λ22> = \βi_ί δ i _ 1

\ βiδtl \ ωj

δ) abc: Vq-2^Vq-ί. There are two products aq-2aq-3aq-3iaq-2aq-2aq-2, and

The conditions are solved as follows.
α) CDi + i "xcύi is equivalent to ωi + 1 =ωj, hence ω1=ω2= ... =ωq-3 — ω.

(The second solution Aι2=A23 is in conflict with γ) or δ) unless ω = l. Then,
however, all exchange matrices become trivial.)

lω \ /αj-! ft-! \

Y) I αί ft Γ* βi-i ̂ i-i i s a n overspecified nonlinear system for

\ A ^ / \ ωl
a{,βi,δι. It is self-consistent if and only if I ' 1 ' 1) has an eigenvalue λ — ω.

Then it implies that I ' ι has an eigenvalue λ = ω9 too. Moreover, α. + ̂ .
\βi °ij, n N

= αf _ j_ + δι _!. Since spectrum ( 1 ι I = {1, ω}, the system is solvable recursively,
\βi δJ
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and spectrum ' ι ) = {l,ω}. Explicitly we find

where st= Σ ( — ω)p .

(18)

δ) Γ „ ) x ( " 9 ~ό hlqό). This system for ώ is again overspecified. It isV 3 βq-3

solvable if i) ( *~3 / ~ 3 I has an eigenvalue λ = ω, and if ii) (α β_ 3 + <5g_3

\βq-3 δq-3j

—ω)(ocq-3δq-3 + (δq-3— ω)2) = 0. The condition i) is satisfied (see above), while ii)ocq-3δq

is equivalent to the break-off condition

+ί-ωΓ^O . (19)

Then ώ = 1.
Equation (19) is solved by

2p~q

where/) and q have no common divisors. Otherwise, some st occurring in Eq. (18) in
the denominator would vanish.

The conditions (4) have not yet been imposed. Indeed, writing

s. = (— ω)ί/2sin(π(ί + l)p/q)/sin(πp/q), it is easily seen, that the symmetric solutions
(18) satisfy Eq. (4) if and only if sinπip/q-smπ(i+2)p/q>0. The general, non-
symmetric solution

( l g / )

satisfies Eq. (4) with real tt if sinπip/q sinπ(z + 2)/?/^>0, and with imaginary tt if
sinπip/q sinπ(/ + 2)p/q < 0. In the latter case it is impossible to satisfy Eqs. (3) and
(5) at the same time. Hence, if we want the field Φ to be hermitian and scalar,
sinπip/q and sinπ(ί-\-2)p/q must always have the same sign, i.e.

p=±lmoάq . (21)

Since all exchange matrices have only eigenvalues λ = 1 and λ = ω, the qth power
of all exchange matrices is the identity matrix. This fact is important for the
monodromy properties of conformal block functions, since the analytic con-
tinuation of one coordinate once around another one is described by the square of
the corresponding exchange matrix.

This completes the analysis of the exchange algebras consistent with the scheme
of "nearest neighbour" interpolation among the sectors jtf^,..., J4?q-i. In the next
section we shall associate various models with these exchange algebras. The
question, whether an arbitrary scheme possesses a consistent exchange algebra at
all, should be discussed in the context of classification of braid algebras.
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5. Relations to Known Models

The minimal models of [1] with c = c(p, q) = \-6(q— p)2fqp, wherep and q have no
common divisors, are known to contain a scalar field Φ = Φ2, interpolating,
according to the scheme assumed in the preceding section, among sectors ^
generated by fields Φ, with dimensions di = h1 Λ(c). Hence, the exchange algebra
of Φ2 must be contained in the solutions Eqs. (18), (20). Indeed, the 4-point
conformal blocks of (Φ2Φ2Φ2Φ2) are hypergeometric functions, the analytic
continuation behaviour of which is well known. It is exactly given by the coefficients
α i J A = y 1 , δ 1 .

