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Abstract This article studies the Schrodinger equation for an electron in a
lattice of ions with an external magnetic field. In a suitable physical scaling the
ionic potential becomes rapidly oscillating, and one can build asymptotic
solutions for the limit of zero magnetic field by multiple scale methods
from "homogenization." For the time-dependent Schrodinger equation this
construction yields wave packets which follow the trajectories of the "semi-
classical model." For the time-independent equation one gets asymptotic
eigenfunctions (or "quasimodes") for the energy levels predicted by Onsager's
relation.

This article initiates a study of an approximation widely used in the quantum
theory of solids. When one ignores interactions between electrons in a crystal, one
is quickly led to consider the one-body Hamiltonian governing the motion of a
single electron through a lattice of ions in the presence of external electric and
magnetic fields. If the external fields are effectively constant in space and one is
interested in wave packets which are large relative to the lattice spacing, a simplified
theory for the motion of the packets, known as "the semi-classical model," has been
in use since the 1930's. In particular, for the case of an external magnetic field with
vector potential A(x), R. Peierls [13] concluded that suitably prepared packets
would follow the orbits of the classical Hamiltonian

where En(k) is an energy band function for the (Bloch) spectrum of the problem
without the external field. Through the years there have been a number of efforts
to justify this approximation and/or exhibit solutions of the Schrodinger equation
with this behavior (Kohn [10], Chambers [3], Zak [14]). However, to the best of
our knowledge there has not been a study using multiple-scale techniques as in
homogenization. We feel that this approach simplifies the justification of the model
considerably. It also makes it possible to refine the model and extend it.

In this paper we only consider problems with external magnetic fields. After
discussing the physically relevant scaling of the equations, we begin by constructing
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approximate solutions to the time-dependent Schrόdinger equation whose supports
follow the orbits of H(x, p). This construction can be carried out to all orders in
ε, where ε = 1.5 x 10~9 x B and B is the magnetic field strength in Gauss. Thus
the "asymptotics" in our title refer to the limit 5->0, not h-+0.

The second half of the paper is devoted to the construction of approximate
eigenfunctions or "quasimodes" for the magnetic Hamiltonian. One of the most
important predictions of the semi-classical model (when combined with the
Bohr-Sommerfeld quantization rule) is Onsager's relation [12]. This gives a
formula for energy levels of an electron in a crystal in a magnetic field, and it is
the basis for calculation of Fermi surfaces using data from the de Hass-van Alphen
experiment. We construct approximate eigenfunctions for the energy levels
predicted by Onsager's relation. From a technical point of view this is quite easy,
because the problem is essentially one-dimensional in the "slow" variables. In any
case the constructions require only a rather direct combination of the Ansάtze of
homogenization and geometric optics with caustics. Once again the constructions
can be carried out to all orders in ε and here this gives a refinement of Onsager's
relation.

Throughout this article the function En(k) is assumed to correspond to a simple
eigenvalue. In the future we hope to give semi-classical asymptotics for the
time-dependent Schrδdinger equation for cases where En(k0) — En + 1(k0), and the
function En(k) has a conical singularity at k0. This occurs in graphite.

Finally we wish to call the reader's attention to the recent work of Helffer and
Sjostrand on semi-classical asymptotics for Schrόdinger's equation with magnetic
fields, [6] and [7]. This treats a variety of problems which differ from those
considered here in that the ionic potential is not rapidly oscillating on the scale
which makes the coefficients of the differentiations small.

I. Scaling

The Hamiltonian for an electron in a crystal lattice in the presence of a constant
external magnetic field of strength B and direction ω is given by

^ + e^-ω x xY + V(x).
ox 2c J

Here m and e are the electron mass and charge respectively, c is the speed of light
and the potential V is assumed to be smooth and periodic on the crystal lattice.
The spacing in typical crystal lattices is on the order of Angstroms and typical
ionization potentials are the order of electron volts. Hence, V and its derivatives
are of order one in these units, which makes them suitable for the problem at
hand. In these units

i— + -5ω xx ) + V(x\
dx 2 J

where α = 3.81 eV(A)2 and 0 = 1.52 x 10~9(i)~2/Gauss. Since experimental field
strengths do not usually exceed the order of 105 Gauss, we will treat ε = βB as a
small parameter in what follows.
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The choices of distance and energy variables made here were determined by
the need to make V(x) and its derivatives of order one. This has lead us to something
close to "atomic units" (h = m = e = I). Indeed, in what follows we will move closer
to that system and suppress α. The constant α is of order one, and removing it
corresponds to a minor change in energy units. Considerations of this type
do not fix a time variable. We will be interested in wave packets whose spatial
dimensions are order one in the variable y = εx ~ 10~5x, and we will see that these
packets can be expected to persist for times that are order one in the variable
s = εh~1t~ 1010£, where t is in seconds. Rewriting the Schrodinger equation in
these variables, we have

This is the form of the equation that we will use from here on, and as noted above,
we will treat ε as a parameter that can be as small as we wish.

