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Abstract. Conformal field theory on a family of Riemann surfaces is formulated.
We derive equations of motion of vacua which are parametrized by moduli of
Riemann surfaces and show that these vacua are characterized uniquely by these
equations. Our theory has a deep connection with Sato's theory of KP
equations.

0. Introduction

Recently it has been recognized that the conformal field theory (CFT) on Riemann
surfaces of arbitrary genus plays an essential role to understand the profound
mechanism of the string theory [F.S. Fr.]. Among others very important insights
have been brought by a formulation of the bosonization rule [D.J.K.M.; A-
G.B.M.N.V.; E.O.; V.V.] and an observation that the Virasoro (energy-momen-
tum tensor) operator deforms the moduli of Riemann surfaces [E.O.; B.M.S.].

One approach to the CFT on Riemann surfaces is based on the path-integral
method initiated by Polyakov [P.]. This approach can be regarded as a geometric
one which is recently developed into the algebro-geometric level [B.K.].

Another approach to the CFT is an algebraic one based on the representation
theory of the Virasoro algebra, and was initiated by Belavin, Polyakov and
Zamolodchikov [B.P.Z.]. This approach has an essential connection with solvable
models of statistical mechanics and Kac-Moody Lie algebras.

One of the aims of this paper is to unify these two approaches by constructing a
CFT on a family of Riemann surfaces in an operator formalism. Another aim is to
establish a solid mathematical basis for a class of CFT on Riemann surfaces.

The main ingredient of our theory is M. Sato's theory of KP equations [Sa.;
S.S.]. Originally his theory was developed to solve a problem of soliton equations,
but here we show that his theory actually covers the CFT on Riemann surfaces.
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Here two notions, the universal Grasmann manifold (UGM) and the τ-function,
play the most essential role.

Theory of KP equations was reconstructed by Date, Jimbo, Kashiwara and
Miwa in an operator formalism [D.J.K.M.j. Our theory is deeply interrelated with
their formulation and is in a sense an extended version to a completed Fock space
in order to treat theta functions we need completion. It should be compared with the
treatment of Segal and Wilson [S.W.] which treats the same content in the Hubert
space formalism.

The relation between the theory of KP equations and Riemann surfaces was
formulated by Krichever as the theory of the Baker-Akhiezer function [Kr.;
Mum. 2], which plays an important role in this paper. This relation to Riemann
surfaces was studied further by Mulase and Shiota in connection with the Schottky
problem [Mul.; Sh.].

Fundamental operators in our theory are the free fermions ψ(z), ψ(z), the
current J(z) and the energy-momentum tensor T(z\ acting on the Fock space 3F.
They are provided, a priori, without reference to Riemann surfaces. Information of
Riemann surfaces are carried by vacuum states [A^ePC^) (the projective Fock
space). In this respect our theory is based on the interaction picture in physicist's
terminology. The space ^ [respectively 3C which we call the Weierstrass system
(Sect, 2)] of all geometric data sets is a dressed moduli space of Riemann surfaces
(respectively Riemann surfaces and line bundles). The physical vacuum [X] 6 F(^)
moves with a parametrization of data Xe^ (or $). An important fact is that these
spaces are infmitesimally homogeneous spaces on which infinite dimensional Lie

algebras (S^CC^z"1)) — and δ = ©0C((z"1)) act respectively.
dz

Our main viewpoint is to interpret the map ̂  (respectively #)->lP(J*Γ), Xv-*[X]
as a period map of the moduli space <$ (respectively $) and is to investigate the
deformation of moduli generated by operators f, e © (respectively (5). An important
fact is that the view as a period map matches very well with the method of field
theory. For example the fundamental operators T(z) and J(z) are just the
deformation generators mentioned above. From a physical point of view this
deformation equation can be considered as an equation of motion of the vacua. On
the other hand it can be regarded as the Gauss-Manin connection from an algebro-
geometric point of view.

We have tried to make this article as self-contained as possible, since no detailed
reference on Sato's theory is available in western language. This paper is organized
as follows :

Sections 1 and 2 are devoted to the geometrical setup for a description of the
period map. In Sect. 1 we give a description of UGM (universal Grassmann
manifold) and its Plύcker embedding into projective Fock space F(^), essentially
following M. Sato. In Sect. 2 we construct the dressed moduli space of curves ̂
(following [B.M.S.]) and its generalization °JC including the Picard variety, which are
infinite dimensional complex manifolds.

Using the theory of the abelian functions, we can define a period map from <%
(respectively 5?) to UGM and derive Torelli-type theorems (2.28), (2.29) as a main
result of Sect. 2. The action of the modular group on <H (respectively $) is also
important.
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Section 3 is devoted to a preparation of the algebraic setup. In terms of the
fermion operator ψ(z), \ji(z) acting on the Fock space ,̂ , we construct a Fock space
representation of a central extension of © (or ©), where the Virasoro algebra and
the current algebra appear.

In Sect. 4 we provide the bosonization B-.^^ffl (bosonized Fock space) and
show that the image of UGM in ̂  can be characterized by a conjugate pair of wave
functions and the Hirota equations for τ-functions. We essentially follow
[D.J.K.M.] but reformulate the theory in an appropriate form for field theory.

The contents of Sects. 1-4 can be summarized in the following diagram:

I I I
->UGM—

The space ^C/) is, stated briefly, the deformation of ^ in the direction to the
Jacobian varieties with a gauge fixing (see Sect. 2,F)). The symbols with "~"
(^ etc.) stand for the induced (C*-bundles,

.tf*

In Sect. 5 we construct a well-behaved lifting which we call the τ-function of the
period map zJ1/2 with a method based on Krichever's theory concerning the Baker-
Akhiezer function (i. e. a wave function associated to the curve). This τ-function can
be explicitly written down in terms of the classical Riemann theta function and the
Jacobian embedding of Riemann surfaces :

This explicit form of the τ-function has been already given by several authors
[I.M.O.; A-G.G.R.; V.].

In Sect. 6 the explicit forms of actions of fundamental operators on the τ-func-
tion and TV-point functions are obtained by using the concrete expression of the
τ-function. It is interesting to note that we can obtain the addition formulae of
Θ-functions associated with the Jacobian of a curve systematically, which are
closely related with the Schottky problem in algebraic geometry [Fay; Mum. 3;
v.G.; Mul; Sh.].

In Sect. 7 the fundamental differential equations satisfied by the τ-function will
be derived. This provides the Gauss-Manin connection of this period map. The
main result of this paper can be stated as follows : The τ-function is characterized by
the differential linear equations with infinite degrees of freedom :

Σ

T,Ar

c) = ΦB(Oτ(T,Jrc) , We©

ΓΓ τ(Ί9Xc) =
Oc
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and together with the automorphy:

—- Ωa + X/(ΊΓ) + c)} } τ(ΊΓ, Xc) .

Here Xc lies in the moduli space *$(/) of Riemann surfaces (Sect. 2, F)) and
T = (/ι, t2,...) is the parameter of the bosonic Fock space J^ (Sect. 4, A)). For
/e(5, 0(*f) stands for its action on Xc as a vector field on <$(/) (Sect. 2, D)) and
Φβ(O acts on TΓ as a quantized operator on Jf (3.20), (4.4). For the notations in the
second type of equations (concerning gauge transformations) see the Appendix. It is
a remarkable fact that the τ-function characterized by the above linear equations
satisfies Hirota's nonlinear equations.

In the Appendix we collect the notations and the formulae in the theory of
abelian functions on Riemann surfaces which we have used for explicit descriptions
of our results in this article.

One of the main characteristics of our theory is that we have constructed the
whole theory to keep the complex analyticity throughout the formulation. Another
characteristic is that any infinite dimensional manifold like ̂  and $C is treated as
a projective limit of a finite dimensional manifold. The latter treatment is com-
patible with the completion of the Fock space.

Moreover the structure of our theory has an intimate similarity with a recent
theory of arithmetic surfaces due to Arakelov and Faltings [Ar. Fal.].

Some of the results in Sects. 5 and 6 have already been given by Ishibahsi,
Matsuo, and Ooguri [I.M.O.] and Alvarez-Gaume, Gomez, and Reina [A-G.G.R.].
These sections are, however, reformulated with the help of the preparations of Sects.
1-4 within the framework of the theory of infinite dimensional complex analytic
manifolds. Our main contribution in this paper is to clear up the geometric setting of
the whole theory and to provide a system of differential equations which
characterizes the τ-function uniquely.

After this work has been completed a very interesting paper by Krichever and
Novikov [K.N. ] came to our attention, which seems to have a close relation with our
paper.

