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Abstract. We analyze further the algebraic properties of bi-Hamiltonian
systems in two spatial and one temporal dimensions. By utilizing the Lie algebra
of certain basic (starting) symmetry operators we show that these equations
possess infinitely many time dependent symmetries and constants of motion.
The master symmetries τ for these equations are simply derived within our
formalism. Furthermore, certain new functions T 1 2 are introduced, which
algorithmically imply recursion operators Φ 1 2 . Finally the theory presented
here and in a previous paper is both motivated and verified by regarding
multidimensional equations as certain singular limits of equations in one spatial
dimension.

ϊ. Introduction

This paper investigates certain algebraic aspects of exactly solvable evolution
equations in 2 + 1 (i.e. in two spatial and in one temporal dimensions). It is a
continuation of [1], although it can be read independently.

We consider evolution equations in the form

qt = K(q), (1.1)

where q(x, y, t) is an element of a suitable space S of functions vanishing rapidly
for large x, y. Let K be a differentiable map on this space and assume that it does
not depend explicitly on x9y,t. If Eq. (1.1) is integrable then it belongs to some
hierarchy (generated by a recursion operator Φ 1 2), hence in association with (1.1)
we shall study qt = K{n)(q). Fundamental in our theory is to write these equations
in the form

du = ίdy2δ12Φ"12K
(>2Λ = \dy2δί2K\"l = K["l (1.2)

u u

w h e r e δ12 = δ(yί — y 2 ) d e n o t e s t h e D i r a c d e l t a f u n c t i o n , qi = q{x,yi,t\ i = l , 2 ,
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K^KQI'QI) belong to a suitably extended space S,Φ12,K°12 are operator valued
functions in S. If q is a matrix function then 1 is replaced by the identity matrix.
Throughout this paper m and n are non-negative integers.

The following results were obtained in [1]: i) There is an algorithmic approach
for obtaining the recursion operator Φ12 from the associated isospectral eigenvalue
problem, ii) This operator is hereditary, iii) Each member of the hierarchy
(Φ'ΐ2K

(l2 l)lί=$dy2δί2Φ'ϊ2K
0

l2 i, where K°12Ί is a starting symmetry, is a
1R

symmetry of (1.2). For example the Kadomtsev-Petviashvili (KP) equation and
the Davey-Stewartson (DS) equation admit two such hierarchies of commuting
symmetries, iv) If the hereditary operator admits a factorization in terms of two
Hamiltonian operators, then hierarchies of commuting symmetries give rise to
hierarchies of constants of motion in involution with respect to two different
Poisson brackets. For example, the KP and the DS equations admit two such
hierarchies of conserved quantities.

The above results extend the theory of [2-4] to equations in 2 + 1 . Novel
aspects of the theory in 2 + 1 include: i) The role of the Frechet derivative is now
played by a certain directional derivative. If subscripts / and d denote these
derivatives then there is a simple relationship between directional and total Frechet
derivatives:

Kl2dίδ12F 1 2 ] = K 1 2 / [ F ] = K 1 2 ) i [ F n ] + K 1 2 , ; [ F 2 2 ] , (1.3a)

where K12 is an arbitrary function in S, and Kί2 denotes the Frechet derivative of
K12 with respect to qh i.e.

Kn IFiJ =-z-Kί2(qi + εFihqj)\ε = 0, i, j = 1,2, i Φ j . (1.3b)

Operators on which directional derivatives are defined are called admissible [1]
(applications of the <i-derivative in explicit examples can be found in Appendix A,
see also Appendix C of [1]). ii) The starting symmetry K®2 can be written as
K\2 \, where K°12 is an admissible operator. Essential to our theory is that the
operators K°12, acting on suitable functions Hl2, form a Lie algebra.

1. For the equations associated with the KP equation,

Φ12 = D2 + q\2 + Dq^D'1 + q[2Ό~ι qϊ2D~\ q±2= qx±q2 + a{Dx + D2),
(1.4)

where Dt == d/dy^ The starting operators K°12 are given by

N12 = qΪ2, M12=Dqt2 + q^2D~ιq^ (1.5)

and H12 is an arbitrary function independent of x, i.e.

H12 = H12(y1,y2). (1.6)

The Lie algebra of K°12 is given by

^ ^

fnd= - Φl2Nl2H% (1.7)



Recursion Operators and Bi-Hamiltonian Structures 451

where

Ϋl 2J [ \ f f Ϋ (1.8)

l (1-9)
β

2. For the equations associated with the DS equation

Φ 1 2 = σ(P12 - Qt2P;iQt2), Qt2Fl2 = Q,Fl2 ± F12Q2,

Pi2Fί2=F12^-JF12vrF12yJ, (1.10)

where J = ασ, σ = diag(l, — 1), Q is a 2 x 2 off-diagonal matrix containing the
potentials <2i(x, y)> ̂ a^?)7) a n d Φ\2 is defined on off-diagonal matrices. The starting
operators K°l2 are given by:

N12^QΪ2, M12 = Q;2σ, (1.11)

and H 1 2 is an arbitrary matrix function satisfying the following properties:

H12 diagonal matrix, i \ 2 # i 2 = ^ (1.12)

Also

= -N12Hγ2\ ίNl2H%Ml2Hm^-Mι2H^l

(1.13)

iii) The recursion operator Φ 1 2 is admissible and enjoys a simple commutator
operator relation with h12 = h(yx — y2):

[Φ 1 2 ,Λ 1 2 ]=-J8A' 1 2 , h'l2=ψϊ, (1.14)

which implies that δ 1 2 M"l = S12Φ
n

12K°ί2-1 = £ jg1 Φ ΐ z ^ U ^ i i ' ^ w h e r e

δι

12 = dιδ12/dy[.