II. Time-Dependent Wave Packets

For equations like (1) Λnsάtze for asymptotic solutions (in the limit ε->0) are
available. In particular, following Chap. V of Benssousan, Lions and Papanicolaou
[2], we look for u in the form

where m(x,y,s,ε) = mo(x,y,s) +εm1(x,y,s)+-•• and m is assumed to have the

periodicity of V in x. Making this substitution we have

iε— -Hu = e(-i/ε)φ{Lom + εLλm + ε2L2m),
ds

where

d ,, d ,d d d ,
ds oy ox oy oy

and L2 = d/dy d/dy. Here the vector k is given by

Thus to solve the Schrodinger equation to order ε2 we will need

L om o = 0 and (3.1)

Lom1 = - Lίm0. (3.2)
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Equation (3.1) says that for all (y,s) mo(x,y,s) is an eigenfunction of

*„-(£ + *)' +KM

with eigenvalue dφ/ds, satisfying the periodicity conditions in x. Following
the usual conventions for Bloch spectrum, we let En(k), /ceR3, be the nίh largest
eigenvalue of H0(k) with the periodicity conditions, and φn{x,k) be the cor-
responding eigenfunction, chosen so that the sequence {ψn}™=1 is orthonormal in
L2(D), D a fundamental domain for the period lattice. Hence, assuming that En(k)
is a simple eigenvalue when k is given by (2), we can satisfy (3.1) by choosing φ so that

and setting

In view of (4.1) it follows by the Fredholm alternative that (3.2) can be solved
for m1 if and only if

(|̂ )W*. (5)

After some computation (see Appendix 1), (5) reduces to

df0 dEn/dφ ω x y\ df0 lid dEnίdφ coxy

dk \dy 2 J dy 2\dy dk\δy 2

where b is the (real-valued) function

Here A is the Jacobian of ω x y

0 — w3 w2

w3 0 — vt

V-w2 wx 0 /

By standard Hamilton-Jacobi theory (4.1) implies that the curves defined by

y dk\dy

must be the spatial parts of solutions to
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Note that in terms of k = ξ + (ω x y)β this system is the semi-classical model ([1]),

ok ok

Thus the transport equation (6) implies that if we begin with a localized packet,
i.e. choose f(y, 0) with small support, the packet will move along the trajectory
predicted by the semi-classical theory. The coefficient

1 ( ΰ dEnfdφ ω x y

2\dy dk\δy 2

insures that j \u\2dy is constant in time modulo terms of order ε. We do not know
R3

the physical significance of b, but it contributes a variation in the phase of u.
Mathematically b plays exactly the role in these constructions that the "subprincipal
symbol" plays in the construction of asymptotic solutions to P(x,εD)u = 0, cf. [4],
§1-3.

We can go on to solve the Schrόdinger equation to order εN for any N. To
eliminate terms of order ε2, we must solve

— — Lίm1 — L2m0.

As in solving (3.2), this can be solved for m2 if and only if

0 = $ij/n{L1mί +L2mo)dx. (7)
D

Since (3.2) only determines mι up to fι(y,s)ψn(x,k(y,s)), (7) reduces to an
inhomogeneous version of the transport equation (6) for fλ. The equations obtained
by setting the coefficients of εN to zero for N > 2 are all solved the same way.

One we have constructed u satisfying the Schrodinger equation to order εN,
the standard argument from DuhameΓs formula shows that u(s) differs from the
true solution of the Schrodinger equation with initial data u(0) in L2-norm by an
error bounded by C\s\εN, where C is independent of s and ε.