1. UGM and Its Plϋcker Embedding

A) Universal Grassmann Manifold (UGM)

(1.0) The theory of UGM was created and developed by Sato and plays an
essential role in his theory of KP equations [Sato; S.S.]. Thanks to the additional
structure of filtration one can obtain an almost complete analogy to the theory of
usual Grassmann manifolds for finite dimensional spaces [S.N.]. We recall here in
Sect. 1 the most elementary part of the theory (or the part which is the same as usual
finite dimensional cases). The deeper part where we need an essential modification
including the theory of τ-functions will be treated in Sects. 3 and 4.

(1.1) Let 1^ be a linear space (over <C) equipped with a filtration {Fmi^}meZ

satisfying the following conditions:
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1. {F"ir }meZ is decreasing, . . .

2. (J Fmi^ = i^,anά f)

3.

4. the topology induced from the filtration (i.e. [Fmif}me^ form a system of
neighbourhoods of 0) is complete.

Such if is actually unique up to isomorphisms.

(1.2) For concrete calculation we choose a (topological) basis of if as follows. For
later use we employ Zh = Z + (1/2) = {n + (1/2) n e TL} as an index set and choose eμ

in Fμ~(1/2^ — Fμ + (ll2}i/~ for each μe2£/z. Then every element v in if can be
expressed as

— oo <^μ< oo

and μeπh

_ f
~~ ]v~ λ^ vn

(, m<μ

(1.3) Example. if — Kydζ (K=(C((ζ)) is the field of formal Laurent series). The
filtration comes from the non-archimedian valuation v:i^-»Z = 2£u{oo} with

v(ζn]/dζ) = n. We use a basis {em + (ΐ/2} = ζm]/dζ}mez. For later use we introduce
another indeterminate z with the relation zζ = 1. Namely z is a coordinate whose
value tends to oo at the reference point. When we use this coordinate in

if ^<£((z~l^γdz the valuation is given by v(zm|/^z) = v(ζ~m~1 |/Jζ)= -ra-1.

(1.4) Let ̂  = Hom<£(i/", <C) be the topological dual space (namely the space of
continuous C-linear functions on if with discrete topology on C). Then if has a
canonical dual structure of a filtered space as

Fmίf = Ker(Horn(if, €)->Horn(Fmif, €)) .

If we set Fmίf = F-mif, and Fmif^F~mif, then (if, {Fmi^}) satisfies the same
properties as in (1.1) and if and if are dual to each other. In particular

U lϋ

is a complete dual pairing of topological vector spaces.
For a basis {eμ}μG%h of iΓ the dual basis {eμ}μE%h of ϊ? can be defined by the

relations :

Then em + (il2}<EFmϊ^ -Fm + 1i^. Every element vEFmi^d^ can be expressed as

m<μ
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(1.5) For later use we introduce another notation:

Then the pairing on f x i/" becomes the natural one :

(1.6) Definition. A subset M QΪΊLh is called a Maya-diagram if both MnZ/z> 0 and
M cnZ7/<0 are finite sets, where Z/z>0 = {μeZ/z;μ>0} etc. and Mc is the
complement of M in TLh. The integer χ(M)= φ(MnZh>0) - Φ(Λf c nZA< 0 ) is
called the charge or the Euler '-characteristic of M.

We denote by Jί (respectively Jί^} the set of all Maya-diagrams (respectively
Maya-diagrams of charge p).

(1.7) Definition. For M e J^ p we express it with an increasing function μ\TLh<p

7Lh as

This uniquely defined μ is called the characteristic function of M. Note that μ(v) = v
for v ̂  oo . Therefore the set

(μ(v)— v; vzΊLh, μ(v)— v>0}

is finite and defines a Young diagram Y(M). We say that 7(M) is associated with M.
The number of boxes

is called the degree of M.

-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8

y(Λf)

Denote by ̂  (respectively ̂ d) the set of all Young diagrams (respectively Young
diagrams of degree d). Note that φ$/d=p(d), the number of partitions of d.

(1.8) Lemma. PΓe Aαt e a canonical bijection

. - — •* x

UJ UJ
M,

(1.9) Definition. We fix pE%. The universal Grassmann manifold (of charge /?)
UGMP is the set of closed subspaces U of if such that i) the kernel and coker-
nel of the natural map /: U-^i^/F0^ is of finite dimension; ii) dimKer(/)
— dim Coker (/)=/>. These C/'s in UGMP are called semi-infinite subspaces (of
charge;?). Set UGM- ]
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Note that, by definition, the topology on £7, which is induced by i^, is discrete.

(1.10) By considering the image of F'mi^ r\ U in i^/Fmi^, m e N, one can introduce
on UGMP a canonical structure of a scheme as a projective limit of schemes of finite
type (Grassmann manifolds for finite dimension), but we will not make it precise
here in order to avoid unnecessary complication. Specialists on abstract algebraic
geometry could easily fill in logical gaps. For non-specialists it is enough to know
that UGMP admits a "good" structure of an infinite dimensional complex manifold
as a "limit" of finite dimensional manifolds.

(1.11) Let U be a closed subspace in YΛ If we consider the induced filtration
{FmU^Fmi^nU} on [/, then dimFmU/Fm + lU^l. If we set

then ί/e UGMP if and only if M(U) is a Maya-diagram of charge p.
We can then define the Young diagram Y( U) = Y(M( U)) associated with U, and

the degree of U, d(U} = d(M(U}}*

B) Tangent Space of UGM

(1.12) Proposition [S.N.]. For Γ/eUGM we have a canonical isomorphism

(here TVUGM denotes the "holomorphic" tangent space of UGM at U).

(1.13) Definition. An endomorphism φ on i^ is a continuous linear map from
y to Y/~ such that there exists an integer neTL with φ(Fm^c:Fm + n(i^ )
for all me 2£. Denote by F"End(Y/") the set of such endomorphisms and put

End(YO is thus a filtered C-algebra (i.e. if φ^ eFm, φ2eF\ then φ1 o φ2εFm

whose filtration topology is complete.
For each φeEnd(f ) define Ov(φ)e Tυ UGM by U^^^-f-^i^/U.

(1.14) Proposition. 7%β ήweαr wa/? θ: End(^)->//°(UGM, Θ) = {global holo-
morphic vector fields on UGM} is an anti-homomorphism of Lie algebras, i.e.

C) Frame Bundle on UGM.

(1.15) Definition. Let UeUGMp. A frame ξ of U is a basis of t/

such that for 3μ0eZh and Vμgμ 0 , ξ^eF
μ-(1/2)U-Fμ + (1/2}U and

ξμΞ^μmodFμ + (1/2) t/. (Since the topology of U is discrete, all vectors in [/can be
expressed as a linear combination of a finite number of vectors in ξ.) If we express ξ
with {eμ}, then we have

£r = ev<j;j; (with Einstein's notation) veZ/z, reZh<p ,
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or in a form of matrices

' 1 Λ

' l

*

*

*

*

V

1

P - ί / 2
i Ί /Λp + 1/2

•p-3/2 p-1/2

We denote by FUGMP the set of all frames of elements in UGMP. The natural
map π: FUGM-^UGM is holomorphic.

(1.16) Definition. Let GL(%h<p) be a group of semi-finite matrices of the form

• 1 1

*

0

A

r, 1 Γ

r

1

>-3/2
P-l/2

)

For an element AeGL(TLh<p) as above we define
easily seen to be well-defined. We define

, which is

The group GL(Zh<p) operates on FUGM^ from the right as follows:

(1.17) Proposition. 1) π : FUGMP->UGMP is a principal GL(Zh<p)-bundle,
2) UGMp = FUGMp/SL(Zh<p)^UGUp is a principal (C*-bundle.

(1.18) Definition. Let GLf(TLh) be the group of invertible linear transformations
0 :g(eμ) = evg* of iΓ such that g^ = δ!ί except for a finite number of μ, v's:

• 1

Also P_ =(1+(p;φ6/7lEnd(ιΓ)) is a group since any element l+cpeP_ is
00

invertible: (1-f^)"1 = £ (-!)>". An element geP- is represented in the
n = 0
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following matrix form;

255

• i
V

We denote by GLf(7Lh) the linear transformation group on i^ generated by
GLf(%h) and P_. Any element g in GLf(TLh) can be expressed as

(1.19) Proposition. 1) The group GLf(Zh) acts on FUGM* from the left
transitively.

2) The action of GLf(Zh) is commutative with the action of GL(ΊLh<p)\

(gξ)A=g(ξA) , for VgeGLf(Zh) , MA^GL(U<p) , VξeFUGM" .

3) GLf(Zh) acts on UGΪvP and UG1VR

(1.20) Proposition (Bruhat decomposition) [S.N.]. 1) For MptTL and
; 7(C/)= 7} w α /ocα//y closed subspace ofUGMp, and P-

acts on each UGMp'r transitively.
2) UGM^^ U UGMp'y; disjoint union (Bruhat decomposition).

