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Abstract. We prove an inequality bounding the mass from below by the
electromagnetic charge in five-dimensional Kaluza-Klein theory without
assuming the existence of global U(l) symmetry.

1. Introduction

Since Witten [1] discovered a simple proof of the positive energy theorem [2] in
general relativity, various generalizations [3] have been made using similar
methods. These results have important physical consequences for the stability of
Minkowski spacetime. Recently there have been attempts [4,5] to generalize this
result to higher dimensional theories of Kaluza-Klein type (for a review on this
subject see Ref. [6] and references therein).

In those theories, unlike in general relativity, there exist globally regular,
asymptotically vacuum, static solutions, besides the vacuum solution, which are
stable. These solutions have non-trivial topology even in the neighborhood of
spatial infinity, and it would be reasonable to assume that this non-localizable
topological non-triviality prevents them from decaying into a configuration
belonging to the topological sector of the true vacuum (they are topological
solitons). In any case to determine if a given solution is stable we need to know
at least whether it is the minimum energy solution in its topological sector.

In this paper we consider five-dimensional Kaluza-Klein theory and prove an
inequality bounding the mass from below by the electromagnetic charge without
assuming the existence of an exact internal Killing symmetry. This relaxation of
exact internal symmetry is necessary if we wish to allow non-ί/(l)-symmetric
perturbations. The inequality we will derive turns out to be the same as the one
formulated by Gibbons and Perry [5] using a supersymmetric argument. In the
course of the derivation we will put special emphasis on solutions with non-zero
magnetic charge. Examples of particular interest are the multimonopole solutions
[7]. In each asymptotic topological sector, we show that these solutions saturate
the inequality.

* Supported in part by NSF-Grant No. PHY-8318350
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The organization of this paper is as follows. In Sect. 2 we briefly explain
five-dimensional Kaluza-Klein theory in a geometrical way. At least this will fix
our notation. Section 3 is the main part of the paper which contains the derivation
of the inequality in the presence of non-zero magnetic charge. In particular how
topological charge (which we did not have in four dimensions) is incorporated
into the inequality is explained. If spacetime is four-dimensional, then topological
charge is not present, and our method yields a particularly compact derivation of
the usual positivity theorem. To define conserved quantities in Sect. 3 we use a
background connection Vα. Some subtleties involved in extending Vα to spinor
fields are discussed in the appendix. Finally in Sect. 4 we summarize the result
obtained and discuss some unsolved problems.

2. Five-Dimensional Kaluza-Klein Theory

The most naive Kaluza-Klein theory unifies the electromagnetic and gravitational
fields by considering a metric gab of Lorentzian signature on a five-dimensional
manifold. This five-dimensional spacetime is assumed to have a (7(1) symmetry
generated by a spacelike vector field ka of constant norm λ^, where this constant
is regarded as a constant of the theory. By U(l) symmetry we mean that the
spacetime has a principal 1/(1) bundle structure such that the structure group 1/(1)
is also an isometry group. We interpret the fiber, which is topologically a circle,
as an extra spatial dimension at each point of an effective four-dimensional
spacetime represented by the base manifold. In order to make this interpretation
consistent with our observations the size of the internal circle has to be very small.

Let us recall how this five-dimensional metric joins the electromagnetic and
gravitational fields together. From the metric gab, using the fact that it is Lie derived
by ka (meaning it is independent of the internal coordinate), we can construct two
horizontal tensor fields which are independent of the internal coordinate: a
symmetric tensor field hab:= gab — λ2

GAaAb and an antisymmetric tensor field
Fab:= VaAb — VbAa, where Aa = λ^2gabk

b. (A tensor field is called horizontal if it
is zero when contracted with ka) It is easy to verify that habk

b = O, Fabk
b = 0.

Because any horizontal tensor field which is Lie-derived by ka can be identified
with a tensor field on the base manifold, the metric gab defines for us two tensor
fields on the effective four-dimensional spacetime.

