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Abstract. We present a discussion and some numerical results on the actual
possibility of making accessible, by numerical techniques, the complex
singularities of the power spectrum (resonances) for a chaotic signal. Henon's
transformation is investigated in detail, showing that the position of the leading
resonance in the complex frequency plane determines the kind of mixing rate in
the time evolution.

Introduction

The statistical analysis of chaotic time evolutions proceeds through the introduc-
tion of quantities which make us able to study invariant features for the dynamical
system we deal with.

Let us make this statement more precise.
A (differentiable) dynamical system is a time evolution x(t) = ftx(0) on a

manifold M, where / is a differentiable function and t may be an integer or a real
number.

A chaotic time evolution is defined by the presence of sensitive dependence on
initial conditions; namely, any small noise (always present in physical as well as in
computer experiments) will be exponentially amplified as time goes on. Due to this
feature the system undergoes a sort of lack of memory about its past history and
precise predictions on the future become impossible.

Nevertheless, we assume that the time averages of a given differentiable
function, A :M-+R (i.e. an observable):

</!>= lim ^ M(/'x0)dt (1)
Γ-^oo 1 0

exist for some x0, defining a probability measure ρ, which is invariant under
time evolution and ergodic. Then we can write:

(2)

In physical applications this turns out to be true very often (see [1]).
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In this picture we can define some ergodic quantities, i.e. some functions of the
measure ρ, which make it possible to investigate statistical properties of the time
evolution. Some of them - characteristic exponents, entropy, information
dimension - are already easily accessible and indeed they constitute, at the present
time, the main tools to study chaotic behaviors.

The aim of this paper is to show that another interesting quantity - the complex
singularities of the power spectrum of a signal - is actually accessible and
computable by numerical techniques. Poles at complex values of the frequency in
the spectrum are naturally interpreted as resonances of the dynamical system and
they are strictly related to the decay properties of the time autocorrelation
functions.

Some theoretical works on this problem have been carried out recently for a
particular class of differentiable dynamical systems called Axiom A systems (see
[2] and [3-5]). In this case one can deal with the problem through symbolic
dynamics and study the time correlation functions corresponding to the invariant
measure (chosen as a Gibbs state) as space correlation functions for a one-
dimensional statistical mechanics system with short range interactions. In this
framework the authors proved that the Fourier transform of thfe correlation
function is meromorphic in a strip, and the position of the poles does not depend
on the observable monitored. Furthermore, for a discrete time mixing system there
are no poles in a sufficiently narrow strip above and below the real axis, and this
corresponds to an exponential decay of correlations (see [6] and, for some
examples where this is true also for a continuous flow, [7, 16, 17].)

In the next sections we present some results on the actual presence of
resonances in more general (non-Axiom A) dynamical systems, for which numer-
ical studies are often the only accessible tool of investigation. In particular we shall
discuss the problem raised above in the case of a two-dimensional map defined by:

x^ + l^^O+l-ocC^W]2, x2(t + V = β x ι ( t ) , (3)

where α and β are external parameters. Equation (3) represents the so-called
Henon transformation and some of its statistical properties, like entropy and
dimensions, have been largely investigated (see [8-11]).

We shall report elsewhere on numerical studies (now in progress) on the logistic
map of the interval [0, 1] and the Lorenz system.

Time Correlation Functions and Mixing Properties

From here on we restrict ourselves to the simplest case where the observable in
Eq. (1) is but a position coordinate. In this case the time autocorrelation function is
given by:

C(0 = (const) [<x(τ)x(τ + ί)> - <*(τ)>2] , (4)

where brackets indicate the average along the time evolution and the constant is
chosen such that C(0) = 1. We have computed C(ί) by a standard algorithm. Let us
introduce:

R(t,T)= -^--VxίτWτ + O, (5)
1 I τ= 1
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where t = 1 . . .m, T is the total number of iterations and x(t) is the position which is
assumed to have mean zero. Then we have:

where C(ί, T) is the autocorrelation function averaged over the finite interval T.
The choice of m (i.e. the maximum correlation time) is quite delicate. A heuristic
argument (see [5]) provides the estimate:

*<T, (7)

where ε is the noise level due to the floating point truncation (in our case, with
double precision computations ε~ 10~16) and λl is the largest characteristic
exponent. Inequality (7) ensures the observance of only the intrinsic decay
properties of C(t] as well as the selection of the right physical measure ρ. As far as
the former condition is concerned, for the Henon map with α=1.4 and j3 = 0.3
(^=0.4), we have the estimate: m^50. The latter condition ca ben satisfied
numerically because of the existence of a well defined limit C(t, T-»oo) = C(ί),
largely ensured, in our case, by taking : T ~ 1 06. In Fig. 1 a-c we see the function C(t)
computed for the variable x2 in Eq. (3), (the x1 -behaviours are similar), corre-
sponding to different values of the parameter α (β being fixed at the value 0.3). In
this computation we have considered a range of values from α = 1.4 to α= 1.3; in
the former case the time evolution lies on a strange attractor while in the latter
there is a periodic orbit of period 7. As Fig. 1 shows, the behavior of C(t) resembles
a damped oscillation. If α decreases the damping becomes weaker, until the value
α — 1.3 is reached where no damping occurs and C(i) becomes periodic (not
reported).

In the next section we shall see that this behavior is highly related to the
displacement of poles of the power spectrum on the complex plane. By the same
argument we shall see that the rate of decay is exponential in all but one of the
studied cases, namely the periodic one. Hence, there is evidence for an exponential
rate of mixing for all those situations in which we observe chaotic motions.

Now, we can ask if all maps which present chaotic behavior have this property
(i.e. if chaos implies exponential decay of correlations). This appears to be a
difficult problem. As a matter of fact, for the quadratic map of the interval [0, 1]
into itself:

with μ e [0, 4], there are particular values of the parameter μ at which the system is
found to have positive entropy and nevertheless the correlation function does not
decay to zero. However this lack of mixing is trivial: the attractor has several
disjoint pieces which are permuted by time evolution (see also [12]).

We conclude this section noticing that, for α> 1.3, the asymptotic value of C(t)
is not strictly zero because of the finite value of Tin Eq. (5). In fact it fluctuates with

amplitude —== ~10~3.
-/ψ
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Fig. la-c. The autocorrelation function C(i) for the Henon map with β = 0.3 and α = 1.4, a; α = 1.35,
b;α=1.32,c
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Fig. Ic

Power Spectra and Resonances

Let us introduce the Fourier transform for a discrete time signal x(τ), (τeZ):

x(τ)=
r-i

anexp(ίωnτ)

and
\ Γ-l

Q
x(τ)exp(-ωnτ),

(9)

(10)

where ωn= —— and a* = a_n, V n e Z (because x(τ) is real).

Then, the power spectrum is defined as the square of \a(ωn)\ and it measures the
amount of energy contained in the signal x(τ) as a function of the frequencies ωn.

Because T is finite we have a finite frequency resolution — .

From Eqs. (1), (4), and (9) we can get the relation between C(ί, T) and the power
spectrum:

C(f, T)=~ Y |α(ωj|2exp(ϊαv).
I n = l

(11)

In the case of chaotic motion the spectrum becomes continuous in ω and, in the
limit T->oo, we get:

(12)
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where

S(ω)= £ C(ί)exp(-iωί). (13)
ί = 0

In computing the spectrum for the map (3) we have used the following procedure:
compute the function C(t, T) for t as large as 1024, then perform the Fast Fourier
Transform (FFT). By taking t as large as 1024 we are able to resolve frequencies as

small as — — . The result of this computation corresponding to the situations in

Fig. la-c is reported in Fig. 2a-c, while Fig. 2d shows the power spectrum for

α= 1.3. In the latter case the peaks correspond to the frequencies ωk = k -— , with

fc = l,2,3.
It is interesting to notice that in the region with col. 3 (where there is

exponential rate of mixing) the shape of the spectrum has bumps which survive in
the neighborhood of ω l 5 ω2, and ω3; thus suggesting the presence of resonances.