The starting operator K°12 is also admissible and its commutator relation with
hί2 implies that δί2K

i")

2 can be written in the form

^ n

for suitable constants bnJ.
1. For the two classes of evolution equations associated with the KP equation

we have that

j3 = — 4α, [iV1 2 5ft1 2] = 0 , [M 1 2 , / i 1 2 ] = — βDhr

ί2, β — ββ , (1-16)

and

(1.17)
ι~sN
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2. For the two classes of evolution equations associated with the DS equation
we have that

j8 = 2α, [N 1 2 , fc 1 2 ] = [ M 1 2 A 2 ] = 0 (1.18)
and

In [1] we assume knowledge of the underlying isospectral problem. This
problem implies: a) a hereditary operator Φ 1 2 : b) suitable starting operators, say
M 1 2 and JV12, and functions H12; c) two skew symmetric operators such that
Φ 1 2 = Θ n t ^ n ) " 1 - Furthermore, it can be shown that Φ 1 2 is a strong symmetry
for the starting symmetries. One then needs to: a) Find β and bnl appearing in
Eqs. (1.14), (1.15). b) Compute the Lie algebras of M12,N12 on function Hί2 (i.e.
obtain equations analogous to (1.7), (1.13). c) Verify that the starting symmetries
correspond to extended gradients, i.e. verify that {(Θ[^)~ιK°12Ή 12)d, K°12 = M 1 2

or N12, is symmetric with respect to the bilinear form

<0i2>/i2> 4= f dxdy1dy2traceg2ίfί2. (1.20)
u3

d) Verify that Θ[^ , Θψ2 are compatible Hamiltonian operators.
In this paper the following results are presented, i) In Sect. 2 we investigate

further the Lie algebra of the starting symmetries K°l2H12. In [1] we only used a
subclass of solutions of (1.6) and (1.12), given by H12 = h12 — h(y\ — y2) and
H\2 = hl2{al + bσ\ α, fo, constants, respectively. This gave rise to time-independent
commuting symmetries. We now choose Hl2 to be a more general solution of the
above equations; this gives rise to time dependent symmetries. Time dependent
symmetries for the KP have been studied in [6,7,18,20]. ii) In Sect. 3, using the
Lie algebra of K°12Hl2 and an isomorphism between Lie and Poίsson brackets
we prove directly that Φnι2K°l2Hi2 correspond to conserved quantities. This
derivation, which capitalizes on the arbitrariness of H12, has the advantage that
does not use the bi-Hamiltonian factorization of Φ 1 2 . In other words, for the theory
developed in this paper one needs only to verify a)-c) above.

We recall that Fuchssteiner and one of the authors (ASF) introduced an
alternative way for generating symmetries, the so-called master-symmetry
approach. A master-symmetry is a function τ which has the property that its Lie
commutator with a symmetry is also a symmetry. The τ functions for the
Benjamin-Ono and the KP equations were given in [5] and [6-7] respectively.
Several authors (e.g. [8]-[12]) have noticed that master-symmetries also exist for
equations in 1 + 1 as well as for finite dimensional systems [13]. Let τ and T
denote mastery-symmetries for equations in 2 + 1 and 1 + 1 respectively. If Φ is
the recursion operator and Σ = tK + To is the scaling symmetry of an equation in
1 + 1, qt = K, then T = ΦT0 is a master symmetry. However, there exists a
fundamental difference between τ and T. The function Θ~x T (Θ is a Hamiltonian
operator) is not a gradient function; this can be used to constructively obtain Φ
from T. But Θ~ιτ is a gradient and hence the above construction of Φfrom τ fails.

In Sect. 4 we show that τ is not the proper analogue of T. Let us consider the
KP for concreteness. As it was mentioned earlier, Φnι2K°12Ί generates time-
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independent symmetries; it will be shown here that ^12^12(^1 +^2)™ generates
time-dependent symmetries. It turns out that T = (Φj2K°12(y1-j- y2))tl (see
Sect. ΠD). But Θ^1 Φ\2K\2Hι2 is an extended gradient for all ϋΓ12, hence Θ~1τ
is a gradient function. In Sect. 4 we show that the proper analogue of T for the
KP is T12 = Φ2

12δ12 (^ corresponds to Φ2Λ for the KdV). Actually, Θ^2T12 is
not an extended gradient and it can be used to constructively obtain Φ12.

In Sect. 5 we show that exactly solvable 2 + 1 dimensional equations are exact
reductions of nonlocal evolution equations generated via nonlocal isospectral
eigenvalue problems. This result both motivates the basic ideas and concepts
introduced in [1] and in this paper, as well as verifies several results presented in
the above papers.

II. A Lie-Algebra for Equations in 2 + 1

In developing a theory for time-dependent symmetries in 2 + 1 it is useful first to:
i) characterize the commutator properties of these symmetries, ii) study the action
of Φ on the Lie commutator [α,b]L, where

[α,fc]L = α L [ b ] - b L [ > ] , (2.1)

and aL denotes an appropriate derivative. This derivative is linear and satisfies the
Liebnitz rule. For equations in 1 -f- 1 one only needs [α, b ] / 9 while for equations
in 2 + 1 one also needs [a12,b12']d (see (1.3)).

Lemma 2.1. σ(r) is a time dependent symmetry of order r of the equation qt = K, i.e.

dσir)

~ 3 Γ + O ( Γ U ] L = 0, (2.2)

iff

σir)=ΣtjΣ°\ ΣU)=--.[Σij-ί\K']L, j - l , . . . r , [_K,Σ{r)\ = 0. (2.3)
J = O j

The above result follows from the definition of a symmetry and the assumption
that ΣU) is time independent. It implies that constructing a symmetry of order /
is equivalent to finding a function Σ(0) with the property that its (/ + 1 )st commutator
with K is zero.

The action of a hereditary operator Φ on a Lie commutator is given by:

Theorem 2.1. Let
[Φ,XJ. (2.4)

Then

ax) ^^^^l/^^i^^L + ίΣ^^iΦ"1)^- (2-5)

// Φ is hereditary, i.e. if

ΦL\_Φv]w— ΦΦL[y]w is symmetric with respect to v,w, (2.6)
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then the following are true:

a2) ΦL[_ΦnK] + [Φ,(Φ"K)L] - ΦnS, (2.7)

a 3) Φ" + w [ K 1 ? X 2 ] L = [ Φ n X l 5 Φ m X 2 ] L

+ φ» £ φ ^ - ' SiΦ 1 ' - 1 K 2 - Φ m X Φn~rS2Φ
r-1 }Kι.

\r=ί J \r=l J

(2.8)

(m, n are non-negative integers).

Proof To prove (2.5) use induction: (2.5)O is an identity. Applying Φ on (2.5)M we
obtain

Φ^'S.Φ1"1 }K2.
i

Equation (2.5)π + 1 follows from the above and the following identity

Equation (2.7) also follows from induction. To prove (2.8) first note that (2.5) implies

(y m-r r-Λ
V=l /

Equation (2.5) also implies

Let K2 = ΦmK2, then (2.6) implies S2 = ΦmS2, and the above equation becomes

Φn[KuΦ
mK2]1 = iΦnKι,Φ

mK2]L-( Σ Φn~rΦmS2Φ
r~1

Applying Φn on (2.9) and using the above we obtain (2.8).

Corollary 2.1. Let the hereditary operator Φbe a strong symmetry for both Kί and
K2, i.e. S1 = S2 = 0. Then

In the rest of this section we characterize extended symmetries σ 1 2 . The
following theorem, proven in [1], maps extended symmetries σl2 to symmetries σ{1.