III. Quasi-Modes and Onsager's Relation

In this section we will construct a large family of approximate eigenfunctions for
the Hamiltonian

with eigenvalues near a fixed energy Eo. When Eo is taken to be Fermi energy,
the contribution of these eigenvalues to the spectral density of H(ε) will confirm
Onsager's explanation of the de Haas-van Alphen effect. However, to avoid dealing
with operators with continuous spectrum, we will follow the usual procedure of
considering H(ε) restricted to functions satisfying u(x + d) = u(x) for d in a sublattice
of the crystal lattice L. To have convenient sublattices for the semi-classical
constructions that follow we will assume that the points in L and ω have rational
coordinates in terms of an orthonormal basis for E3. Hence we can choose an
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orthogonal basis for E3, including a vector parallel to ω, with rational coordinates
in terms of a basis for L. Thus we have an orthonormal basis for £ 3 , [e^.i — 1,2,3}
such that e3 = ω and α^ieL, ί= 1,2,3, for some positive αf's—we choose the
smallest ones. We will let LN be the sublattice of L generated by {iVα^:/ = 1,2,3},
and consider H(ε) restricted to functions satisfying u(x + d) = u(x), deLN. As N -> oo
the spectral densities for these problems converge to the spectral density for H(c)
as an operator on L2(R3).

Taking (yl9y2,y3)
 a s coordinates in terms of {έl9e29έ3}9 we have

However, in H(s) we will use yιe2 in place of ω x y/2. This gauge transformation
does not change the spectrum of if (ε) as an operator on L2(R3), since it corresponds
to conjugation by the operator of multiplication by exp(— iy1y2/2).

Our construction will follow the method, initiated in Keller [8] and
Keller-Rubinow [9] and developed in Maslov [11] and Duistermaat [4], of
associating approximate eigenfunctions with Lagrangian manifolds invariant under
the flow of the Hamiltonian En(ξ + y1e2). The oscillatory coefficient V(y/ε) will
only introduce minor modifications in this construction. Accordingly, we will begin
with a 3-parameter family of Lagrangian manifolds on which the simple eigenvalue
En(k) satisfies

We will assume that (dEJdkί9dEJdk2) does not vanish on

Γ0 = {{kί9k2):En(kl9k29k°3) = EQ}9

and that a connected component of Γo is a simple closed curve γ0—recall that
En(k + δ) = En(k) for all δ in the dual lattice to L. The nonvanishing of the partial
gradient insures that

3) = {(kl9k2):En(kί9k29k3) = E}

has the same form as Γo for \E — Eo\ <c and \k3 — fc3| < c, and that it depends
smoothly on (E,k3). We let y(E,k3) be the simple closed curve in Γ(E,k3) which
converges to y0 as {E,k3) goes to (Eθ9k3).

For I k3 — k3 \ < c and | E — Eo \ < c we define the (Lagrangian) manifolds

Near points on L(E, k2,k3) corresponding to points on γ(E, fc3) where dEJdkί φ 0,
we have L(£,k 2 ,k 3 ) given by (3/,dS/dy), where S = f(y1 + k2) + k2y2 + k3y3 and /
satisfies En(f'(z)9z,k3) = E. Near points on L(E, k2,k3) corresponding to points on
y(E9k3) where dEn/δk1=09 L(E,k2,k3) is given by {(y9dS/dy):dS/doi = O}9 where

S = (yίΛ- fc2)α — h(oc) -f fc2y2 + ^33;3

and /ί is defined by En(oι,h'(oc)9k3) = E.

In this paragraph we will attempt to give an overview of the construction of
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approximate eigenfunctions "associated" with the family of Lagrangian manifolds
L(E,k2,k3). For readers familiar with this type of construction (we follow
Sect. 1 of Duistermaat [4] closely) this sketch may suffice without the more
detailed discussion that follows it. We will build approximate solutions to
H(c)u — (E + εEx)u = 0 using the Λnsάtze

u = e{-i/ε)S{y)m(y/ε,y,ε) (8.1)

and

1/2$e{-ilε)S{y>Cί)m(y/ε,y,θί,e)dθί, (8.2)

where S(y) and S(y,α) are phase functions parametrizing parts of L(E,k2,k3) as
described in the preceding paragraph. Given any y° we will be able to build
functions satisfying the eigenvalue equation to order ε2 near yx = y?5 corresponding
to all the sheets of L(E,k2,k3) lying above a neighborhood of yx =y?. However,
we will need to patch these local solutions together via a partition of unity in y1

to give a globally defined solution. This will force us to choose the undermined
additive constants in the phase functions in a consistent way and impose constraints
on (E, k2, fc3). The constraints on fc2 and k3 are simply those which make the phase
functions satisfy the periodicity conditions, i.e.

rn.eZ, i = 2,3,1 ^N'

but E is constrained by

+ i), meZ, (9)

where y is any curve homotopic in L(£, k2, k3) to L(E, k2, k3) P) {y2 = y2, y3 = y®}-
Condition (9) is the familiar Bohr-Sommerfeld quantization condition, since the
Maslov index of y is 2, because y is a simple closed curve. Using our explicit
description of L(E,k2,k3), we see that (9) is equivalent to

Area enclosed by y(E,k3) = 2πε(m + \\ rneZ. (10)

This is Onsager's relation. In the literature (e.g. [1,10]) one finds this formula with
1/2 replaced by a function of {E,k3) which is not necessarily 1/2. However, if one
interprets E as the leading term in an expansion of the energy levels in powers of
ε, as we do here, 1/2 is the only possible value.