Now, let us introduce an argument which will be useful in the following.
Starting from Eq. (12) we can see that the asymptotic behavior of the

correlation function is determined by the singularities of the analytic continuation
of S(ω) into the complex z plane, which are nearest to the real axis. Indeed, if at a
certain value of the parameter α the nearest singularity is a simple pole located at
zp = xp + iyp, then, for large f, one gets:

C(f)~exp(-j;pf)cos(xpί + φ). (14)

So, while xp determines the frequency of the leading resonance, yp turns out to
drive the exponential damping of the corresponding oscillation of C(t).

Finally we introduce the main result of this paper.
First, let us rewrite Eq. (13) as a Taylor expansion:

S(w)= Σ 'X, (15)
π = 0

where cn = C(t — n) and w = exp( — iω). The series (1 5) will converge in a suitable ring
of analyticity for S(w) in the complex w plane. Nevertheless, we can perform a
numerical analytic continuation of (15) by means of Fade approximants (see [13]),
namely by appropriate ratios of polynomials in the variable w with coefficients
depending on the cn:

and thereby locate the nearest singularities of S(w).
In our case a good compromise between numerical precision and the choice of

the "good" information on the rate of correlation's decay (according to the
discussion in the previous section), is obtained taking 16^L + M5Ξ26. Fur-
thermore, this technique appears to be sufficiently accurate for the study of the
nearest and the next-to-nearest singularity of S(w). There is a reassuring check
coming from the good consistency among the singularities of the various Fade
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Fig. 2a-d. The power spectrum S(ω) for the Henon map with β = 0.3 and α= 1.4, a; α= 1.35, b;
α = 1.32,c;α = 1.3,d
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Fig. 3. The displacement of the leading resonance for the power spectrum of the Henon map with
/? = 0.3 and α varying from 1.3 (bottom point) to 1.4 (top point) steps 0.01

approximants that can be formed from (15). Figure 3 shows the displacement of the
leading resonance in the complex z plane as the parameter α changes from the
value 1.3 to the value 1.4 with steps 0.01. For α = 1.3, we can see a real pole located
at z = ωί. Increasing the parameter value it moves away from the real axis and
accelerates the exponential decay of correlations. As Fig. 3 shows, the motion
α-»z(α) = χj(α) + iy^Gt) on the z plane does not appear very regular, and this seems
to be a fairly general case; on the other hand, smoothness in the dependence of
resonances from the parameter values is not expected in this case, because the
Henon map is not structurally stable. Anyway, ^(α) behaves like a monotonic
function - at least in the region of parameter values we have considered.

To conclude, let us mention that another check of the consistency of this
picture comes from the good agreement between the observed rate of decay of C(t)
at the various values of α and the corresponding value of ^(α).

Conclusions

We have seen how different rates of mixing can be interpreted by the different
positions of one or more resonances in the complex frequency plane. On the other
hand the presence of a resonance can determine the kind of mixing rate, making it
akin to an exponentially damped oscillation. As a matter of fact we have seen that
for the one-dimensional map (8) with μ = 4 the power spectrum has no poles at all,
and this corresponds to a correlation function which decay faster than any
exponential rate, being actually zero after the first step (this agrees to the fact that
in these conditions map (8) is conjugated to a Bernoulli shift). However, detailed
studies are in progress on this point.



352 S. Isola

Let us conclude mentioning that complex singularities for dynamical systems
(in particular concerning intermittency) have been already discussed numerically
(see [14,15]), but the approach was completely different because the signal x(t) was
involved, rather than its power spectrum.
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