YεW

3) UGMP'Φ Z51 β« open dense subset of UGMP whose complement is of
codίmension 1 in UGMP. We call this subspace UGMP*Φ the big cell (in UGMpj.
We denote UGM°'Φ simply by UGMΦ.

We denote F1 End (y ) by φ _ which is the Lie algebra of P_ . No te that in φ _ the
Lie antihomomorphism Θ in (1.14) lifts to

In general it is necessary to "subtract an infinity" when we lift the action of
)-φ_ to that on UGM. This procedure will be treated in Sect. 3.

D) Fock Space (Semi-Infinite Form)

(1.22) For each Maya-diagram M = {. . . , μ(/?— (3/2)), μ(p — (1/2))} we denote by
eM or |M> the symbol

μ(p-(ίβ))
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We consider also finite permutations of μ(v)'s, under which eM is multiplied by ± 1
as usual.

(1.23) Definition. The Fock space (of charge p) is a direct product

όίf — 1 Γ ίP/?^
-* p ~ 11 ^^ •>

and the whole Fock space is

#r=® &p -
P

We define two fundamental operators on J*% the charge operator and the mass
operator as

/o («)=/>« if αe^, ,

M(α)=</α if α = £M with d(M) = d .

They commute each other ([/0,M] = 0). If we set

^P (rf) = (α e .̂  /o (α) =^α, M(α) = rfα} ,

we obtain

p a
Note that

and it is of dimension p(d) [cf. (1.7)].
We define moreover the energy operator as

On ^p(d), LO is a scalar operator; L0 = (jp2 +d)ίd.
We introduce a complete Hausdorff linear topology on J p̂ by the filtration

Fd('Fp)= Π ^P(d')l .

(1.24) For a Maya-diagram M as above we define the (dual) symbol eM by

which is also denoted by <M|.
Then we define the dual Fock space as a direct sum with discrete topology :

We can call it "dual" since we have a continuous bi-linear map

< | > : ,fx,r - > (C

UJ UJ
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by which 3F and 3F are topologically dual to each other (with discrete topology
on C).

Any element α in OF can be written as

M M

(1.25) We set

Then J5

p(0)

(1 .26) Proposition. 77ze group GLf(Zh} acts (topologically) on 3* by

G = G [ g ] : & - > &

U UJ
μ ( p - ( l / 2 ) ) μ(p- (3/2))

/or g E G L f ( Z h ) , where ^(e*)Λ . . . z's1 understood according to the rules of usual
exterior algebra,

Proof. For each MeMp,

G(eM)= X G^ew ,
NtMp

where

G^ = <^|<7(e

M)>
with

Since gf belongs GLf(Zh)9 the determinant of the infinite matrix is well defined. Π

(1 .27) Corollary, 77z<? group GLf(Zh) acts also on <F as G - G [g] e End(.F)
//zβ condition that

(1.28) Remark. One can write G(α) explicitly as above by using the matrix
representation of 0"1.

EV Plύcker Embedding

(1.29) We consider ξ = {... , ̂ ^3/2\ ξp-α/2)} eFUGM^7. Then we see that
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Hence we obtain a holomorphic map

(1.30) Proposition. For ξe¥UGMp and AeGL(Zh<p) we have

Λ ( ξ A ) = d e t A - ( A ξ ) .

(1.31) Corollary. We have a commutative diagram of holomorphic maps

\JGMP^^P

X

pl I

with which the action ofGLf(ΊLh) is compatible, where 1P(J%) is the projective space
J X / C * associated with J .

(1 .32) Definition. The map P : UGMP-^P(^P) is called the Plύcker embedding of
UGMP in the Fock space.

(1.33) Theorem. [S.S.; S.N.]. 1) P is injectίve and dp v : ̂  UGM^TP(ί/)P(jg is
also injective for Vt/eUGMp.

2) The image of P is a closed submanifold in 1P(J%) defined by the Plύcker
relations.

2. Moduli of Riemann Surfaces and Line Bundles

(2.0) In this section we prepare a geometric framework of our theory. The key idea,
due to [B.M.S.], is to introduce an apparently redundant parameter, a (formal) local
coordinate, which leads us to work on infinite dimensional manifolds such as the
moduli space of locally framed Riemann surfaces. Generalizing [B.M.S.], we
construct moduli spaces to include Picard varieties, in order to realize current
operators in our geometric settings. The theory then becomes more natural by his
generalization. This gigantic moduli space, which we call the Weierstrass system,
can be embedded into UGM, and is later identified with the space of physical vacua.

A) Field of Formal Laurent Series

(2.1) Here we fix a number of notations concerning universal coordinates.

K = <C((0) = \ Σ β«C" β« e C >: the field of formal Laurent series,
\JΊ ̂  — 00 J

ί °° 1φ =(C[[ζ]] = ̂  ^ β « C " f : the ring of formal power series,
U=o J

]
αwζ" >: the unique maximal ideal of &.
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(2.2) In K we define a decreasing filtration satisfying the properties in (1.1) by

akζ>
n

This filtration is the one induced from the unique (non-archimedian) valuation
v: £->Z = Zu{αo} with v(ζn) = n as

FnK=v'\[n, oo]) .

We have moreover

(2.3) Let GO = Aut<c(0) be the group of automorphisms of (P as C-algebra, which we
call coordinate transformations. We have a natural bisection:

— m2

UJ UJ
<?^φ(0-

Let Gn(n^l) be the subgroup of G0 consisting of φ's with

(2.4) Consider (P* = $-m-{σ = fl0 + tfιC+ ^oΦO} which acts on Φ by
multiplication. We call the elements of &* gauge transformations. Denote by φ* the
subgroup of elements σ whith σ=l+anζ"+ . . . .

We define a semidirect product group G0 = G0 x ^* by commuting relations
φcσ = φ(σ)°φ for φeG0, σet fλ

Then GO acts on Φ as (C-linear endomorphisms by (φ, σ) (/) = φ(σ •/). Note that
(φ, σ) is uniquely determined by its values at 1 and £. We set moreover Gn = Gnx Φ* .
Then G! is a normal subgroup of G0 .

(2.5) Let (5 = ΏQΐ(K) = K — be the Lie-algebra of derivations on K. Define its
filtration by

F"(5 = ©„ = Je®:FmK->Fm + nK^(9ζn + 1 -

(2.6) Proposition.

1) [®n,©m]£(Sn + m,

2) dim^/S^^l,

3) ©n(«έ — 1) is a subalgebra of®.

Note that ©n = Lie G^ for « ̂  0 but © _ ί does not correspond to any holomorphic
Lie group. We denote ©0 — 93, ©ι=93_ in the following.
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(2.7) Let (S = @ί(K) = K \-K be the Lie algebra of differential operators of
dζ

order :g 1 on K. Then it satisfies the following commutation relation for

, d

d d Ί / rf/2 dffΛ d ί ds2 dSi
dζ Si' 2 dζ ^J"^1 dζ '2 dζ ) dζ \1 dζ 2 dζ

Define its filtration by

d
Fn& = ($n = {D£(b: FmK-*Fm + nK} = Θζn +1 — 0 Θζn

(2.8) Proposition. 1) [&„,&„]£&« + *»
2) ©M(«^0) w β subalgebra of (S.

Note that ©Λ = Lie δn(w^0). In the following, we denote ©o^^θ^ί and
_ , where ll = Uz&* = (9 and Λ _ -

(2.9) Remark. The algebra @>0 acts on (9 as

(2.10) Proposition. The exponential map exp : (50 -»(50 sending De(&0 to eDe G0 is
well-defined and surjective, and it induces a bijection exp : ©j_ ̂  6t .

(2.11) Remark. Later we use mainly a coordinate z^ζ'1 (i.e. J^^C((z-1))) to

adapt our notations to the convention in physics. Since z — = — ζ — -, the feature
of © does not change much :

5J Riemannn Surfaces and Their Picard Varieties

(2.12) We recall some elementary notions on Riemann Surfaces. For details we
refer the reader to [Si.; F.K.].

(2.13) Let R be a Riemann surface of genus #^0 and K=K(R) the field of
meromorphic functions on R. Note that K determines R uniquely up to
isomorphisms.

Let Q be a point on R. Denote by (9Q the ring of meromorphic functions on R
which are holomorphic at Q. mQ is the unique maximal ideal of ΘQ consisting of
meromorphic functions vanishing at Q.
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There is a valuation VQ at Q in K such that vβ(/) = the order of zero at
Q — —the order of pole at β, which defines a filtration {F^K] in K. This VQ deter-
mines a point Q with the relation (9Q = {fGK\ vQ(/)^0}. We further define
KQ = lim A7mQ+1 $Q (the completion of K with respect to mβ-adic topology).

(2.14) Definition. We denote by Λ(β) = ,4CR,ρ) the space H°(R,
= {feKι holomorphic except at Q}.