Theorem 2.2. Assume that the commutator of Φ 1 2 with h12 is given by (1.14) and
that the starting operator K°l2 are such that (1.15) is valid. If σ12 is an extended
symmetry of (1.2), i.e. if

υΌ \2 . |- c φH ^ 0 . i n _ A ί 2 1 1)

then σ n is a symmetry of (1.2), i.e.
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% A + [ ^ i i , M " l J / = 0. (2.12)

In the above

[ σ n > M"Π/ = σ,i,, CM"ί] - *</;>_ [ff! J , (2.13)
and

[σ12,<512Φ"12K?2 l L = £ ^ O ^ Φ ' ^ ' ^ Ί ί L (2.14)

It is necessary to rewrite δ12Φ
n

12K°12 l m t n e f ° r m appearing in (2.14) since
the directional derivative is defined only for functions of the form L12H12, where
L 1 2 is an admissible operator.

Using Lemma 2.1, Corollary 2.1 and the Lie algebra of K°12H12 (with
appropriate H12) we obtain extended symmetries, which then via Theorem 2.2
give rise to symmetries.

Proposition 2.1. Assume that the hereditary operator Φi2 is a strong symmetry for
the admissible starting operators Mi2,Ni2, and that (1.14% (1.15) hold. Further
assume that Mί2,N]2 form a Lie algebra (analogous to (1.7% (1.13)). Consider the
following hierarchies

qu = μy2δ12Φ'\2N12-1 =μy2δ12N[»2 = N["l (2.15a)
u u

qi, = $dy2δ12Φ"12M12-l=μy2δ12M["2 = M<-n. (2.15b)
u u

Then:

a) ( Φ 7 2 M 1 2 Ί ) 1 1 ? (Φ7 2 N 1 2 1)119 are symmetries of Eqs. (2.75).

b) Appropriate linear combinations of {Φrΐ2Mί2H
{[)

2}lu {Φ72^i2#(i2}n for

suitable functions H{p2 generate time dependent symmetries for Eqs. (2.15).

Rather than proving the above proposition in general, we use for concreteness,
the Lie algebra (1.6) to sketch how the above results can be derived. Details are
given in Π.A, II.B. Let

N^=ΦnN12, M{?2 = ΦnM12. (2.16)

Then, using Corollary 2.1, Eqs. (1.7) imply

(2.17)

Part a) of the proposition is a direct consequence of Eqs. (2.17) and (2.14). For
example

since Hψ2 = [1, δ\2]I = 0; thus JV^ 1 are extended symmetries of (2.15a).
Consider part b) of Proposition 2.1. Let us first consider symmetries of order
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one it t. Then

\ M ψ 2 Λ (2.18)

are first order time dependent extended symmetries of (2.15a). Similarly

^(Γ2) (^i+^2)-ί2fc w > 1 M (

1

n

2

+ m " 1 ) lJ ( 2 1 9 a )

Mf2

] {yi+y2)-t2bnΛN
{m + n)Λ, (2.19b)

are extended symmetries of (2.15b) with bn ι = ( — 4α) Y 2~s(
s = o \l — s

To derive the above we use Lemma 2.1 and Eqs. (2.17). For example, to derive
(2.18) we look for a function Σ{$ such that its commutator with δί2N

i")

2 l,
commutes with δ12N[n)

2Ί. Clearly Σ^ = Ni^(y1+y2) or M^2\y1 + y2). For,
(2.17a) implies

s i n c e Hf2 = [_y1 + y 2 i δ ι

1 2 ' ] I = - 2 δ u h w h e r e δ u ι = 0 i ΐ l φ l o r 1 i f 1 = 1 .
In a similar manner

qim + ln-D.i (2.20)

are second order time dependent extended symmetries of (2.15b). Similarly

N{m) (y1 + y2)
2 — t4bw 1 M ( m + n ~ 1 ) (j;1 + y2) + ί245^ 1]γ(m + 2 n~ 1) i? (2.21a)

+ | ) , (2.21b)

are extended symmetries of (2.15b). Indeed

since, [(>Ί +y2)
2,δ>

12]= -4(y1 +y2)δ1J. Also

The extension of the above results to any order in time is straightforward: To
generate σ([]

2 consider Σ^ = Nf2

](yx + y2)
r or M ^ O Ί + yiY T n e commutator of

(yι +y2f with δ[2 produces (y1 + y2)
r~ι. Thus the rth commutator of (yx + y2)

r
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with δ\2 produces 1 which commutes with δ%\ hence Lemma 2.1 guarantees the
existence of an rth order symmetry.

11.A. Time Dependent Symmetries for the Equations Associated with the KP
Equation. Following the construction and the argument sketched above, extended
symmetries of order r in time

σ^2= ΣtjΣψ2 (2.22)
o

are generated through Proposition 2.1, starting with Σf} = N^ΉQ or
where H{[\, is defined by

(2.23)

more generally, any homogeneous polynomial of degree r in yx and y2 could be
used as well (note H\2 solves (1.6)). Using

[H(ίMΪ2] = - 0 - ( - mθ(r~s)~^-~H^2

s\ (2.24)

we can show that

i) The class of evolution equations (2.15a) with N12 = q[2 admits ί-dependent
symmetries of order r given by

(2.26a)

( ) ( )
ψ2 = Σv(rJ,s)N12 '-1 Ή 1 2 ' = 1 , (2.26b)

and by

{2.21 a)
/ j \

H 1 2 - ' , (2.27b)

where j ^ 1, the summation Σ is from s :,s 2,.. ., s ; zero to Pw and Pn = (n— l)/2 if
n is odd and (n — 2)/2 if n is even. Also

, (2.28)

ii) The KP class (2.15b) with Ml2 = Dq~{2 = qΐ2D~1qϊ2 admits ί-dependent
symmetries of order r given by

(2.29a)
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L+2«+ V2. l) ir Ύ )

' " ' fl12

l=1 ' , (2.29b)

w + ( 2 j - l ) n + j - 1 - X 2 s ; + l ) ( r ~ ̂  2 i z + l )

12 I=1 H 1 2

 I=ι , (2.29c)

and by

(2.30a)

^ ' , (2.30b)

fl) (r-Y2s/ + l)(2j-i)n + j -

(2.30c)

II.B. Time Dependent Symmetries for the Equations Associated with the Davey-
Stewartson Equation. The construction of ί-dependent symmetries for the
equations associated with the DS equation is similar. Extended symmetries of order
r in time are generated through Lemma 2.1, starting with Σf2

}==^im)H({2 or
MtyHQ, where H{[\ is defined by,

(2.31)

2 satisfies the same formula (2.24), obviously replacing [H{[)