Let us choose the Einstein-Hilbert action and express it in terms of hab and
Fab. The result is:

5Rd5v = (2πλjk) f [(1/2) *R - (λ2JZ)FabF
ab^v, (2.1)

where we used the metric hab in forming the Ricci scalar *R and the invariant
volume element d4υ, and in raising the indices of Fab. We immediately recognize
(2.1) as the action for the Einstein-Maxwell system without source if we identify
k/lπλn with K = 8πG, Fab with the Maxwell field and hab with the four-dimensional
metric. It is in this sense that the most naive Kaluza-Klein theory unifies the
electromagnetic and gravitational fields. Although we needed to fix the norm of
ka to obtain the Einstein-Maxwell equation in the effective four-dimensional
spacetime, it is artificial, from the five-dimensional point of view, to fix one
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component of the five-metric as a kinematical structure. For instance, since we do
not vary the internal-internal component of the metric, gabk

akb (it being a constant
of the theory), the corresponding component of the Einstein tensor, Gabk

akb, is not
constrained at all.

A less artificial version of the Kaluza-Klein theory, which is the most popular
one, does not fix a priori the norm of the (7(1) Killing vector ka. The norm of ka

is allowed to vary and turned into a dynamical field with the boundary condition
that it approaches the constant value λ^ as we go to infinity. Then the
five-dimensional field equation in this theory becomes exactly the vacuum Einstein
equation.

To see what kind of fields and their dynamics this theory describes let us express
the Einstein-Hilbert action in terms of tensor fields naturally defined on the base
manifold. If we define λ:= (gabk

akb)1/2, hab:= gab - λ2 AaAb, Fah:= V'aAb - WbAa with
Aa = λ~2gabk

b then, as before, λ, hab, and Fab can be identified with four-dimensional
tensor fields. In terms of these tensor fields the action is:

(2π/fc) J[(λ/2) *R - (λ"β)FabF
ab - DaD

aλ]d*υ. (2.2)

As before hab was used for ^R^d^υ, and index raising, and Da is the covariant
derivative operator such that Dahbc = 0. We can make this expression look more
familiar by performing the following conformal transformation:

hab-+hab:=Ω2hab9 Ω2 = (λ/λJ. (2.3)

Then (2.2) becomes:

(l/2κ)J[4£ - (l/4)λ2Ω2FabF
ab + DaD

a\nλ - (3/2)(/5Λlnλ)φa\nλ)']dAϋ,

where κ:= kβπλ^ as before and we have used hab as a metric for construction and
index raising of objects with tilde's. If we drop the total divergence term, this is
the action for general relativity with an unusual coupling between two matter
fields, namely a scalar field and the Maxwell field. Some interesting solitonic
solutions have been found in this theory [7].

However, it is believed that imposing an exact (7(1) symmetry is still artificial,
and one should allow the higher dimensional metric all of its degrees of freedom,
hoping to recover the (7(1) symmetry as a dynamical low energy phenomenon. If
we adopt this point of view we should not impose (7(1) symmetry at a kinematical
level. In particular, transition to a non-symmetric configuration should not be
excluded a priori as a possible mode of instability of the monopole or any other
[/(l)-symmetric soliton1.

Let us discuss our choice of the boundary conditions for this generalized version
of the Kaluza-Klein theory. These boundary conditions will be assumed in the
second part of the next section. In an asymptotically flat spacetime in four
dimensions it is natural to choose a flat metric as the background structure to
specify the boundary conditions necessary for various discussions which involve