Precisely as in our construction of time-dependent wave packets, the u given
by (8.1) will satisfy H(ε)u — (E + εEx)u — O(ε2), provided m(y/ε,y,ε) satisfies the
time-independent versions of (4.2) and (6), i.e.

where k(yx) = dS/dy -f y^e2 and
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Since the flow

y = ̂ (En{ξ + yiέ2)) ξ=-j-(En(ξ + yie2)l (12)

leaves L(E,k2,k3) invariant, it is natural to treat y as a coordinate on L(E,k2,k3)
on the set where we use (8.1). Then the differentiation in (11) is just the derivative
of/ along the flow (12). Moreover, the second term in (11) insures that the density
\f\2dy is invariant under the flow. Finally, the coefficient b in (11) is the restriction
to L(E,k2,k3) of the smooth function on (y, ξ)-space

(see Appendix I.)
One sees immediately that all coefficients in (11) are functions of yγ alone. This

makes solving (11) much simpler than it is in the general case (i.e. in [4]). Since
the flow in (12) commutes with translations in y2 and y3, there is a well-defined
minimal positive s0 such that (y^s + s0), ξ1{s + s0)) = (y^s), £i(s)) for any orbit of
(12) on L(E,fc2,/c3). Taking a specific orbit, (y(s), ξ(s)) we set

E, = ~- μ(ξMh + ^ ( s U a ) ^ and
so o

Then, defining d(y,ξ) = φ) for all points (y9ξ) of L(E,k29k3) with yι=y1(s\
ξχ = ^(s), we get a smooth function on L(E,k2,k3) satisfying

dEjdS \dd Ί

~^r\ ^~ + yie2 y-^ = b + Ei
dk \dy J dy

on subsets of L(£, k2, fe3) coordinatized by y. Note that d is independent of y2 and y3.
Letting / = e'ίdg, Eq. (11) merely says that the density g2dy is invariant under

the flow of (12). One such density, defined globally on L(E9k2,k3) is "dsdy2dy3"
where

j hdsdy2dy3= j dy2dy3$h(y1(s),y2,y39ξί{s),k2,k3)ds (13)
L(E,k2,k3) R2 0

for all HECQ (L(£, k2, k3)). On any open set in L(E, k2,k3) that can be coordinatized
by y, dsdy2dy3 = g2(yi)dy1dy2dy3, where g is a smooth positive function such that
f = e~idg satisfies (12).

The only points of L(£, k2,k3) which do not have neighborhoods coordinatized
by y are those for which

dEn

ok1

Since y(E,k3) is a real-analytic closed curve (since En(k) is simple, En(k) is a
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real-analytic function of k\ it follows that (14) holds only for a finite set Σ of values
oϊ{y1,ξ1) on L(E9k2,k3). It is near the j^'s corresponding to points in Σ that we
will use Ansatz (8.2). To complete the construction we only need to show:

(a) that we can satisfy H(ε)u ~(E + εEλ)u = O(ε3/2) using (8.2), and
(b) we can make choices so that u in (8.2) agrees to O(ε2) away from Σ with

where dsdy2dy3 in (13) is given by g2dy1dy2dy3.
In (8.2) we are going to take m(x, y, α, ε) = mo(x, y, a) + εm1 (x, y, α) with

mo(x,y,(x)-f(y,oι)φn{x,(d/dy)S(y,(x)Jryιe2). Then we have H(ε)u — (E + εE1)u =
Ix+12i where

R

and
/ 2 = ε " 1 / 2 f e ( - i / ε ) S ( ε L 0 m 1 + ε L 1 w

R

with /c(y i, α) = 3S/^j + y ι e2,

Lo = (id/dx + /c)2 + V(x) ~ E,

Lx = 2ik d/δy - 2δ/δx 5/5j; + W/δj; k - £ x ,

L 2 = d/dy - d/dy and k = k(y1,cή.