2,δ\2~\1 by [H([2,
^ ] / Then, using Corollary 2.1 and Eqs. (1.13), one can show that

i) The class of evolution equations (2.15a) with N12 = Q[2 admits ί-dependent

n
symmetries of order r given by Eqs. (2.26) and (2.27), where bnl = βιi 1 = (2α)Ί

and y ^ 1.

ii) The class of evolution equations (2.15b) with M12 = Qϊ2σ admits t-
dependent symmetries of order r given by Eqs. (2.29-30), replacing: 7V(l)—•7V("~J)

in Eq. (2.29b), M ( < ) ^ M ( > " j + 1 ) in Eq. (2.29c), M ( ) - ^ M ( ~ j ) in Eq. (2.30b),
in

N( )^N( ~j) j n E q < (2.30c) and using bn>i = (2α)M

ILC. Connection with Known Results. Before the discovery [14] of the recursion
operator of the KP equation, a different approach, the so-called master-symmetries
approach, was used to generate an infinite sequence of commuting symmetries [6],
as well as ί-dependent symmetries [7-11], of the KP equation (see also [18,19]).

The existence of a hereditary operator in 2 + 1 dimensions, together with the
Lie algebra of the starting symmetries allows a simple and elegant characterization
of the 2 + 1 dimensional (gradient) master-symmetries introduced in the above
papers. Here we briefly consider the KP example.
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In Proposition 2.1 and in Sect. II.B. we have shown that the functions

τ 1 2 -
τ(r)

12

(where H{[\ is defined in (2.23), but it could be any homogeneous polynomial of
degree r in yl9y2, and K°12 is Nί2 or M 1 2 ) have the property that their (r + l) s ί

commutator with <512Xin

2 is zero, namely

^ ^ [ τ ' Γ / ' ^ u M l L •••]„ = 0 . (2.33)

r + 1 times r + 1 times

Then Theorem 4.1 of [1] implies that

[••• [ τ < r \ M " ί ] / •••], = 0 , (2.34)

r + 1 times r 4- 1 times

namely τ ^ are the so-called master-symmetries of degree r of KP [11]. Equation
(2.33) essentially follows from the fact that a single commutator of τ(™2

r) with (512K
("2

generates a linear combination of lower degree master-symmetries; in fact, choosing
for concreteness τ(™2

r} = Φ™2Nί2(yi + y2Y
 a n d K^\ = M{"2, we have

n ^

bii2r\^12^(12']d= ~ Σ KlM{l2+n)l{yi + 3>2Ml2]
1 = 0

= Σ θ(r-l)—^—^b^ztfr"''-^ (2.35)

which implies

11 > 11 / ^ (r — / ) ! nΛ n

For r = 1 Eq. (2.36) becomes

master-symmetries of degree 1 generate equations which belong to the given
hierarchy.

III. Lie and Poisson Brackets for Equations in 2 + 1

In this section we first derive an isomorphism between Lie and Poisson brackets.
Then, using this isomorphism and the Lie algebra of the operators K°12, we prove
that Θϊ2K^2Hl2 are extended gradients. This implies that all extended symmetries
of the previous section give rise to conserved quantities.

Theorem 3.1. Let \_a,b~\L = aL[b~\ — bL[a~\ be a Lie commutator and (fig} be an
appropriate symmetric bi-linear form. Let grad / be the gradient of a functional /,
defined by IL[υ] = <grad/, ϋ>; then y is a gradient function iff yL = y*, where M*
denotes the adjoint of the operator M with respect to the above bi-linear form, i.e.
<M*/, 0> = </, Mg}. Then if the operator θ is a Hamiltonian operator, i.e. if

(9*= -Θ, <α,6)L[Θί>]c> + cyclic permut = 0, (3.1)
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it follows that

Θ{(fL- f*)[Θgl~(gL- g*)[ΘΠ}. (3.2)

Proof.

grad</, Θgy\υ\ = <AM, Θg> + </, ΘLlυ]g> + </, ΘgLiυ]>

where </, ΘL[y]gf> = </, M^[y] > and M& denotes a linear operator depending on
g. Hence

[Θf Θg\L - <9grad</, % > - 6>L[<9#]/ + Θfh\βg\ - ΘLlΘf]g - ©

- Θft[Θg~] + Θ

But the sum of the first three terms of the above equals zero because of (3.1). Hence
(3.2) follows.

In the above aL denotes an appropriate directional derivative. For equations
in 1 + 1:

[fl,ft]L = [fl,ft]/9 <fg} = $dx tracer/. (3.3)
u

For equations in 2 + 1,

[ 0 i 2 A 2 ] L = [α 1 2 A2L> < / i i ^ n > = J dxd^ tracegfu/u,

</i2^i2> = ί dxdy1dy2 trace # 2 1 / 1 2 (3.4)
R3

(if/ and g are scalars, then delete trace), where [ , ] / , [ , ] d are defined in (2.13),
(2.4). Furthermore the following double representation of the functional /

/ = J dxdy1 t r a c e p n = § dxdy1dy2tr&CQp12 (3.5)
R2 R3

allows us to define the extended gradient grad 1 2 / and the gradient grad/ of the
functional / by

A1O12] = ί dxdyίdy2δί2tτsicepί2[vί2'] = <grad1 2/,ι>1 2>, (3.6a)

^ [ ^ 1 1 ] = \dxdyx t r a c e P n ^ ϋ u ] = <grad/,t;1 1>. (3.6b)
R2

The following theorem, proven in [1], maps extended gradients y12 to gradients

Theorem 3.2.

a) y1 2 and γίl are extended gradients and gradients respectively iff y*2d = 7i 2 d

and 7 1 ^ = 711̂ ,, wiί/i respect to the bilinear forms (3.4c) and (3.4b) respectively.
b) ^ / ? i 2 ι s fln extended gradient, then y l ί is a gradient corresponding to the

same potential, namely ify12 = g r a d /, then y ί l = g r a d / .
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Proposition 3.1. Assume that the hereditary operator Φ12 is a strong symmetry for
the starting symmetries M12Hl2 and Nί2H12. Further assume that Mί2,N12 form
a Lie algebra (analogous to (1.7) and (1.13)) and that Θί2 is a Hamiltonian operator
whose inverse exists. Then

Θ-l2

ιΦm

12K\2Hl2, K°12 = M12 or N12 (3.7)

are extended gradients, proved that Θ^2K°12H12 are extended gradients.

Proof. For concreteness we proof the above proposition for the recursion operator
and starting symmetries associated with the two dimensional Schrδdinger and
2 x 2 AKNS problems.