This is a subring in K such that A(Q)nΘQ = (Cl. It has a filtration fF
induced from FK in AT.

(2.15) More generally let & be (a sheaf of germs of holomorphic sections of) a line
bundle on R, ^Q the vector space of meromorphic sections of & which are
holomorphic at Q. Note that ^Q is an (^-module, free of rank 1.

We denote by H°(^(*Q)) the space of meromorphic sections of & on R which
are holomorphic except at Q. It has a filtration:

: order of zero at Q^m},

In particular we set :

, Θ(*g)) = {meromorphic vector fields, holomorphic outside Q} ,

where Θ is the sheaf of germs of holomorphic vector fields on R.

(2.16) The set P = Pic (R) of holomorphic line bundles on R has a natural structure
of an abelian Lie group. Its connected components are parametrized by the degree d
(i.e. the first Chern class) or the Euler-characteristic χ :

P= UP(d]=U Pχ , χ=d+ι-g .
d^TL χeZ

The connected component JP
(0) of 0 (i. e. the trivial line bundle) is an abelian variety J

= J(R) called the Jacobian variety o f R . If we choose a line bundle ̂ l eP(l\ we have
an isomorphism of groups J(R) x TL-^P sending (&9d) to ̂  ® JS?fd (with the
convention: ^f^1^^, where &? denotes the dual of &}.

P has a canonical involution (charge conjugation) * ,pχ-+p~* sending <£ to
where Ω( = Θ v) is the cotangent bundle.

C) Formal Uniformization

(2.17) Let R be a Riemann surface. Denote by R the set of isomorphisms
(as (C-algebras) u : SQ-^>S = (C[[ζ]] (2.1) with QeR, where ^Q denotes the com-
pletion lim @Q/mn

Q

+1 of ΘQ. A specification of u is equivalent to give a valuation-
n

preserving C-algebra homomorphism (9Q-^(9. If moreover the image oΐu : (9Q-+(9is
contained in the subring of convergent power series (9 d $, then the specification of u
is nothing but to choose a holomorphic coordinate at Q. Since AΓis the quotient field
of (9 Q, u : (9 Q-* (9 induces an injective C-algebra homomorphism u:K-^K which
preserves the valuations and further induces an isomorphism u:KQ-^K. Such u is
called a formal uniformization at Q.
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There is a natural surjective map ώ : R->R sending utoQ. This R has a canonical
structure of an infinite dimensional complex manifold as a projective limit of finite
dimensional ones: R(n} = {un: $Q/m£+1-^0/mπ + 1}.

On R the group G0 = Autc($) acts (from the left) as u-^φ°u for φeGQ, ueR.
With this action R becomes a (holomorphic) principal fibre space over R with G0 as
fibres. For n^l,R(n)-+R becomes a principal fibre space over jR with G(n} = G0/Gn as
fibres, and R = lίmR(n\ G0 = limG ( y i ).

n n

(2.18) Let (jR, (α, /?)) be a (homologically) marked Riemann surface with a canoni-
cal basis {αι,... ,αg, ft.... ,j8g} of #!(/?,!) (i.e. (αί,)8J) = δy, (αί,αJ.) = OS ί,j8J ) = 0).
OR, (α,/?)) and (/?', (α ;,/?')) are isomorphic if there exist an isomorphism f:R-+R'
such that /ϊ|l(αί) = α;5 fήf(βi) = β! (/* : Hί(R)-^Hΐ(Rf)). Denote the set of isomor-
phism classes of (7?, (α, /?)) by jΓg. It admits a canonical structure of a complex
manifold of dimension 0 (0 = 0), 1 (0 = 1), 3# -3 (0^2). We call this yg, the Torelli
space.

On ?ΓQ the modular group M ( = Sp(2g, Έ)) acts properly discontinuously (as
base changes in H^R, Έ)} and the quotient space &~gjM is isomorphic to the coarse
moduli space Jίg of Riemann surfaces of genus g (i.e. the set of isomorphism
classes). Over <yg there is a universal family of Riemann surfaces π : ̂ ->«^, where
#,= U Λ (seeFig. 1).

[R]

Fig. 1

What we need here essentially is that the tangent space Tm^~g of 2Γg at [R] is
canonically isomorphic to H1 (R, ΘR) via the Kodaira-Spencer map [Ko.]. Then for
any Q E R the tangent space of ^g at Q is canonically isomoprhic to

where TQ(^6g\3'g) is the tangent space at Q of the fibre of π :
For the universal family of Riemann surfaces π:^-*

U
(α0))

respectively R ( n ) . '(")=

y~g, the union of

constructed above
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admits a natural structure of a holomorphic family

&\<$g-*<€q (respectively ώn:^
n)-^) ,

which are again fibre bundles with structure group G0 (respectively G(π)). For
convenience we set 0) — ̂ . Then we have

For each data X=(R,(<x,,β),Q,u:&Q-+®)ε(#g9 we define a (C-subalgebra of K,

A(X\ by uA(R,Q} and Lie subalgebras B(X) of DerC£) = £ — by uB(R,Q)
respectively [cf. (2.14), (2.15)]. ^

(2.19) Proposition [B. M.S.I]. 1) We have canonical isomorphisms:

at X= (R, (αj8), β, u) e$g (n ̂  0).
2) In the limit («-»αo) we /zαt e a surjective linear mapping

If we denote the kernel of θx by B(X\ then it satisfies the following exact sequence :

and we have a commutative diagram of short exact sequences:

~ d Der(g) Der(AQ
ς ί /C * £(*) ' ,„ ,' ' '

where T^gj^g is the set of tangent vectors along the fibre of ώ.
3) The above isomorphism defines a Lie anti-homomorphism

whose restriction to (50 coincides with the one induced from the action o/G0,

θ:^0 = e>ζ~^H°(^g,Θ^) .
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4) For VXε^g the following diagram is commutative:

ex:&^ - >Tx($g/^g)

J J

(2.20) Remark. For V/e(δ, $(/) is a holomorphic vector field on ^3 and for
VXeΉg, Tχ^g is spanned by {0*00? *?e©}. In this sense we say that the triple
(#0, (5, θ) is an infmitesimally homogeneous space [B.R.].

D) Formal Trίvialization

(2.21) We still consider the family of Riemann surfaces in (2.18). The union of
Picard varieties of fibres forms a holomorphic family of abelian Lie groups :

It decomposes into connected components as

β̂ = LW= LJ ̂  [cf. (2.16)] .
deZ XE%

The fibre product 3C Q = ̂  Q X ̂  is the set of triples {(Λ,(α,)8),β5^) with
'^9

and by projection we have a commutative diagram

3Γ - ̂

-I
(2.22) Definition. 1) For each ^ePic(^) with Qe^ we define

which is left (PQ-module free of rank 1.

2) The space ,f9 is a set of quintuples {(^,L) = (Λ5(α,j8)5β, J^,w,0; QER>
^EP(R),u:&Q~&,t:&Q~$}, where M is a formal uniformization (2. 1 8) and t is a
w-linear isomorphism of modules (i.e. for /e $Q and 5 e ̂ Q, ί(/5) = u(f)t(sj) called
a formal trivialization or formal gauge fixing of ̂  at β. This ί is determined by the
(formal) section ,f=ί~ 1(l) which is a (formal) generator of £P at β.

For a given data (jR, β, j^) with a Riemann surface R,QεR and ^εP(R) we
denote by ̂  the (C-vector space of meromorphic sections of «£? which is a free
A^=^(^)-module_of rank 1. We further define @l

κ(K^ = {D^K^^K^, C-linear
map such that 3DEΌer(K\ for V/e^, V φ e A ^ ; D(fφ) = D(f)φ+fD(φ)}. We
then obtain the following exact sequence :

0 - +K-^&k(Kχ)-JL+Vπ(K) - >0 .

For geK, i(g)ε@κ(K&) is defined by i(g)(φ)=gφ for MφeK^>, and for
K#), π(D) = D.



Conformal Field Theory on Riemann Surfaces

We next define the Lie subalgebras of @κ(K#) by

265

,Q,#) = π-1 (B(R,Q)) .

(2.23) Proposition. With the notations above we obtain the following commutative
diagram of the short exact sequence:

0

1
o—> K —> &

We further define K^>Q = lim K^
n

rank 1. The following relations hold naturally:

1
—» Der(AT) >0

2, which is a free A^-module of

We have natural projections ρ:
diagram of holomorphic maps

jr
-A

which form a commutative

Like ̂  this £g also is a projective limit of finite dimensional complex manifolds.
$Q is a disjoint union of connected components $g

χ each of which lies over g?g

χ

respectively.