1 To first order, stability against [/(l)-symmetric perturbation implies stability against arbitrary ones,

but this implication fails for finite perturbations
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globally defined physical quantities such as total energy-momentum, angular
momentum and so on. However in the theory we are considering, it may not be
possible to choose a flat metric even near spatial infinity because of a topological
obstruction. The most interesting examples are solutions having non-zero magnetic
charge. In such a case, even the background structure is subject to the topological
restriction. The best we can do is to choose a background metric which, in some
neighborhood of spatial infinity, has an exact U(l) Killing vector ka of constant
norm λ^ and whose quotient metric is flat. In addition, we can impose that the
metric is ultra-static and spherically symmetric near infinity. Roughly speaking, it
is the metric which is as flat and as symmetric as possible in the given topological
sector. One trivial consequence of this choice is that the total electric charge of
the background is zero because electric field on a static slice vanishes. The total
four-momentum is also zero. As would be expected the background has no
dynamical feature. However, it may have a non-vanishing magnetic charge which
is topological in origin and is determined by what topological sector it belongs
to. With this background metric gab, our boundary condition is that any physical
metric gab should satisfy gab - gab = 0(l/r).

3. A Bogomolny Inequality

In this section we prove an inequality bounding the mass from below by the
electromagnetic charge without assuming the existence of an exact U(l) symmetry.
For this, we will use a spinorial method, which, in particular, requires that the
spacetime in question has an appropriate spinor structure. This section is divided
into two parts. In the first part we will show that the integral of certain spinor
expression over a three-dimensional closed spacelike surface can be made less than
or equal to zero if the spinor extends to one satisfying Witten's equation. For this,
the standard method in four-dimensions goes through without any modification.
Therefore we just present well-known results in a convenient way. In the second
part we interpret the integral of the spinor expression at spatial infinity in terms
of the 4-momentum and the electromagnetic charges, obtain thereby a non-zero
minimum for the mass. This part will be done in some detail because the proof
has been given in detail in the literature [4] only for the case where there exists
an exact U(l) symmetry.

a) First Part of Proof. Let gab be a globally regular solution to the five-
dimensional Einstein equation Gab = 0 satisfying the boundary conditions for the
five-dimensional Kaluza-Klein theory, and consider the five-dimensional version
of the spinor expression introduced by Witten (generalized by Nester):

Wab:=lm(φyabcVcφ\ (3.1)

where γabc:=(l/6)(yaybyc + even permutations—odd permutations) with ya

satisfying yayb + ybya = 2gabl, φ is the Dirac-adjoint of the spinor φ (we choose the
Dirac-adjoint so that ya = — ya) and Vα is the torsion free covariant derivative
operator of the metric gab extended to spinor fields in the standard way. The symbol
Im stands for taking the imaginary part and, for simplicity, we drop spinor indices.
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To show that the integral of Wab over a three-dimensional closed surface can
be made less than or equal to zero, we need the following identity:

VbW
ab = (l/2)Ga

bξ
b + lm(VbφyabcVcφl (3.2)

where ξb = Im(ψyby). This identity can be derived fairly easily using the following
properties of Vβ:

d f d ^ (3.3)

where Rabcά is the Riemann tensor of the metric gab9 and yab = {l/2)(yayb - γbya).
Also we use a Clifford algebra identity which looks more complicated than it really
is. Because we will use that identity several times, we give it here in fully written
out form:

yabcymn = gcmgbnya _ gcngbmya + gbmganyc _ gbngamyc + gamgcnyb _ gangcmyb

_|_ gem abn en abm • bm can ^bn cam , am ben _βn bem . abemn

(3-4)

Among all these, terms containing a product of three y's do not contribute in any
of our calculations because (φyabcφ) is real. The last piece, an antisymmetric product
of five 7's does contribute in general. However in the above calculation it does not
contribute because of the symmetry of the Riemman tensor.

For a metric satisfying the vacuum Einstein equation globally one can drop
the term containing Gab in (3.2). If we integrate the result and apply Stokes' theorem
on the left-hand side we get:

(l/2)§Wabdsab = $(VbW
ab)dsa = μm(VbψyabcVcψ)dsa, (3.5)

where the surface integral is taken over the boundary dΣ of a four-dimensional
spacelike hypersurface Σ, and where dsab and dsa are the surface elements of dΣ
and Σ respectively. In general the right-hand side of (3.5) is neither positive nor
negative. However we can make it to be less than or equal to zero by splitting it
into two pieces, one non-positive and one non-negative and then choosing the
spinor ψ so as to eliminate the non-negative piece.