The first observation one needs here is that in a neighborhood of a point (yo,a°)
corresponding to a point in Σ1 one has

/as \ ds
n \ M + yJ2\E = (y,a)R(y90L)9 (15)

where R is smooth. This follows since by construction

when (dS/du) = 0, and (52S/5α3_y1) # 0. Moreover, differentiating (15) with respect
to yx and evaluating on L(JE5fc2,fc3) one sees

In view of (15), assuming yx is sufficiently close to y°, we can integrate by parts
in It. This gives

Λ = V J ̂ - ^ ^ ( ^ ( y , «)/(y, α)^B(y/ε, Hy,, a))da.

Thus, if we can find m2 so that

( R ( ή ) R ( ) φ ( l (16)
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we will have

which gives us H(έ)u — (E + εEγ)u = O(ε3/2). By the Fredholm alternative we can
choose mΐ so that (16) holds provided

( ^ ) (17)

vanishes on {(y,a):{dS/dot)(y,a) = O}, i.e. at (j/,α) corresponding to points on
L(E9k29k3). As in (6), the computation of Appendix 1 shows that (17) equals

On the set (dS/d(ή{y,(x) — 0, the mapping φ from (y,α) to (y9dS/dy) is a diffeo-
morphism into L(E,k2,k3), which identifies α with the function ^ on L(E,k29k3).
Thus under the flow (12),

when (dS/dcc)(y, α) = 0 and ψ(y, α) = (y, ξ). Thus, using φ to identify / with a function
on L(£,k 2,k 3) when (dS/d(x)(y,ac) — 0, the first order terms in (18) again represent
the derivative of/ with respect to the flow in (12). Further computation (see (A.6)
in Appendix 1) shows that, when one includes the lower order term l(y, α)/, (18)
will vanish on L(E,k2,k3) if/ = e~idg(a\ where dsdy2dy3 ~ g2dady2dy3. Note that
this choice makes / a function of a alone.

To see that this choice of u in (8.2) reduces to the choice of u in (8.1) away
from Σ, we need only expand (8.2) by stationary phase. This gives

u = Ih"{a{y))\-1/2 expf - l-S(y,φ)) - ~sgnh"(φ))\mΌ(y/s9y,φ)) + 0(ε)), (19)

where α(y) is obtained by solving

y i - f f c 2 ^ ' ( α ) , (20)

using the implicit function theorem. Since (20) is precisely the equation relating
the coordinates α and yx on L(E,k2,k3\ we have

dy1dy2dy3 =
dy1

doc

and

dady2dy3 = \h"(oc(y))\d<xdy2dy3,

—{y, a(y)) = (α(y), fc2, fc3) = (/'(yi + fc2), fe2, fc3)

Hence, the principal term in (19) agrees with the order 0 term in (8.1) up to an
additive constant in the phase S. To choose these constants consistently on
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L(E,k2,k3), we must have k( = 2πmi/Noci, i = 2,3 and as we move around γ(E,k3)
(see (9)), the total increase in S plus the net effect of the shifts (in sgn /ι"(α))/4 must
be an integer multiple of 2πε. Since y(E9k3) is a simple closed curve, the net shift
is π, while the integral of dS/dy around y gives the area A (E, k3) enclosed by y(E, k3).
Thus we must require Onsager's relation

A(E9 k3) = 2πε(m + £), meZ.

Since the functions u in (8.1) and (19) both satisfy H(ε)u — (E + εE^u = 0 to
order ε2, the order ε terms in (19) must agree with those in (8.1) provided we choose
the free ψn(x)f(y, α) in m1 (x, y, α) consistently. The reader will see that this is always
possible and poses no additional constraints on L(E,k2,k3).

Finally we piece together our local solutions using a partition of unity in y1

such that all elements of the partition of unity are either 1 or 0 on a neighborhood
of Σ. This completes the construction.

To collect the hypotheses which arose in the preceding construction and make
the dependence on parameters clear. We state our result as follows:

Theorem. Assume that the equations En(ξ) = Eo, ξ3 — k% have a simple, closed curve
γ0 as one component of their solution set, and, on y0, En is simple and

does not vanish. Then, for \E — Eo\ ^ c1 and \k3 — /c§| ̂ c3,En(ξ) = E and ξ3 = k3

define y(E,k3) with the same properties, and we let A(E,k3) be the area enclosed by

For \E — Eo\ ^ Cj we consider

S(N,E) - {(ε,k2,k3):0 <ε^ε0 and \k3-k°3\^c3}

Then for (ε, fe2,/c3)eiS(ΛΓ,£) the preceding construction gives u(y) satisfying

\(H(ε)~(E + εE1))u(y)\^Cε3/2, yeR\ (21)

such that

(i) u has period Not^ in yh ί = 2,3, and is localized in ξ^ — k2 S y\ = ζi ~ 2̂?
where ξ2 and ξ2 are the maximum and minimum of ξ2 on y(E,k3), and

(ii) the constant C in (21) is uniform on S(N,E) and independent of N and E for
\E~ E0\^c1. Moreover, the integral of \u\2 over the slab a< y2<b,c <y3<d is
bounded away from zero with the same uniformity.