111.A. Conserved Quantities for Eguations Related to KP Equation

Corollary 3.1. Let

N12=qϊi, M12=DqU + q^2D-1q^2i H12=H(yl9y2),

Mfl = Φ ? 2 M 1 2 5 N$ = Φn

12N129 Θί2 = D9

 ( '* j

where Φ12 is the recursion operator associated with the KP and is defined by (1.4).
Then

y. (3.9)

Proof. We first note that the assumptions of Proposition 3.1 are fulfilled. Namely
Φ12 is hereditary and is a strong symmetry of M12H12,NH12, (see Lemma 4.2
and Appendix C.I a of [1]). The operator D~1 is obviously a Hamiltonian
operator. Furthermore, D~γMl2Hl2 is an extended gradient (see Appendix A).
Since D~ιM12Hl2 is an extended gradient, Theorem 3.1 and (1.7c) imply
that D~1Nψ2Hl2 is an extended gradient. Then Theorem 3.1 and [_M{n)H{t]

2,
Nil)H[2

2

)^d=-M{rl+1)H[3

2

) imply by induction (3.9a). Finally Theorem 3.1 and
[M ( π )H (

1

1

2

),MH (

1

2

2

)]d= -N{n+1)Hγl imply by induction (3.9b).

A consequence of the above result is that all symmetries derived in Sect. Π.B.
give rise to conserved quantities. For example, the following ^-dependent extended
symmetries (see (2.19b) and (2.21a))

(7<2> = Nψ2

](yi + y2)
2 + t24αM(

1

m

2

) (y1 + y2) + ί2144α2N (f2

+ 1 ) l,

of the KP equation qu = M{H = 2(qlχxχ + 6q1qίχ + 3u2D~1q{ ) correspond to

extended gradient functions D~1σ^2

) and D~1σf2

); then they give rise to the

following t-dependent conserved quantities (see Eqs. (4.15))
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m

III 3. Conserved Quantities for Equations Related to DS Equation

Corollary 3.2. Let

M12 = Q12σ, Nl2 = Qli,

H12 diagonal and such that

P12H12 = 0, M{?2 = Φn

12Mί2, N{?2 = Φn

12Nl2, Θ12 = σ, (3.10)

where Φ12 is the recursion operator associated with the DS equation and is defined

by (1.9). Then

Proof. The assumptions of Proposition 3.1 are again fulfilled (see Lemma 4.2
and Appendix C.2a of [1]). The operator σ is obviously Hamiltonian in a
space of off-diagonal matrices. Furthermore, σM12H12, σφι2N12H12 are extended
gradients (see Appendix A).

Since the above are gradients, lM{n)H%N{1)Hψ2]d = -Min + 1)H™ implies
(3.11a). Then [ M ^ t f / ^ M ^ ] = -N^H^ implies (3.11b).

The above implies that the symmetries derived in Sect. II.C. give rise to
conserved quantities. For example, the 1st and 2n d order ^-dependent symmetries

+ ί264α2iV(Γ2

+2) /,

of the DS equation Qu = Mfl = - l2σ(QIχx + a2Qιyιy ) - Q i ^ i 4- AγQx\

(D - JD1)A1 = - 2{D + JDJσQl, obtained from Eqs. (2.29-30), correspond to the

extended gradients σoψ2,Gϋψ2\ then they give rise to the following ί-dependent

conserved quantities (see Eqs. (4.24)):

m+V iZ i Z / l i m

IV. On a Non-Gradient Master-Symmetry

In this section we make extensive use of the isomorphism between Lie and Poisson
brackets. Hence it is useful to investigate the properties of

Θ(gL-gt)=TL+ΘTΪΘ~1; T = Θg, ΘL = 0. (4.1)
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Lemma 4.1. Let

(4.2)

with its adjoint

S* = ΦtlΓ] + lTi9Φ*l (4.3)

a) // Φ is hereditary then

φ * [φ» T] + [Φ" Γ]ί Φ* - Φ*(Φ" Γ)£ = S* Φ*n. (4.4)

b) // Φ is factorizable in terms of compatible Hamiltonian operators, i.e. if
Φ= ΩΘ1, where Ω+vΘ is a Hamiltonian operator, Θ is invertible and v is an
arbitrary constant, then

1 \ (4.5)

where we have assumed for simplicity that ΘL = 0.

c)

f Φr-ίΘΦ*n~rS*Θ-1.

(4.6)

Proof Equation (4.4) is the adjoint of (2.7) for K = T. Equation (4.5) is derived in
Appendix B, and (4.6) follows from (4.5) by induction.

Theorem 4.1. Assume that Φ is factorizable in terms of compatible Hamiltonian
operators and that ΘL = 0. Further assume that Θ~1Φ"M is a gradient function
and that Φ is a strong symmetry for M. Then

φm £ φ"-^φ' -iM-6)grad<6)~1Φ"M,ΦmT>
r= 1

m

- £ φ>-1ΘΦ*mrS*Θ~ίΦnM
r= 1

- Φm(TL+ ΘT*Θ- λ)ΦnM- Φn + m[M9T\L. (4.7)

Proof. Using the fact that Θ~ιΦnM is a gradient, Eq. (3.2) becomes

[ΦnM, ΦmT]L = Θ g r a d ( 0 ~ ^ n M , ΦmT} - {{ΦmT)L + Θ(ΦmT)*Θ"λ}ΦnM.

(4.8)

Since M is a strong symmetry of Φ, Theorem 2.J implies

\
φn-'SΦ'-1 M. (4.9)

J
Using the above and (4.6) in (4.8) we obtain (4.7).

Equations (4.6) and (4.9) are useful in finding non-gradient master-symmetries
for equations in 2 + 1. Furthermore, Theorem 4.1 is useful for deriving the potentials
of various gradients. Formulae (4.6), (4.9) and (4.7) take a particularly simple form
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if the function Tx 2 is such that

i) S 1 2 = Sf2 = cl, (4.10a)

where 1 is the identity operator and c is an arbitrary constant, and

ii) ^ 1 2 ί l + © 1 2 Γ ? 2 d © Γ 2 1 = 0 . (4.10b)

In the following two examples the non-gradient master-symmetries are generated
through functions T 1 2 that satisfy Eqs. (4.10).