For that purpose we adopt the following notation. We use lower case Latin
characters starting alphabetically from i to represent an index projected to Σ. With
this convention the last integral in (3.5) can be written as:

μ ^ (3.6)
Here we used the fact that the indices b, c can be replaced by /, j because the index
a is contracted with the surface element dsa and yabc is totally skew, together with
the following:

yaij ̂  yayij = γa(yiγj _ gij) = _ yίyayj _ gijya = ψyayj _ gijya^ (3.7)

Because dsa is timelike, it follows from the property oϊ the Dime-adjoint that the
first term in (3.6) is non-positive and the second is non-negative. Therefore we
conclude that:

(l/k)§Wabdsab^(\ (3.8)
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if φ satisfies y'V^ = 0 on a spacelike hypersurface Σ.

b) Connection of (3.5) to Conserved Quantities. In this part we will complete the
inequality by interpreting the left-hand side of (3.8) in the limit as the surface Σ
extends to spatial infinity in terms of conserved quantities.

In the absence of an exact U(\) symmetry we lose the ability to decompose the
five-metric into a four-metric, a scalar field, and an electromagnetic field. However,
because of our boundary conditions representing an isolated system we have an
asymptotic 1/(1) Killing vector as well as four other asymptotic translation Killing
vectors. Then, as in four dimensions, we can construct the total "five-momentum"
of the system using these five independent asymptotic Killing vectors. Among its
components, the one corresponding to the asymptotic U(ί) Killing vector is
identified with the total electric charge of the system, while those corresponding
to other asymptotic symmetries identified with components of the total four-
momentum of the gravitational field.

In order to relate the surface integral (3.8) with conserved quantities, consider
the following expression [9]:

(\/2k)§(L"ξb + Γa

m

bξm)dsab, (3.9)
oo

where La = {Γa

bmgbm - Γ\mgam\ and where Γa

bc is defined with respect to the
background connection Vα by Γb

amvm = (Vα — V'a)v
h. When ξa is an asymptotically

constant vector field2 the above integral is 5Paξ
a, the component of the "five-

momentum" along ξa. Among many possible expressions [9] for the five-
momentum this particular expression turns out to be the most convenient one for
our purpose. In a more general setting, or for an asymptotically rotational ξa, one
should include [10] an extra term Vaξb in the integrand of (3.9) and require exact
commutativity of ξa with Vα in a neighborhood of spatial infinity. The resulting
expression can be written as:

(l/2k)§(Laξb + Ψξb)dsab. (3.10)

For the present application, however, the extra term will never contribute, because
it reduces to the electric charge of the background, which vanishes as mentioned
at the end of the first section.

Let us go back to the spinor expression (3.1) and split the integral of it over a
three surface at spatial infinity into two pieces:

Im § φyabc(Vc - Vc)ψdsab + Im § ψyabcVcψdsab. (3.11)
oo oo

Although we know how Vfl acts on tensors, its extension to spinors is up to us to
some extent. Using that freedom we define Vα on spinors by (see appendix for
further discussion):

(Va-Va)Ψ'.= Γaψ, Γa = (l/4)Γbcay
bc, (3.12)

2 Because asymptotic Killing vectors are all asymptotically constant any asymptotically constant

vector can be regarded as a linear combination of five independent asymptotic Killing vectors
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where we used gab to lower the first index of Γb

ca. If we substitute this in (3.11) and
use the identity (3.4), then we find, first of all, that the first term of (3.11) reduces
to k times (3.9) with ξa = lm(φyaφ). When φ is asymptotically constant (we mean
that φ = 0(1), V aφ — O(l/r2)) its associated vector field ξa is also asymptotically
constant. Thus, for such spinors we conclude that

(l/fc)Im § φyabc(Vc - Vc)φdsab = 5Paξ
a. (3.13)

oo

For the second term of (3.11) we start with the following argument. Although
it is not entirely obvious, we claim that (3.11) gives the same answer for any two
asymptotically constant spinors differing from each other by 0(1/r). Suppose, in
fact, that φλ-φ2 = 0(1/r). Then

= ~lmj(Wcφ2)yabcφ1dsab = -Im§(Vcφ2)yabcφ2dsab

= lm§φ2y
abcVcφ2dsab.