Remark. In this construction the functions mt(x,y) and mt(x, y, α), i = 0,1, in (8.1)
and (8.2), respectively, are independent of y2 and y3. Hence, we can use exactly
the same procedure to solve for the higher mr(x,y) and mr(x,y,a). This will give u
satisfying

\(H(ε) - (E + εEj + ... + εMEM))u(y)\ £ Cε
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with the same uniformity as before. To all orders the amplitudes mk in u will be
independent of y2 and y3. Note that for r ^ 2 , mr(x,y\ modulo fr(y)φn(xΛ), is
determined by

Lomr + L1mr_1 + L2mr_2

 = E2rnr-2 + ••• + Erm0,
where

d d . d .d

dx dy dy dy

3d t , ,, , dS
L2—— TΓ'^Γ a n d ^ — k(y1) = -z—-

oy oy oy

Appendix ί

We need to compute

I(yΛ) = $Ψn(xΛ)(2ίk'~~2^'~ + ίPk)f(y)ψn(x,k)dx, (A.I)
D \ dy dx dy dy J

where the real vector k depends on y. With different choices of k this computation
is used in formulas (6), (11) and (18).

Since En(k) is a simple eigenvalue, we may assume φ(x, k) is analytic in k. Thus,
taking the gradient with respect to k,

and, taking the inner product with φn,

0 = ̂ (k)~2\φn(xyk)(i~ + kjφn(x,k)dx. (A.2)

Expanding (A.I) gives

Hence, using (A.2) we have

Mndfif
ok oy 2\oy ok

Mndfifd dEΛ

ok oy 2\oy ok J

-\Φn^-^-dx+\-z~-^-dx + 2ιk \φn-—-dx ,
|_ D dy dx D dy dx D dy J

dEndf ifd dE
* ++ TTΓ

dk dy 2\dy dk
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where

Ψψ + Wtψ
δy dx δy

where Ho = (i(d/dx) -f k)2 -f V(x). Since i7 0 is self-adjoint,

Moreover, the matrix M given by (M)o- = dkjdy} satisfies

ok dy dk

Thus, letting A denote the anti-symmetric part of M, (A.3) becomes

In (5) we have dEJdy = d2 φ/dyds = 3/c/3s so that (A.4) becomes

and (5) becomes

π i r ; J ^ o , . f [ Γ # , , Mndfo i(ddE

which immediately gives (6).
In (11) dEJdy = 0, so that (A.4) becomes

and fc in (11) satisfies

as claimed.
Finally, when we use (A.4), the expression in (17) becomes

2\dy dk J doc doc
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This establishes (18) with

^ § - if- m I φte, (A.5)
dα doc

l<y,«) ̂ § + c El if

but we still need to study the restriction of / to L(E,k2,k3).
From the definition of R

£(α, k2 + ye2, fe3) - E = (yx + fe2 - h\a))R,

and on L(£,fc2,fc3), ^ + fc2 = fc'(α). Hence on L(£,fc2,fc3), R = dEn/dk2(oί,h'{<x)9k3)
and SK/d^ = l/2(d2En)/dkl(a9h'(<ή,k3). Thus, differentiating the identity

with respect to α, we conclude that

f V ( « ) - fe2,«) = S - ( α , Λ'(α), k3) + ̂  ^ ( α , '̂(α), /c3).oα dk1ok2 2 ok2

Thus on L(jE,fc2sfc3)5 (A.5) becomes

so that (17), on L(E,k2,k3) coordinatized by (/,α) = (y2,y3,α), is simply

ίv(y\α)'( — , — H — I I — , — )'V \f — (b-\-Eι)f^ (A.6)
\dy' dot J 2\\dy' dot/ J

where

fe2'δfe3' 5/c2 = (α,fi'(α),k3)

Since the flow in (12) in these coordinates has ά = — dE/dk2, this is the desired result.
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