IV A. Equations Associated with the KP Equation

Corollary 4.1.

a) Φ\2δl2 is a non-gradient master-symmetry for the KP and the equations
related to KP:

IΦ^KΪiH^Φhδiil^KΦ^K^Hu, (4.11)

8Φ 1 2 = ( Φ ? 2 δ 1 2 ) d + 0 1 2 ( Φ ? 2 ί 1 2 ) d * Θ Γ 2

1 , (4.12)

where bn and H12 are given by

bn = 4n, H12 = H(yl9y2) arbitrary, ifK°12 = Nί2, (4.13a)

and by

bn = 2(2n+l), H12 = (yi+y2)
r, r = 0,l, ifK°12 = M12. (4.13b)

b) Let

111 — ψ\lΊ\2ϊ /i2-^12 Λ12 V+-lH)

Then
7<"»/ί12 = grad 1 27π, (4.15a)

ιl,δί2)
Dn+ 1

f?2+ 1 )ίίi2)ii, (4 1 5 b )

where bn and Hi2 are given in (4.13).

Proof. If
T12 = δ129 (4.16)

Eq. (4.10b) is trivially satisfied and Eq. (4.10a) holds for c = 4, since Φ12d[<5i2] =
φ * 2 d [ ^ 1 2 ] = 4. Equation (4.12) is a simple consequence of (4.6) for n = 2; using the
following results

Φ Ί 2 [ t f 1 2 i f 1 2 A 2 ] d = 0, (4 1 7 a )

Φ ΐ 2 [ M 1 2 ( y ! + y 2 ) r ^ i 2 L = 2Φΐΐ x M n ^ i + y2)
r, r = 0,1, (4.17b)

(see Appendix A) in Eqs. (4.9) and (4.7) (with M = X ? 2 H 1 2 and H 1 2 as in (4.13)),
we obtain

[ Φ " 1 2 £ ? 2 i * 1 2 , Φ T 2 5 1 2 ] d - KΦ^^K^H,, (4.18)
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(that reduces to (4.11) for m = 2), and

bnΦ\r~1K°12H12 = Θ12gradί2<f?lHί2,Φ>ϊ2δ12), (4.19)

where we have used Φn

ί2Θ12 = Θ12Φχn

2. Equation (4.19) reduces to (4.15) if one
uses the definition of < / 1 2 ? # 1 2 > given by (1.20) and (3.4c).

Remark 4.1.

i) T = Φ2\ is a non-gradient master-symmetry for the KdV equation. Given
T one recovers Φ from Tf+ΘTJΘ1. Equation (4.12) is the two-dimensional
analogue of this well known formula [8]-[10].

ii) Theorem 3.2 implies that Eqs. (4.15) with m = l , Hl2 = \ reduce to the
following formula [6]:

^ ^ . (4.20)

An analogous formula, for the KdV equation is well known

(«)

iii) We observe that Eq. (4.18) for Hί2 = \ cannot be projected into Eq. (2.37).

IVB. Equations Associated with the DS Equation

Corollary 4.2.

a) Φl2T12,T]2=(x/2)σQι2δ12I, J = diag(/,/), is a non-gradient master-symmetry
for the DS and the equations related to DS:

[ Φ " 1 2 i e ? 2 / / 1 2 ? Φ ? 2 T 1 2 L = n Φ " i r ^ ? 2 ^ i 2 , (4.21)

2Φί2 = (Φ2i2T12)d+Θ12(Φ2

l2Tί2)SΘϊ2

1, Θ12 = σ9 (4.22)

where K°12H12 is defined in (1.11-12).
b) Let

fΆ-Φnfu, fi2 = Θ:iK°129 Θ12 = σ. (4.23)

Then
f\ iH 1 2 =grad ] 2 / n , (4.24a)

= -̂--rr J dxdy, traced,(^tf^u]- (4.24b)

/. If

^ i 2 Φ ^ e i + 2 ^ 1 2 / 5 (4.25)

Eq. (4.10b) is satisfied and Eq. (4.10a) holds for c = 1 (see Appendix A). Then the
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derivation of Eqs. (4.21), (4.22) and (4.24) is analogous to the one of Corollary 4.1.
(see Appendix A),

V. 2 + 1 Dimensional Equations as Reductions of Non-Local Systems

In [1] and [14] the classes of evolution equations

ι2Φ\2K\2Λ, (5.1)

where Φ 1 2 and K°12 are defined in (1.4-5), were algorithmically derived from the
spectral problem

wxx + q(x, y)w + otwy = 0. (5.2)

In this section we show that Eqs. (5.1) are exact reductions of equations
non-local in y, generated by the following non-local analogue of (5.2):

wxx + qw + Qί\vv = λw, (5.3)
where

{qf)(x,y)±idy2q(x9y9y2)f(x9y2). (5.4)
IR

Hereafter the symbols ύ and u12 indicate the integral operator defined by

(uf)(x,y) = § dy2u(x, y, y2)f(x, y2) (5.5)
u

and its kernel u12 ==u(x,yi9y2), respectively.
The algorithmic derivation of the classes of evolution equations associated with

(5.3) is standard; its main steps are:
i) Compatibility. A compatibility between Eq. (5.3), written in the more

convenient form ( I = ( ' |( L a n d the linear evolution equation
\W*Λ \λ-q-Dy9 0j\wJ

W \ — f W \
I = Vl I, yields the following operator equation:

— 4λcx + A0(q + ocDy) — (q + 0ίDy)Ao, (5.6)

where the scalar integral operator 2c is the 1,2 component of the 2 x 2 matrix
integral operator V,AOχ = 0 and [ , ] and [ , ] + are the usual commutator and
anticommutator.

ii) Equation for the kernel. The operator equation (5.6), together with the
definition (5.5), implies the following equation for the kernels qi2 >cιi>A12:

q12t = DΨ12C12- qϊ2A12 + - 4Ac12χ? (5.7)
where

#12/12 = j ( 4 l 3 / 3 2 ± / l 3 # 3 2 ) d y 3 + « Φ l + Dl)f 12- ( 5 8 t > )

iii) Expansion in powers of /. Let us first assume that

C — V VCW A — Π ΓS 9Ϊ

^ 1 2 — La ^ 1 2 ' / 1 1 2 w? \J%J)
7 = 0
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equating the coefficients of λj(0 ̂  j^ri) to zero we obtain: C?] = H^l C^ υ =

iΨ12Cψ2 + H^1](l^J^n); qί2t = DΨί2C™; where //</> = H^{yλ ,y2). Then

£ 45"Λ Ψ\2SH(ζϊs) and
s = 0

4i2t = Σ 4 s -"D^2 S + ι H ( Γ2" s ) = X ^ " Φ ^ ^ 1 - / / ^ , (5.10)
5 = 0 5=0

where

Φπ^DΨπD-1 =D2 + qt2+Dqt2D~x +q:2D-1fc2D~\ (5.11)

If we assume that

1 Σ f
j=o j = o

then Cΐl^D-'q^-H^^ + Hβ; C^1* = iΨ12Cψ2 +D-%2-H<& +H&^l^
j ^ n)\ ql2t = D ̂ ^ C f j + ̂ 2H% where H ( ^ = H 0 ) (y l 5 y2). The choice Hψ2 - 0

for OS)Sn yields C[°2

)= £ Ai~nΨ"1-2

sD~1q^2-H^2^
 + l) and

s = 0

^12t= Σ 45~"D^12
S 4 1i)~1^Γ2 ^ l V ' S + 1 ) - n Σ 4^"Φ'ί2 ί

(5.12)

Thus the isospectral problem (5.3) generates the classes of evolution equations
(5.10) and (5.12).