In the first and third steps we used Vcφι = O(l/r2) and Vcφ2 = O(l/r2) respectively,
and in the second and fourth steps we used integration by parts. Furthermore, the
first term of (3.11) is manifestly insensitive to a change of spinor field by 0(1/r).
Hence the second term must be insensitive to those changes, too. This fact will
simplify actual evaluation of the second term.

At this point it is interesting to note that in four dimensions, as well as in
the trivial topological sector of five-dimensional Kaluza-Klein theory, the second
term of (3.11) vanishes while in topologically non-trivial sectors in five-dimensional
Kaluza-Klein theory it does not. The reason is simple. In the former cases the
appropriate background metrics are flat so that for any asymptotically constant
spinor there exists a spinor field with the same asymptotic value which is
asymptotically constant with respect to the background. Then according to the
above argument the second term will vanish for any asymptotically constant spinor.
In the latter cases, however, the background is not flat because of non-vanishing
magnetic charge. Consequently, not for all asymptotically constant spinor there is
a corresponding strictly covariantly constant spinor with respect to the background,
and we cannot discard the second term. In this case it is quite natural for us to
expect that the second term, which would have been zero if the topology had been
trivial, contains information about magnetic charge of the metric. In fact it is
proportional to the magnetic charge.

In order to show that we use the fact (see appendix) that for any given
asymptotically constant spinor φ9 we can find a spinor φP satisfying:

φ-φP =
t - k{aFh)c-]ybcφP + O(l/r3). (3.14)

In the second equation it does not matter which metric is used to raise and lower
indices because they agree asymptotically, and Fab is O(l/r2). For such a spinor
φP, a short and straightforward calculation, using (3.4) and the fact that the electric
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charge of the background is zero, leads us to:

(l//c)Im § φpf
bcVcφPdsab = (λJ4k)φpφP § *Fabdst'ab

= {πλO0/k)1/2φpφPQM = (l/2κ)1/2φpφPQM, (3.15)

where we used the fact that φPφP is asymptotically constant and normalized the
magnetic charge by:

QM = {πλl/kΫ^lβπλJ § (l/2)*Fabdsab, (3.16)
00

where *Fab = (Iβ)έabcdFC(h έabcd = λ^ιέabcdeke and Fcd is the electromagnetic field of
the background metric defined as in Sect. 2. The factor in front of the integral
gives QM the correct dimensions and normalizes it in agreement with the
"Heaviside-Lorentz" convention, ε0 = 1. With this convention, the proportionality
constant between the fifth component of five-momentum and electric charge is
determined by:

λZ15Pak
a = {πλJψ2QE = (iβKΫ^Qz, (3.17)

where K = kβπλ^ = 8πG as before. This can be seen most easily by putting
ξa = ka/λ^ in (3.10) and noticing that the first term of the integrand drops out, for
kbdsab = 0{ί/r) and La = O(l/r2).

If we add this result to (3.13), (3.8) yields:

^ 0 , (3.18)

provided that for any φP satisfying (3.14) we have a solution to yιVtφ = 0 which
coincides with φP asymptotically.

To cast the inequality in its final form we will prove the following. Let Aa be
a vector and B be a non-vanishing scalar satisfying:

Aalm{φyaφ)^Bφφ for all φ. (3.19)

Then,

i) Aa is a future-directed timelike vector,
ii) AaA

a^ -B2.