Obviously, another minimal model with p'=pmodq has the same exchange
algebra, since the parameter ω is the same. We shall see that the family of exchange
algebras (15), (18), (20) is even relevant for models with c>\. Let us therefore
discuss how to extract more detailed information about a model out of its exchange
algebra.

Assume first that the field Φ = Φ2 has a nonvanishing 2-point function (i.e. it
carries no internal symmetries). The u conformal block <#i+(wi)αi(w2)> of this 2-
point function is (w12 —iε)~2d2 which changes by a phase factor eiπ2d2 when u12 > 0 is
analytically continued to — u12. Then Eq. (15) tells us that

η = eίπ2d2 .

Now consider the 3-point function <Φ3 Φ2 Φ2> where the field Φ3 generates Jf3. Its u
conformal block ζa^f (u1)a2(u2)aι(u3)) is proportional to (w23 —iε)~2d2+d\ which
changes by a phase factor eιπ{2dl~d3) when u23 > 0 is analytically continued to — u23.
Again Eq. (15) tells us that

η ω = eiπ{2d2~di) , i.e. ω = e~ίπd3 .

We thus obtain from Eq. (20) the dimension d3 = (2p —q)/qmoά2 of the field Φ 3 .
Next, consider the 4-point function (Φ2Φ2Φ2Φ2). Both its conformal blocks
Fi — (aϊ aiai ai) a n d F2 — {a^a2a2aιy are, except for a common factor
(ul2 u34)~2d2, real functions of the variable x = uι2u34/u13u24 in the interval 0 < x < 1
[8]. Exchanging u2<^>u4 takes x into 1 —x, where Fλ, F2 are again real, except for a
phase η acquired by the inhomogeneous factor. This exchange is described by the
matrix product η3A23A12A23 (with Al2, A23 from β) in the preceding section). Then
η2A23A12A23 must be real, i.e.

η2ω2/(l -ω)eIR and | / l +ω-ω~x =|/l+2cos2π/?/#eIR

We thus obtain the dimension d2 = (3p —2q)/4qmoάl/4 of the field Φ 2, as well as
some restriction on/?, which is fulfilled if Eq. (21) is satisfied. Finally, consider the
3-point function (Φί + ίΦiΦ2}, where Φt are the fields generating Jft . It is propor-
tional to (u23-iε)dι + ί~dι~d2 which acquires a phase e~

i7l(dί + ί~di~d2) if w 2 3 >0 is
continued to — u23. By a naive cluster idea we represent the intertwining light-cone
operators af: Vj-^Vj+i-γ belonging to Φt as some local limit of products
aj+i-2...aj+1aj of intertwining operators belonging to Φ 2 . Then we can compute by
repeated use of Eq. (15) the exchange relation for u>u\

aj + i.,{u')aψ{u) = (ηω)'~1 a
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The exchange operation changes the function <sΦi + 1ΦiΦ2y into the different
function (Φi + 1Φ2Φi}. In order to relate the analytic exchange phase with the
known phase of either of these functions, we must study the monodromy operation,
which is the square of the exchange operation and takes either function into itself.
Comparing the monodromy phases

yields di + 1 —d\={i — \){d3 — 2d2)-\-d2vaoά\, which leads recursively to the dimen-
sions di = (i —l)((ι — 2)d3/2— (/ — 3)d2)modl of the fields Φt. If we ignore for the
moment all "mody" reservations, this is

which coincides exactly with the Kac formula values di = h1}i(c) for a minimal model
with c = c(p,q). The dimensions shifted by integers presumably just belong to
secondary fields (which have the same exchange algebras as the primary fields). We
do not know, whether values of d2, and thus of d(, shifted by non-integer multiples
of 1/4, belong to any meaningful models.