It turns out that the transformation q12 -*δ12q1,q1 = qix^y^, is an exact
reduction of Eqs. (5.10-11) if, at the same time, 4s~nH^2~

s\4s~nHi{t

2

+1's)'^

βsί )δ\2. In this case qt2-^qt29 Φ12-^ Φ12 and
s

U (5.13a)

ni2qΪ2'l = δί2Φ
n

ί2Nl2'L (5 .13b)

Proceeding exactly in the same way it is possible to show that the nonlocal
eigenvalue problem

Wx = JWy + QW + λJW, (5.14)

generates the following class of evolution equations:

QS2ί=Σa«,ι®l~2l$Ϊ2 Hψ2, Qi2 = Q(χ,yuy2\ (5.15)
( = 0

where

Φ 1 2 F 1 2 = σ ( P 1 2 - g !

t - 2 P Γ 2

1 e Γ 2 ) F 1 2 , F12=F(x,yi,y2) off-diagonal (5.16a)

QhFi2^ϊdy3(Q13F32±Fl3Q32), (5.16b)
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σ = diag(l, — 1) and Hψ2 is defined by

P12Hψ2 = 09 Hψ2 diagonal (5.16c)

Also in this case the transformation Qι2-+δ12Q1 *s a reduction of (5.15) if

= 2oc) and Hψ2-*δ\2I or δ\2σ. In fact, β ^ - β * , # 1 2 ^ Φu-

Thus one obtains the following classes of equations:

Σ/(f)Ϊ2lQΪ2δli2l = δ12Φ
n

12Q^2I (5.17a)

or

(i]i2Q:2δχ2σ = δ12Φ
n

12Q^2σ9 (5.17b)

associated with the eigenvalue problem

Wx = JWy+ WQ + λJW.

The above results clearly imply that all the notions introduced in [1] to
characterize the algebraic properties of equations in 2 -f 1 dimensions can be
justified and interpreted in terms of the algebraic structure of the corresponding
non-local versions. For example:

i) The above derivations both motivate and explain the derivation of the
recursion operators introduced in [1] and [14]. In particular the crucial role played
by the integral representation of differential operators is clarified.

ii) The directional derivative introduced in [1], which is the main tool needed
to investigate the algebraic properties of equations in 2 + 1 dimensions, can be
derived from the usual Frechet derivative in the space of non-local operators. For
example, the Frechet derivative of q^θn m a direction f12 is

4if2[/i2]0i2 = /?20i2, (5 1 8 a )

f 12012= idy3(f13g32±g13f32l (5.18b)
u

which is exactly the direction derivative qtiaLf n^Q 12 introduced in [1].
iii) The definition of an admissible function and of its derivative follows from

the fact that reduced functions admit a double representation; for example (5.13b)
implies

Σ βl(n

])
φT2lQl2δι

12 = δ12Φ
n

12q1-2Λ. (5.19)
1 = 0 W

But the directional derivative is defined only on the admissible representation given
by the left-hand side of (5.19), which is the form of the function before the reduction:

1 = 0

In Appendix A we investigate (Eqs. (A.3)) the algebra of the nonlocal operators
a\2defined in (5.18b). Here we remark that this algebra can also be interpreted as
an algebra of matrices in which + indicates the operations of anticommutator
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and commutater respectively, namely a±b = ab ± ba. (See also Appendix C of [1].)
This is not a coincidence and the following important observations, here illustrated
on the recursion operator Φ 1 2 of the KP class, can be made.

i) Integral operators:

412/12 = 1^3(^13/32 ± /i3<?32X ( 5 20a)
u

4i2 = <5i24i+α<5i2> (5.20b)

is equivalent to the introduction of the integral operator q*. Then Φ 1 2 becomes
the nonlocal recursion operator Φ 1 2 , defined in (5.11) and associated with the
nonlocal eigenvalue problem (5.3).

ii) Matrix operators:

QΓ f ^ <lf + f <l\ q>f matrices, (5.21)

reduces Φ12 to the well-known matrix recursion operator

φ = D2 + q+ +Dq + D-ι+q-D~1q~D-\ (5.22)

associated with the N x N matrix Schroedinger eigenvalue problem in one

dimension [15].

The directional derivative qί2dU\2~\Qi2 oϊ qf2'

\ i \Qri2 =fίiQ'12, (5-23)

i) is exactly the usual Frechet derivative qγ2U\il9n ®t fiti-
ii) Corresponds to the usual Frechet derivative q±[_f^g of q±:

f±g = fg±gf (5-24)

Since the ± operators in (5.20a), (5.8b), (5.21) and (5.18b) satisfy the same
algebraic identities (A.3), then important algebraic properties of the recursion
operator Φ 1 2 of the KP equation (like hereditariness) are equivalent to the
corresponding properties of the nonlocal recursion operator Φ 1 2 (5.11) and, even
more remarkable, of the matrix recursion operator Φ 1 2 (5.22).

In order to make this connection with the matrix formalism more clear, we
observe that the nonlocal problem (5.3) can be obtained taking the N -> oo limit
of the N x N matrix one dimensional Schroedinger problem

g (5-25)

where the coefficients of the matrix q are chosen in the form

(φij = qijix, t) + a(δiJ+! - δUj-1), (5.26)

with the obvious prescriptions

d
qtj(x,t) >q(x,t,yί9y2); a(δiJ+ί-δitj-ί) >ocj—. (5.27)

The connection between equations in 2 + 1 and N x N matrix equations in
1 + 1 was first used by P. Caudrey. He introduced in [16] a N x N spectral problem
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(similar to (5.25)) which reduces to (5.2) in the limit N-> oo. Then he showed that
the N x N Riemann-Hilbert formalism associated with it becomes, in the limit
iV->oo, the nonlocal Riemann-Hilbert and the d formalisms of (5.2) [17].

The connection established in this section between the spectral problems (5.25),
(5.3) and (5.2) implies that the well established theory of recursion operators and
their connection to the bi-Hamiltonian formalism in 1 + 1 dimensions, once applied
to the matrix problem (5.25), gives rise, in the limit JV-» oo, to the corresponding
theory developed in [1] and this paper for 2 + 1 dimensional systems.