First of all note that lm(φyaφ) is a future-directed timelike vector for any non-zero
spinor φ because of the way the Dirac adjoint is constructed. If we choose a
particular φ such that the right-hand side is negative then the left-hand side will
be negative also. Furthermore, it must remain negative under all possible action
of the Spin I group (the double covering of the restricted Lorentz group) because
the right-hand side is a scalar. But that is not possible unless Aa is itself a
future-directed timelike vector, whence i). To prove ii) notice that the above
argument implies that

\Aalm(φyaφ)\^\Bφφ\ (3.20)
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when {Bφφ) is negative. When {Bφφ) is positive (3.20) is still true because if it
were violated for some φ then ψ':= nay

aφ for any unit vector na orthogonal to Aa

would also violate it although (Bφ'φ1) is negative, so that we run into a
contradiction. Now let us choose for φ an eigenvector of Aay

a with eigenvalue λ;
then (3.20) implies that

On the other hand by applying Aay
a twice to our eigenvector we obtain λ2 = AaA

a.
From these ii) trivially follows.

Conversely we claim that if i), ii) are assumed, then (3.19) follows. It suffices to
show that

\φy°φ\^\φφ\ for all φ.

For this, write φ as a sum of eigenvectors of — ίy°, i.e., φ = φ + -f φ _, where

ψ+=:(l/2)(l-iy0)φ and ψ_ =(1/2)(1 + iy°)φ. Then from the fact that - iy°

commutes with Dirac-adjoint, it follows that φ+φ- =φ-φ+ = 0. To conclude the

y°φ + ) ̂  0, ι/Γ>_ - - Ϊmθ/Γ/V_) g 0.
Applying the above result to (3.18) we obtain

_ sp/p* = _ * p / F " _ (l/2κ)βl 2ϊ (ίβκ)Q2

M,

5Pa is timelike and future directed,

or equivalently;

M^ί(\/2κ){Q2

E + Q2

M)fl2. (3.21)

(In non-simplified gravitational and electrical units, we have

In the above we assumed that QM φ 0 for simplicity of argument. However, the
inequality (3.21) is still true even if QM = 0.

Finally we must prove that for any asymptotically constant spinor φ there
exists a solution φw to the equation yιVιφw = 0 such that φw agrees with φ
asymptotically. Fortunately proofs already exist in the literature [11] in the case
of four dimensions and the basic inequality3 still holds in our case.

4. Conclusion

We proved that any globally regular solution to the five-dimensional vacuum
Einstein equation satisfying Kaluza-Klein boundary conditions should satisfy the
inequality (3.21). In each asymptotic topological sector characterized by magnetic
charge QM, the minimum energy is achieved when QE is zero. In the trivial

3 In the first paper of ref. [11] it is called the "generalized Hardy lemma." In the second paper, a

slightly more general version of it is proved in the appendix
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topological sector (QM = 0) the minimum energy is zero and it is of course attained
by the Kaluza-Klein vacuum solution. In non-trivial topological sector (QM φ 0)
the multi-monopole solutions have precisely the minimum energy. With nor-
malization, the mass, electric charge and magnetic charge of the multi-monopole
solutions are

M = nί(l/2κ)9 QE = 0, QM = n/(\/2κ)1/2

respectively, where ί\= Iπλ^ and n is the number of monopoles; this clearly
saturates the inequality (3.21). Thus our results strongly support stability of the
multi-monopole solutions even against non-L/(l)-symmetric perturbations of finite
size.

The inequality (3.21) is weaker than the corresponding one in four-dimensional
Einstein-Maxwell theory by a factor of two as pointed out in [5]. Nevertheless,
this result is the optimal one since as just pointed out there exist solutions saturating
the inequality.

Of course one can "dimensionally reduce" to obtain an equivalent four-
dimensional configuration using the 1/(1) symmetry and ask why the ordinary
four-dimensional inequality is violated. One obvious reason for that would be the
presence of a scalar field of Brans-Dicke type and the attractive nature of it. It
would be interesting to understand more on the role of the scalar field4.