On $g the group G0, (2.6) acts (from the left) as (u, t)-+(φ °u,φ(σ- 0) for φ e G0,
<τe(ί?*. With this action ̂  becomes a holomorphic principal homogeneous space
over 9Cg with G0 as fibres.

(2.24) Definition. Denote by P(^) the projective space associated with $g on
which (C* acts by C* c 0 *. This is equivalent to considering the formal trivialization
up to constants. We can take the quotient since C* is contained in the centre of G0 .
This space is what we are mainly concerned with.

For each data (X,L) = (R,(u,,β\Q,£e,u,i)ε9£g, w-linear (u\(9^Φ) isomor-
phism t\^Q-^&Q induces w-linear (u:KQ-—>K) isomorphism t:K^ίQ^K. Then
each element D e ̂ κ(K^) defines t(D) e@l(K). We then define a Lie subalgebra of
^1 (K) by B(X, L) = {t(D)',De B(R, &&)}. From Proposition (2.23) we obtain the
following exact sequence :

0 >A(X) >B(X)
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For (X,L)e$g we denote the corresponding element in F(^) by ((AT, L)).
Then in the same way as (2.19) we have the following.

(2.25) Proposition. 1) There is an isomorphism

TViX,LnV(£g)^>9l(K)lB(X,L) ,

which induces a commutative diagram of short exact sequences

o^W>)P(^)/^W>>P(^)^ρ*W>^o
I ! I

B(X,L) B(X, L) + 23 + 2I_

2) The above isomorphism defines a Lie anti-homomorphism

whose restriction to 8>0 = 23 + il coincides with that induced from the action of GQ

on

(Again (IP(^, (50,$) w arc infinitesimal homogeneous space in the sense of
Remark (2.20) J

£j Embedding of Weierstrass System Into UGM

(2.26) Recall that M=Sp(2g, Z) acts on the Torelli space yg (2.18). It is easy to see
from the construction that the action of M lifts to that on $g etc. and is compatible
with the^diagram in (2.23). We can take the quotient Λ^ = P(£^)/Af. This moduli
space Jig of framed and gauged Riemann surfaces is called the Weierstrass system
(of genus g).

(2.27) We define a map

sending (X, L) = (R, (α, j8), β, JS?, M, ί) to t(H°(R, «Sf (*β)))c Jt, which is seen to be
well-defined and holomorphic. In other words the image is the set of Laurent series
expansions of meromorphic sections of JS? holomorphic outside β by means of the
chosen (formal) coordinates and gauge. Γ can be regarded as the period map of
P(^). Note that the period domain UGM does not depend on the genus g.

We have the main theorem in this section, which corresponds to Torelli's
theorem for the Weierstrass system.

(2.28) Theorem. 1) Γ maps P( *) into UGM*.
2) The value of Γ does not change under the action of M, hence we have a

holomorphic map

Γ : =
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3) Γ is injective for g>\ (for g^l, replace M by MxAut(RJ). Namely
U=t(H°(R, <£(* Q}) a K deter mines the data (X,L) up to isomorphisms and scalar.

Proof. Only the last statement 3) is non-trivial. We have however

K=K(R)={f/geK'9f9geU}
and

A(R,Q) = {hεK;hUc:U} .

Hence R is determined by K and Q by A(R, Q\ since we have

On the other hand, as R — {Q} is affine, sections in H0(£f(*Q)) generates
<£Q,9 β'Φβ and ̂ Q is characterized as

A(R,Q)

(considered as JS? c= ̂  (constant sheaf)). Since A and [/are already contained in K,
the formal uniformization and the local trivialization are also uniquely determined
(up to scalar). Π

(2.29) Theorem. For each pair (X, L) e $g and ((X, L)) e
1) the following diagram is commutative]

(S - > End (K)

2) for each © A the holomorphic vector field 0(D) on $g is modular invariant,

y*θ(x,L)(*>) = θy(XtL}(D) for yεM

3) (the local Torelli theorem) the map

is injective ifg>\ (in general KeϊΓ* = 5(X, L)/B(X, L)).

Proof. 1) and 2) are trivial from the definition of θ. We prove 3). From Proposition
(2.25) we have a natural identification: T((X>L})]P(^)^^1(K)/B(X, L). For a given

K} the element

e T^^UGM = Homc(C/(Jr, L), K/U(X,

is represented by the map

: U(X, L)—+K-^K - >K/U(X9 L) .

If we assume Γ#(D) = 0, then we recognize that D :H°(R, 52 (*β))
-+H°(R9&(*QJ), since U(X9L) = tH°(R^(*Q)\ where we have omitted the
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symbol t. On the other hand K= K(R) is generated by {ψ/φ \jj, φ e H°(R, &(* β)),
φφO} as a C-algebra. Considering /5 = π(Z))eDer(/£), we obtain:

l for ,

Since D(φ),D(\l/)eH°(R,&(*Q)), D belongs to Der(£). On the other hand D
preserves #°(Λ, JSf(*β)) and K# = K ® H°(R,&(*Q)), hence we have

A(R,Q)

D'.K^^K^, in other words Dε^^K?). From the condition D : H° (R, <¥ (* Q))
we reach the result DeB(X). Π

F^ Sections of Spin

(2.30) For; e Z we have a section σ, : Fg-*&g sending [R] to ([#], Ωf7), where ΩR is
the canonical sheaf (or the sheaf of holomorphic forms on R). Note that the degree
of ΩRJ is equal to 2(g — l)y', hence the Euler-characteristic is (2y — !)(# — 1).

This section lifts to σ/:^-*^ (called of j/7/« 7) since u:ΘQ^Θ induces
(du)j : ΩJ>ά-+@ sending /(ί/i/-1^))7' to M(/).

(2.31) Now we want to define such section fory e^-Z. Using the theory of Riemann
constant for each (R,(a.9β))£&~g, we can canonically associate a line bundle
J^(Λ,(α,j8)) = J^ such that ^2-ΩΛ [B.M.; A-G.N.V.]. Here we define
σ j ;̂ ^(2 /~1)(*~1), as (τχΛ,(α5j8))Ξ(/?9(αJ^),^d

2 0. We define the following

formal trivialization ]/dw ,̂Q -̂  ̂ Q with (\/du)2 = du : (&Δ>Q)2 = UQ-^+(9, which
is determined up to constants ±1.

For J<ΞJ% with an identification Ω^ = ̂ ^j, we define a mapping

σj((R, (α, j8), β, «)) = (Λ, (α, j8), β, u, &jj, (du)j) ,

where
Then we have a commutative diagram

I I
rr ^T -± ^>(2./-l)(0-l)
Oj"Sg-+<Sg'

We define the following composite holomorphic map

which we call the modular embedding of spin j.

(2.32) Proposition. For j<=^% and a section

UJ

^+y|dζ dζ
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we have a commutative diagram

where horizontal arrows are defined in (2.19), (2.25).

We are mainly interested in the case j = j. For simplicity we denote

(2.33) By using the period matrix Ώ, the jacobian variety / of R can be expressed as
the quotient of (C* by a lattice L = (\g,Ω) TL2Q of rank 2g through the identification of
/=Hom(/ί0CR,ΩΛ),<C) with OX For an element c = t(ci,...9cg)E€β, the cor-
responding element ceJ satisfies c(ωί) = c ί. Choosing a point QεR, we have an

embedding IQ : R-*J, PM> J ωl modL.
\<2 /

(2.34) For c e/( = tfX) denote by = ĉ the line bundle of degree 0 on R corresponding
to c mod L in J. The section of ^£c can be identified with the space of multiplicative
functions on R,

where R is the maximal abelian covering of R. Moreover a multiplicative function
on R can be considered as a multivalued meromorphic function on R. This implies
that for Q e R and c e / we have chosen a local trivialization sc: (=^C)Q — (Pg via this
identification.

Denote by ̂ ( = (π>i<ί2^//^)v) the family of universal coverings of/(jR)'s, which
is a vector bundle on 3~g of rank g. The dual basis of (ωj gives the trivialization of
vector bundle π : ̂ g-^^g

Λ >^χ<c'

We set ^(^)Ξ^ x ^=^α set of data CR,(α,/J), g,«, JS?C) and define a map

σ = σ1/2 : (Λ, (α, j8), Q, u, &C)->(R9 Q, ̂ Δ®^c,u,± \/du®(u

with ^c defined above.

(2.35) Proposition. 1) The following diagram is commutative
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2) The following action of vector fields are compatible :

(5

0

•SΊ/2

where θ((5) acts on ^(«/) = ̂ g x $ to its first component only.
ΰΓ
J 9

(2.36) Define the actions of 7L2θ and the modular group M on <$($) as follows :
1) I29 (m,ri) acts on ^C/)->^ as a fibrewise transformation by

2) The modular group M acts on ^C/) as

1c for =

(2.37) Proposition. With the above notations, the map σll2:
<#g(S)->JP($) is

invariant under the action of MΔ = MΔ tx Ίί2 9, where MΔ ( = M n JΓ (2, 4)) c: M w fλe
subgroup of transformations which preserve the Riemann constant A (cf. Sect. 5,C)).