It is remarkable that both algebraic properties and methods of solution for
integrable systems in 2 -f 1 dimensions can be justified and obtained from the
corresponding properties of 1 + 1 dimensional systems.

Appendix A

In this Appendix we present some of the explicit calculations necessary to apply
the results presented in this paper to the classes of evolution equations associated
with the KP and the DS equations. In order to make this paper self-contained,
we first present some results contained in Appendices B, C of [1].

The directional derivatives of the basic operators q\2 and Qχ2, defined in
(1.4b) and (1.10b) respectively, are

/12, #12 scalars, (A.la)

/i2 off-diagonal matrix, (A.lb)

where /^ 2 are defined by

± g13f32). (A.2)

The integral operators fγ2 have the following algebraic properties:

<3Γ2^i2= ±H2a12, (A.3a)

{a\2b\2 - b\2a\2)cγ2 = (αΓ2&12)~ c 1 2 = - c~l2al2bX2, (A.3b)

(012&Γ2 + bΐ2a±2)c12 = {aX2b12fc12 = ± c\2a\2bl2, (A.3c)

af2 = ± a ±

l 2 . (A.3d)

Moreover the integral representations

/i2 = \dy3{qi3f32 ± f13q32), Qi2 =

imply that the operators ^fj2and Qχ2 satisfy Eqs. (A.3) as well. Equations (A.3)
are conveniently used to show that:

a) The recursion operators Φ 1 2 (1.4) and (1.10) are strong symmetries of the
starting symmetries K°12H12 (1.5-6) and (1.11-12) respectively. For example, if
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^?2 = 6Γ2 and H12 is given by (1.12),

Φi2dίQΪ2H12lf12-(QΪ2Hι2UΦi2f12^ + Φ12(Q;2H12)dif12^

= - σ [ ( δ r 2 w 1 2 ) + P Ϊ 2 1 Q Ϊ 2 + e r 2 ί 3 r 2

1 ( β Γ 2 ί ί 1 2 ) + ] / 1 2

- (σ(P1 2 - Qΐ2PΪ21QΪ2)fi2r Hl2 + σ(P12 - Qt2P^ Qΐ2)fϊ2H12 = 0,

since the terms without Qf2 give

- o(Pί2f12)~Hγ2 + σP12f~ϊ2Ht2 = 0,

and the terms with Qf2 give

= - σQt2P'12

ι{E~X2Q
+

l2fi2 + fΐ2QΪ2H12 + Qΐ2f;2H12) = 0.

b) The Lie algebra of the starting symmetries is given by Eqs. (1.7) and (1.13).
For example

i) if K°2H12 are given by (1.5-6):

- q^D'1 {q^H^Y Hψ2

ii) if K°12Hί2 are given by (1.11-12)

c) The functions T12 given by (4.16) and (4.25) satisfy Eqs. (4.10); for examples

i) if T12 = δ12, then

S12/12 = Φ i 2 i ^ 2 ] / 1 2 = (2δΐ2 + <5Γ2O"^Γ2 +«Γ2O-1<5Γ2)/i2 = 4/ 1 2 ,

since <512d = O and δ*2fl2 = 2f12,δϊ2fι2 = 0.
ii) If T 1 2 = (x/2)σQι2δl2I, then Eqs. (4.10) are satisfied using the following results:

τi2dUιi\ = ̂ σfϊ2δ12l = xσf12,

Qϊi/12, /12 off-diagonal

6Γ2/12, /12 diagonal

For instance:

*s f — nil
°12J 12 ~ σ \ 1

-x(P

12 r 12 k:i2 + ^12

> Π+ p - 1/Ί +
12 V^12r12 ^12 )/l2

7Ί +

2 )/ 1 2

= /l2
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d) Φn

12ίK°12H12,T12^=09ifK°12H12 and T12 are given by (1.11-12) and (4.25)
respectively, or by qϊ2Hί2,H12 = H(yl9y2), and δ12. For example

= 0.

e) Equation (4.17b) holds. It follows from M12d[_δ12] = Dδΐi +

^ - 1 ^ Γ 2 = 2 A which implies

(A.4)

Different choices of H12 = H(yuy2) give different results. As it was shown in
Appendix B of [1]

(A.5)

an analogous, although more tedious derivation, gives

a /(2α)2 'Φ"122 IM1 2 iί\2

2'
)

) (A.6a)

- " * » o d d , A 6 W{
\ [n/2, n even

and the coefficients C\l) are obtained through the following recursive construction:

eg" = l, ( A 7 )

where Cf = 0 if b < 0 and b > α. Equations (A.4) and (A.6) imply Eq. (4.17b).

f) Θΐ2Φ"12K
0

12Hl2 are extended gradients; for example if

i) K°12 = N12=qϊ2,H12 = H(y1,y2), Θ12 = D and n = 0:

ii) ^ ? 2 = M 1 2 = D q i

+

2 + q^D-1 q'l2,H12 = H(yi,y2), Θ12 = D and n = 0:

in) K? 2 = M 1 2 = β 1 ~ 2 σ , / / 1 2 defined in (1.12) and n = 0:

<f12,(σMl2Hl2)dg12) = <f12,-HΪ2g12> = <-Ht2f12,g12>.

iv) X ? 2 = N 1 2 = β Γ 2 , ί ί 1 2 d e f i n e d i n ( 1 . 1 2 ) a n d n = l :
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g) Equation (4.24b) holds, since

<fti1)Hl2,xσQΐ2δ12I)=-(xQΐ2σy["2

+1)H12,δ12iy

= j dxdy1dy2δ12tmceQl2σfΐ2

+1)H12.

Appendix B

In this Appendix we show that if Φ is factorizable in terms of compatible
Hamiltonian operators Ω and Θ in the form Φ = ΩΘ ~1, and if Θ is invertible and
ΘL = 0, then Eq. (4.5) holds.

We first show that

Γ, (B.I)

(B.2)

(B.I) simply follows from the definition of the adjoint:

while (B.2) requires the use of all the hypothesis of this Lemma.:

(ΦL[v']T+Θ^Θ'1v,a)

= (ΩL[Θ(Θ~11;)] Θ 1 T,α> + </2L[6)α] Θ'' υ, Θ~' T}

Then, using (B.I-2) and (4.4) for n = 0, we obtain Eq. (4.5):

{(ΦT)L + Θ(ΦT)tΘ-ι)υ = Φ(TJX_Ό] + <9T* 6T " υ) + φL\υ] T

+ Θ¥%Θ~λυ+ Θ{T*Φ* -Φ*T*L)Θ~1

= Φ(TL[v~] + ΘTtΘ' *v) + ΘS*Θ'1 υ.
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