Let us now discuss the case that Φ2 has an internal symmetry. To be specific,
assume that Φ2 is an SU(2) doublet. Clearly, the exchange algebra must be
completed by SU(2) selection rules, but a solution to the consistency conditions
which is a Clebsch-Gordan extension of Eqs. (15), (18), (20) can be found [10], if Φt

is assumed to carry isospiny = (z —1)/2. However, in this case the relation of the
parameters to the dimensions is a different one. Since only the antisymmetric
product of the SU(2) doublet Φ2 can have a nonvanishing 2-ρoint function, we have
this time

η=-eiπ2d> .

The symmetric product enters the 3-point function (Φ3Φ2Φ2), hence

η ω = eiπ{2d2'd3) , i.e. ω= -e~iπd" .

The reality requirement reads again

η2ω2/(ί — ω)eJR , and cos2πp/q> —j ,

and a similar cluster idea as above gives again

From these relations we compute, similarly as before, d3 = 2pjq mod 2,
</2 = 3/?/4#modl/4, and recursively di = (i-l)((i-2)d3/2 ~(i-3)d2)modl. If we
ignore again the "mody" reservations, we obtain

which are the well known values for the SU(2) symmetric models with current
algebra of level k = q—2, if p = l. Such models have c > l .

Finally we want to mention a relation of the braid algebra (17) with the Yang-
Baxter algebra of a "solid-on-solid" (SOS) model of statistical mechanics [11]. The
general existence of such relations was suggested, too, by Frόhlich [6]. The
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dependence of the Yang-Baxter matrices on an additive variable u can be
eliminated, in order to establish an identification with the constant braid algebra
matrices, in the limit W-HOO, provided the elliptic module K= π/2. Our solutions (18)
can be identified (associating an intertwining operator at with a link between two
plaquettes of "heights" /, / +1) with the symmetrized Boltzmann weights of [11], if
the parameters of the SOS model are set w0 = 0, e4ιη = — ω. The break-off condition
(19) corresponds to the "restricted SOS" (RSOS) model with wq = 0, and its solution
(20) means v = K/η = q/(q —p). However, only p = ± 1 mod q avoids the appearance
of negative or imaginary Boltzmann weights.

6. Discussion

The exchange algebra described in this paper must be completed in two points. The
first point is the introduction of further relations describing the commutation of
different local fields among each other. This completion is straightforward in its
general structure, dictated by the Z selection rules. There are again consistency
conditions in the form of a braid algebra. For the Ising model we have checked that
these fix the additional structure constants uniquely. We conjecture that it is
sufficient in every model to establish the consistency of the exchange algebra among
intertwining operators belonging to some "fundamental" field only, considering the
remaining fields as "composite" fields. The consistency of the exchange algebra
relevant for these composite fields would then be a consequence of the consistency
for the fundamental field. Our conjecture is supported by the existence of a field in
every minimal model (e. g. the field with dimension h2,2(c) ^pq is even), which under
repeated application of the operator product expansion generates fields with all
other light-cone dimensions of the model.

The second point is that the exchange algebra in its present form does not specify
the singularity at coinciding light-cone points u' = u. In particular, at w'Φw the
algebra of secondary fields is indistinguishable from that of the corresponding
primary fields e. g. the light-cone component T(u) of the energy-momentum tensor
field simply commutes with every intertwining operator at w'φw.

Leaving aside these deficiencies, we believe that the exchange algebra is the most
fundamental structure inherent in two-dimensional conformal quantum field
theory. It is even stronger than the Virasoro algebra, since it provides the algebraic
"missing link" among the different Virasoro representation sectors of Hubert
space. The consistency conditions of the exchange algebra are matrix repre-
sentations of a braid algebra. A classification of conformal theories with a finite
number of primary fields along the lines of classification of braid algebra
representations promises an interesting new glimpse into the beauty of two
dimensional conformal quantum field theory.

Acknowledgements. I am very much indebted to B. Schroer and M. Karowski for many
discussions and suggestions.
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