3. Fermion Fock Space and the Second Quantization

(3.0) The main object of this section is to extend and lift the infinitesimal action of
End(^) on UGM (as holomorphic vector fields on it) to the whole diagram

where P is the Plucker embedding (1.31).
Here we encounter the difficulties of divergences coming essentially from the

infinity of the dimension of UGM. We use a procedure of regularization (a
technique of normal ordering, cf. C)). In fact what acts on 2F is not End(f^) itself
but its non-trivial extension by a 1 -dimensional center. This phenomenon is what
physicists call anomaly. The Virasoro algebra and the current algebra appear as
fundamental subalgebras of this extension (cf. £))).

A) Fermion Operators

(3.1) Definition, i) The associative algebra with 1 generated byψμ,il/μ,με ΊLh, with
the relations :

for V μ , v e Z A , where \A,B\+

(i.e. the Clifford algebra) is called thefermίon operator algebra, which we denote
by ,β/.
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We define actions of ψμ, ψμ ( = φ~μ) on J^ and 3F as follows:

^r- 9 (left action on &) ,
oeμ

Ψμ= A£μ , Ψμ = -^r- (right action on 3?) .
0@ μ

Then the above anti-commutation relations hold, i.e. s# acts on 2F and iF .
We denote by W (respectively W) the vector space generated by {ψμ}

(respectively {^}) (μeZλ) and set V=

(3.2) Proposition. Γλ&ye operators satisfy the following relations:

I) for

2) /o

^μl^> = 0 (μ>p) , <p\ψμ = 0 (μ<p) ,

^l/?> = 0 (μ> -p) , <P\ψμ = V (μ< ~P\

where |/?>, </?| αr^ charged vacua defined in (1.25).

(3.3) Definition. We set

W =W+®W- , W+= ® Ci/v , W- = ®
μ>0 μ<0

w = w+ ® W- , w+ = φ <cψμ , w- = e
μ>0 μ<0

Elements of F+ (respectively V-) are called annihilation operators (respectively
creation operators).

(3.4) In Sect. 1 the Fock space was defined as a semi-infinite exterior product
(geometric interpretation). There is, however, another algebraic presentation of the
Fock space by means of the operator algebra stf. This form is more convenient for
concrete calculations.

(3.5) Theorem. 1 . The following homomorphism of left ^-modules is injective and its
image is dense:

(D U
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2) The following homomorphism of right ^-modules is isomorphic:

UJ UJ
a - -»<0|α .

(3.6) The notion of "normal ordering," familiar to physicists but not to mathema-
ticians, is one of the most important techniques in operator calculus. It can be
formulated mathematically as follows :

We define a linear map (called normal ordering)

: : Λ F - > Λ ( F _ ) ® Λ(F+) -̂  rf

such that i) it is an isomorphism as left Λ(F_), right Λ(K+)-bimodule, and
ii) : ! :=! . Such a linear map exists uniquely.

(3.7) Definition. We define the following fermion field operators

<K*)= Σ ^"μ"1/2 ,

which are operator-valued infinite formal Laurent series.

(3.8) Proposition. In the region z\>\w\ the vacuum expectation value of two
operators are well defined',

We extend the defining domain of ψ(z)ψ(w) from \z > \w\ to ((C*)2 — A
— {(z, w) e C* x (C* z φ w} by analytic continuation. The vacuum expectation value
of general field operators <0| . . . |0> can be defined in a similar way [T.K.].

Physicists know the following very convenient formula for calculations of
fermion operator algebra.

(3.9) Theorem (Wick's theorem).

φ(Zί)..φ(zN)= Σ : φ(zj - .φ(zJ^φ(Zj) . . φ~(zk) . . φ(zv) . .φ(zN) :
comb.

comb. pans rest

where φ(z) = ψ(z) or ψ(z). The summation £ w ί«A:e« 6>?;βr α// pairs in
comb.
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{z l 5z2, ... 5zN} and the sign ± comes from the anticommuting relation of fermion
operators (i.e. the signature of a permutation of indices).

(3.10) Definition. 1) Define the filtration on W and W as

μ>m μ< —m

μ>m

and introduce a topology on ίί7 by this filtration.
2) Denote by W (respectively Ί^F) the completion of ^(respectively W) with

respect to this topology. Then we have

_= 0
μ>0 / \μ<0

- θ <C<
μ>0 / \μ<0

(3.11) Proposition. 1) Γ/^erβ are filtration-preserving linear isomorphisms:

2) 77?£ bilinear maps

are continuous on each variable.

(3.12) For a point C/eUGM, we define C/c-f' to be C71 = {/
yj^^o}, and we use the symbol [U] for the image of [/in P(J^). The isomorphisms
in (3 . 1 1 ) 1 ) define subspaces i^+ ( U) aW and i^+(U)ai^ corresponding toUa'f'
and Uc:i/^ respectively. The following theorem is very important (4.16).

(3.13) Theorem, We obtain the following equalities:

2)

We call WΓ+([/)@ ^+(C/) as a space of annihilation operators associated with
t/eUGM.

^ ^4 Differential Operator Algebra Q)z

(3.14) Among endomorphisms of λ^C^z"1)), we consider such differential
operators which form a subalgebra ^z of End (AT), big enough and easy to treat. This
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restriction is only in order to make concrete calculation easier, and all the results in
what follows can be generalized to the whole End(K) in fact. The reader who knows
the theory of KP equations could remark that this Q)z is nothing but the "Fourier
transform" of the algebra of microlocal differential operators <$' =

(3.15) Definition. We consider the following differential operators:

We then define a valuation: ordz: ^z-»Z£u{oo} in the following way;

—m if P— X znί

n^m

oo if P = 0

d \
i.e. ordzz = — 1, ordz -—= 0 . Define a (decreasing) filtration on ^z by

dz /

~dz

If we introduce a topology on Q)z with this filtration, then S)z is complete Hausdorff
and the product @zx@z-+@z is continuous (i.e. Q)z is a complete topological
C-algebra) with respect to this topology.

(3.16) Proposition. 1) In case orάzP = mfor PG^Z, we have

P .F'K — >F* + mK .

2) The natural map (defined from 1); ^ z ->End() is injective (and
I)).

(3.17) One can rewrite PI z, — 1 as follows:dz

where gk is a polynomial of order at most m — k with respect to z — . With this

representation ordz(P) is given by

orάz(P)= — min{m :deggr k ^m— k for

Now we consider another valuation defined as

i.e. v(z)= —1, v( z — ) = 0 ). Clearly we have
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(3.18) Proposition. The filtration on ®z defined from v,F
is nothing but the one induced from the inclusion map ̂ z

Proposition (3.16) implies that if a series in @z converges with respect to ordz,
then it converges with respect to v, but the converse need not hold.

C) Second Quantization and Anomaly

(3.19) Definition. For PεQ)z we define the adjoint P^ <=&z as follows:

2) (PQY = Q*P* for VP,ge0 z (anti-homomorphism).

A differential operator P = P\z, — ) E <3)z acts naturally on the formal parameter
_\ dzj

of the field operators ψ(z\ ψ(z).
For Pε@z, P and P f are related as follows:

j &:(JV(zM(z): = J dz:ιl/
(S) rs)

where J denotes the (clockwise) contour integral around Q.

(3.20) Definition. Given Pe ®Z5 we define an operator Φ(P) acting on 3F and ̂  as
follows :

This procedure is called the second quantization and this Φ(P) is called the second-
quantized operator corresponding to P. The naming is justified from the next
theorem.

(3.21) Theorem. 1) For

2) For P, βeΦ z,

ρ 2 ,

called the Schwinger term.



276 N. Kawamoto, Y. Namikawa, A. Tsuchiya, and Y. Yamada

Proof. 1) From the convergence of the operator product we see that the contour
should be chosen as follows;

) = - 1= j dw:(Pψ(w))ψ(w):\l/(z) ,

\l/(z)Φ(P) = -

2π^
Then we can obtain the following relation

2π/-T0
dw :

We can proceed in a similar way for \fi(z).
2) The commutator of Φ(P) and Φ(Q) can be expressed similarly as:

[Φ(P),Φ(β)]= - /= I dz } dw:(Pφ(w))φ(W): :(Qψ(z))ψ(z) : .
\2π|/-l/ (S) /ζ?)

Using Wick's theorem for the integrand and taking the singular parts into account,
we obtain

(integrand) = :(Pwφ(w))φ(w): :(Qzφ(z))φ (z): +

) . :(Qzψ(z))ψ(z): .