Appendix

In Sect. 3 we extended the connection Vα associated with the background metric
gab to spinor fields by:

(Va-Va)Ψ = mrbcay
bcψ. (A.I)

On the other hand, suppose we defined γa:=Sa

mγm for an invertible mapping S%
satisfying gab = Sa

mSb

ng
m" and Sa

b = δa

h + O(l/r). In this case it would be natural to
extend the background connection to spinors by demanding the following
condition:

Daf = 0. (A.2)

Here, we have used Da for the second extension to distinguish it from the first.
How are these two extensions related to each other? Let us show that their difference
can be made to be O(l/r3) by choosing an appropriate S£. Let

(Vβ - Da)φ = (l/4)Cmnay™ψ, Cmna = - Cnna.

Then

Vβf = (Vα - Da)f = ( l / 4 ) C m ^ [ y ™ , f ] = CmnaS
b

cy
mg«\ (A.3)

4 A different treatment of the scalar field seems to account for the discrepancy between our inequality

(3.21) and the one given in the second paper of ref. [4]. An extra term containing the scalar field in

that paper is absorbed into the mass term when the natural conformal factor for the reduced four-metric

is chosen
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where we have used (A.2) and the fact that two derivative operators Vα and Da

agree on spacetime tensors. On the other hand, using (A.I) we obtain:

V0/
π = (Va - Va)ym = - Γlf -

= - ΓZf - Γcnafg"i"' = - g'm(Γnac + Γma)f

= - {lβ)9mnΓ{cn)af = - (l/2)gm"(Vagnc)f. (A.4)

Thus,

V a f = ΦaS
b

m)ym + SbJay
m = ΦX,)7m - (\/2)Sb

mg™(Vagm)f. (A.5)

Multiplying both right-hand sides of (A.3) and (A.5) by gdbS
d

e we get:

Cmeay
m = gdbSiVaf = UdXVaS

h

m - (l/2)Va</em])>m

= ίgMsd

ίevHsb

m^ym,

where we used gem = gdbS
d

eS
b

m. D r o p ym from both sides, then

Cmea = ίgdbS
d

[eVlιήS
b

mll (A.6)

Now let us write Sb

m = δb

m + Tb

m + O(l/r2) and make gbeT
b

n symmetric using gauge
freedom. Then, with such a choice of Sb

m it immediately follows that Canm is O(l/r3)
since Tb

m is O(l/r) and VaT
b

m is O(l/r2). Therefore, Vα and Da agree to O(l/r3).
With this result in mind let us go back to Eq. (3.14). Any solution φP will satisfy

Daψp = (1/4) [(1/2)/αΛ - k{aFb)c-]f cφP + O(l/r3) (A.7)

and vice versa. Now, we will consider (A.7) and the background (gab,y
a) instead

of (3.14) and (gab, ya). Tensor indices will be raised and lowered by the background
metric.

To understand this equation introduce the following orthonormal basis:

Ea

0 is chosen to be the normalized static Killing vector,
E% = λ~Jk\
Ea

uE
a

2, Ea

3 are chosen in such a way that these are mapped under the projection
mapping into normalized spatial translational Killing vectors in the flat
quotient manifold.

If we define

DaE
b = a>m, 1 = 0,1,2,3,5,

we can easily verify that the expression inside the bracket of (A.3) is exactly ωabc.
Now recall that in terms of an orthonormal basis

where Eaφis meant to be the Pfaff derivative of ψ (i.e., the spinor whose components
with respect to the basis E" are derivative of the components of ψ with respect to
the same basis). Thus, Eq. (3.14) or equivalently (A.7) can be solved trivially if we
choose a spinor whose components are constant with respect to the basis E".
Finally, because our orthonormal basis is asymptotically constant any asympto-
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tically constant spinor should have constant components with respect to our basis
up to the O(l/r) term.
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