Then the first two terms correspond to Φ([β, P]) and the third term provides the
Schwinger term c(P, Q). D

(3.22) Proposition [S.S]. The bilinear map c:@zx@z-^(L enjoys the following
properties:

1) c(Λβ)=-c(β,P);
2) c(P, [β,#]) + c(β, [R,P]) + c(R, [P,β]) = 0;

1 / ί / Y
3) /or ί/ie tosw wίj = zk + n — — e ̂ z, fe ̂  0, « E Z,A ; ! v^y

1 fc

ry Π (n+j)δm + ntQ .

From 1) and 2) the map c\ @zx^z^>& determines a cohomology class
[c]eH2(@Z9 (C), which turns out to be nonzero cohomology class.

D) Lifting of the Action of 2>z

(3.23) UsingΦj P) defined in C), we can lift the infinitesimal action Θ(P) on UGM
to Θ(P) on UGM, by defining it on ̂ x and by checking that it preserves the image
of UGM by the Plύcker embedding.
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(3.24) Definition. For each Pe^z we define a vector field; Θ(P) on ̂ x in the
following way :

where w

(3.25) Let IL be a one-dimensional subspace of 2F and [L] the corresponding point
in P(^). Similarly as (1.12) we have a canonical isomorphism

Then in the same way as (1.14) we define a holomorphic vector field
ΘCP)e//°(IPCF),Θ) for Pe®z as

For θ and θ we infer readily the following propositions.

(3.26) Definition. Let F-*B be a <C*-bundle. Then the action of <C* defines a
holomorphic vector field E on F along the fibre, called the Ewfer operator. For
J^ x ->P(^), E is nothing but the vector field corresponding to id : J^-> J^ with the
above description.

(3.27) Proposition. Every θ(P),Pe@z, preserves the ideal J> of (9 & generated by the
Plύcker relation:

Therefore Θ(P) [respectively Θ(P)] defines a holomorphic vector field on UGM
(respectively UGM). This Θ(P) coincides with the one defined in (1.14).

Summing up, we have obtained the following main theorem in this section.

(3.28) Theorem. For Pe@z there are holomorphic vector fields Θ(P), Θ(P) whose
action is compatible with respect to the following diagram:

Θ UGM - >^x

I I
#:UGM

where θ on UGM is defined in (1.14).

(3.29) Corollary. For P,Qe@z we have

E) Current and Virasoro Algebra

(3.30) We observe that ®> = ̂ (K), (2.7), is a Lie subalgebra of ®z. The operators
Φ(P\ PE®, play the most essential role in our theory.

(3.31) Definition. 1) The following operators corresponding to scalar multipli-
cations are called current operators:
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Then we call

the current operator.
2) The following operators corresponding to derivations are called Virasoro

operators (for spin 7) :

.
dz dz

for jei-Z, «eZ [for s,- see (2.32)]. Then we call

the energy momentum tensor (for spin 7- fields).
3) The Lie subalgebra generated by id and { Jn} (respectively L(

w
j)) is called the

current algebra (respectively the Virasoro algebra). For 7 = 1/2 we omit the
superindex7 in the notation of L and T hereafter.

(3.32). Formulae. From (3.21) we obtain the following fundamental relations of
these operators:

Moreover between 7"(z) and /(z) there is an important relation.

(3.33) Proposition (Sugawara form of energy-momentum tensor).

where ° ° is the ordering which transforms Jn (n ̂  0) to the right andJn(n < 0) to the left
(see Sect. 4, A)).
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(3.34) Proposition. There exist unique maps:

)9 Θ) and Θ: δ-^7

(holomorphic vector fields) such that
1) [ t i ( t ) , E ] = 0, V / 6 © or ©,
2) Their actions are compatible, as indicated in the following diagram :

(3.35) Proposition. 5y ίλe above compatibility and definition (3.24), it follows that

This equation plays an essential role in Sect. 7.

4. τ-Function and Wave Function

(4.0) In this section we reformulate the Sato theory of KP equations into a
convenient form for our later use. We give sketchy but selfcontained proof here. For
more details about KP equations and related topics, see for example [Sa.
D.J.K.M.].

A) Bosonization

(4.1) We first explain one of the most fundamental principles of two-dimensional
field theory: fermion-boson correspondence. The fermion Fock space 3F is
isomorphic to a corresponding boson Fock space Jf defined below and the
operators acting on these spaces have also a well-defined correspondence.

The boson Fock space is defined as the following vector space :

where ί f's are infinite number of indeterminates. An element of J^ is called a boson
state vector. We define the degree and the charge as follows:

charge f f = 0(z'φO) ,
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then ffl decomposes into the charged sector &Cn (n e 2), each of which is a complete

Hausdorff vector space by the filtration : Fd^n = Π ^n(d'\ tfn(d) = {/(T) e tfn

degree f(T) = d}. d'=d

(4.2) Definition. We define a linear map B: <F-+3tf as follows:

(4.3) Theorem (Bosonization [D.J.K.M.]. 1) The linear map B: ^-^^ gives a
topological isomorphism.

2) B preserves the charge and the degree

^n(d)-^^n(d) .

(4.4) We define the following fundamental operators on

d

The following relations can be easily confirmed :

which are standard bosonic commutation relations.
The normal ordering o o of these operators, am and enq, are defined as follows :
1) Inside the symbol o § we put polynomials of an(nεΈ) and eq, and all the

operators an and eq commute each other.
2) In case the operators inside the symbol o o are in normal order [i.e. all the

creation operators (an(n<0), eq) are located to the left of all the annihilation
operators (an(n^.O))]. The symbol can be taken away and the remaining operators
are considered as those acting on ffl . Fro example oana-mo = oa-mano = a-man,
for 77, m > 0.

Each operator (9 on the fermion Fock space has the corresponding one
ΘB = BΘB~l on the boson Fock space.

We introduce the following field operator which is familiar in string theory:

and set for k E ΊL

which we call a vertex operator of charge k.
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Then we have the following :

(4.5) Theorem (Fermion-boson correspondence).

where JB(Z) and TB(z) are the bosonized version of the current operator and the energy-
momentum tensor operator.

B) τ- Functions and Wave Functions

(4.6) We first take an element t/(e UGMΦ) [cf. (1.20)] of the charge zero sector of
the universal Grassmann manifold and its image in the Fock space |£/> e JV We
then define the following quantity:

(4.7) Definitions.

τ(T, U) = <Q

τ(T, £7)

v ' ' 7 τ(T,C7)

where
oo

)= y. tnJn

We call τ(T, C7) a τ-functipn and ^(z, T, J7), y(z, TΓ, (7) (conjugate-) wave functions
associated with t/eUGMφ. Note that y, Ψ depend only on t/-π(

Remark. We can define τ(T, U) for C/eUGM0 as above. Then τ(0, £7)ΦO if and
only if ί/eUGM^.

We provide several important properties of the (conjugate-)wave functions.

(4.8) Proposition [DJ.K.M.]. 1) The wave functions have the following expansions :

where wk(t)9wk(t)e(C[[Έ]] and
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2) If we write

(respectively ?(z,ΊΓ, £/) = z, C/)TΓM) ,
M

ΨM(Z, U)&U (respectively ΨM(Z> U}e £7),we

^ ^ ^ s ^ = "h , W 2 , H73, . . . ,

Proof. 1) The expansion 1) can be obtained easily with the bosonization rule
mentioned in (4.5);

2) Take a base {ξμ}μezh of "̂ with

ξ"eU(μ<0) ,

and satisfying the following relation :

v v + 1,ς , ς , •)-(• ,e ,e ,. .)

0

* Ί t
I i

* * o'

-1/2
1/2

Identifying the matrix in the right-hand side of the above equality with an element
y of P- and the corresponding operator on the Fock space [see (1.26)] as G[y]
(i.e. \Uy = G[y]\θy) we obtain the following relation:

^= Σ ^^μ- Σ^ Σ Φ^G= Σ
μElh

We then obtain

μeZh

Bosonizing these relations, we obtain the result:

ΨM(z,U)eU .

The argument is the same for the conjugate sector. D
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Since Uand U(= Uλ) are orthogonal to each other with respect to Resz = ̂ , the
following relations are a natural consequence of 2):

(4.9) Corollary (Bilinear Relation).

(4.10) Corollary (Hirota's Bilinear Equation for τ-function) [H.].

00 / GO \

X Pj(-2Ύ)Pj + 1(Dj)expl X >v/),Jτ(T) τ(T) = 0 >
j = 0 V = l /

where

/ CO \ GO _

exΌI V t zn\— V P (T)zJ Dττ = (D kD kDr \ L^ n I £_j j\ / ? 11 V ί ι ? 2 ί2 '3 i s ' * "
\w = l / j = 0

This equation is obtained as a direct consequence of the bilinear relation. It
characterizes that the τ-function is associated with an element of UGM (Theo-
rem 4.16). (See [D.J.K.M.] for more details about (4.9) and (4.10).)

(4.1 1) Remark. The bilinear relation (4.9) is nothing but the bosonized version of
the Plucker relation, and its fermionic form is represented as

Resz = Q OιKz)|C/><8>^(z)|f7> = X <ME/>®^_μ | ί/> = 0 .
μeZ/z

C) τ-Functίon

(4.12) Putting aside the definitions of τ, Ψ and Ψ given in B) for a while, we
investigate how the properties given in Proposition (4.8) of B) characterize Ψ and Ψ.

(4.13) Definition. (Generic Wave Function). We call

a conjugate pair of generic wave functions when they satisfy the following two
conditions:

1) asymptotic behavior

, H>fc(ΊΓ)E<C[[T]]
fc = ι /

2) bilinear relation

M,N

We denote the whole set of pairs Ψ9 Ψ satisfying 1) and 2) by WFΦ.
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(4.14) Definition (Generic τ-function). τ(TΓ)e<C[[TΓ]] is called the generic τ-func-
tion when it satisfies the following conditions :

1) τ(T) satisfies the Hirota's bilinear equation [Corollary (4.10)],
2) τ(0)Φθ.
We denote the whole set of generic τ-functions by TFΦ.

(4.1 5) Proposition. 1) For any pair (ψ(z, T), Ψ(z9 ΊΓ)) E WFΦ, there exists a unique
element C/eUGM* such that ΨN(z)eU, ΨN(z)εU(=Uλ).

2) The map PFF^-»UGM^ given above is bijective.

Proof. 1) The terms wn(T) and wn(ΊΓ) in the asymptotic expansion of
Ψ(z, ΊΓ), *F(z, TΓ) can be expanded with respect to tj as follows:

wn(T) = cn+ £ Cnj

j=ι

Define elements in C((z-1)) as follows:

where

j

#,=(0,0,.. .,0,1,0,...) ,

and define the following vector subspaces:

ϋ= Σ
«=0

As a direct consequence of the bilinear relation (4.10) we obtain (1) £/c t/1, £/c f/1.
The concrete expression φn(z) and φn(z) given above naturally leads to (2)
U'Lr^F0ϊ^ = Q, ί/1nF0^ = 0. Recalling M(U) — M(U) = { — j, — f,...} [cf. (1.7),
(1.11)], we can show that (3) ^=U®F®i^, i^=U®F®Ϋ*. (1), (2) and (3) imply
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U= UL, u= UL. Then by the bilinear relation we obtain the desired result:

ΨN(z)εU L = U , ΨN(z)eU1-=U for V^V .

It is obvious from (2) that C7eUGM*.
2) We now show that two pairs of wave functions (Ψ(z, T), Ψ(z, IT)),

(Ψ'(z,T), ίP;(z,T))ε »TΦ corresponding to the same U e UGMΦ coincide with each
other. For this purpose we expand the wave functions as follows :

where
wN(z)eC[[z-1]]z~1-F°^ for | J V | > 0 ,

i.e.
ΨN(z) = {e -&> V X WN(Z) ΊM]N + WN(Z) (*)

| M | < | J V |
00

with \N\= ^ HI. By induction with respect to |7V| we show wN(z) = w'N(z). The
ί = l

argument works similarly for the conjugate sector.
i) For \N\ = 0 (i.e. ^-Λ'o) we obtain

Since dimF"1 (7= 1, we obtain

WNO(Z) = W'NO(Z)

ii) Assuming wM(z) = wiί(z) for |M|<«, we obtain

for |ΛΓ |=w.
Conversely the mapping UGM0-> WFΦ is shown to be surjective because of the

correspondence of equations in (4.7) and Proposition (4.8). Π

Define the map TFΦ/<L*-+WFΦ by

(4.16) Theorem. The following diagram is commutative and all arrows are
bίjections :

TFΦ/C*
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Proof. Only injectivity of the mapping TF^j^-^WF^ is nontrivial. From
Proposition (4.1 5) Ψ(z, TΓ) and Ψ(z, T) are uniquely characterized by the condition
ΨN(z) e U, ΨN(z) 6 Ό for W If Ψ(z, T) and Ψ(z, T) are expressed by a τ-function
τ(T) as (**), then the above conditions for Ψ(z, T) and Ψ(z, TΓ) are equivalent to the
following conditions on τ(ΊΓ):

= 0 for Vξ(z)eU ,

= 0 for

These conditions determine τ(TΓ) uniquely up to a constant by using the
characterization of |£/> by i^+(U}®i^+(U} established in Theorem (3.13). Thus
the mapping TFΦI<£*^WFΦ is injective. D

Remark that the τ-function τ(T) corresponding to C/e UGMΦ is characterized
by the following infinite order differential equations:

For simplicity we have restricted the discussions in the generic case (UGM^). We
can generalize the discussions to the whole UGM^.

(4.17) Theorem. The following two conditions are equivalent:
1) /(T)e^f0

x satisfies Hirota's bilinear equation (4.10)

2) there exists an element UE LJGM° such that /(ΊΓ)-τ(T, U).

5. The τ-Function as a Period Map

(5.0) In the preceding sections we have constructed a sequence of (D*-bundles in
the following (cartesian) diagram:

is the pull-back bundle.
We now define a holomorphic mapping A1/2 :^((/)->P(Jf0) by

(5.1) The Fundamental Problem. Construct a section of ^g{/\ equivalently, a
nonzero holomorphic function τ : ̂ 9 (/ ) ̂ > Jf?

0

x which makes the following diagram
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commutative :

We actually construct a lifting τ by using the theory of KP equations.
Geometrically τ is a period map of the moduli space ^g(/). For a given lifting
τ = τ(T, Xc) we can construct another lifting of A J / 2 by τ' (TΓ, X) = C(^c)τ(TΓ, X) for
any holomorphic function C: ̂ C/)-»(C*. In this sense the lifting τ is not unique
(see Sect. 7,D)).

A) Baker-Akhiezer Function

(5.2) ΐn this paragraph we reformulate the theory of the Baker-Akhiezer function
(BA-function) of KP equations. For the original theory of the BA-function see
[Kr. D.].

(5.3) Definition. For a given data ^c = (jR,(α,j8)5β5M,^fc)6^(/), we define
Λ(XC\ ^(Zc)eC((z"1))®C[[T]] as follows:

wk(T)

w,(TΓ)e(D[[TΓ]] } .

We call an element of Λ(XC)(Λ(XC)) as a (conjugate) Baker-Akhiezer function
associated with the data Xc. We can then derive the following theorem. We
essentially follow the proof of Krichever and Dubrovin.

(5.4) Theorem [Kr.; D.]. For a generic data Xc = (R9(u,9β\Q9u9&c\ i.e.

1) Λ(XC) is a free (C[[T[]]-module of rank 1 and generated by

2) ^Ϊ(A^) w a free (C[[W]]-module of rank 1 and generated by
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where 7(T) = (71 (TΓ), ... ,/»(ΊΓ)) with 7J'(ΊΓ)= £ Pntn, and I[z\ = ( I l [ z ] , ... J»[z])
n = ί

oo _H

with Ij[z] = £ /n — . 7w notations of f(z), φ(n\z) and II see Appendix A.

For simplicity Φ(z, TΓ, Xc) will simply be written as Φ(z, T) hereafter. Note that
7(ΊΓ) is formal power series of T, we consider <9(/(T)|£2) as the following formal
Taylor series expansion :

Θ(/(T)|Ω)=

where — = ( — Γ, , — I with — — denoting the derivation with respect to the
dy V<3/ dyd) dyl 5 F

/-th argument in Θ.

Proof. We can show Φ(z,J)eA(Xc) by checking the periodicity as multiplicative
function associated with 5£c and the transformation property as a half-form.
Suppose there is another Ψ(z, T)(φO)e/l(^c), the ratio Ψ/Φ possesses neither an
essential singularity nor a pole at Q anymore. Furthermore, in the ratio Ψ/Φ, the
transformation factor as a form and the multiplicative factor are canceled out.
Hence for the expansion of the ratio

ψ(7 on Σ ΨN(Z)ΈN

Ψ(z, Ά) __ N _ _v N

~ M ) '

fN(z) is a meromorphic function on R without poles at β. We show that fN(z) is
constant by induction with respect to |ΛΓ| = 0, 1 , 2, . . . :

i) For \N\ = Q, i.e. J /V Γ =0 = (0,0, ...), the pole divisor of /0(z)- Ψ0(z)/Φ0(z) is at
most Z) = (Θ(/[z] + c|Ω)), the zero divisor of Θ(I[z] + c\Ω). From the assumption
6>(c|Ω)Φθ, D is nonspecial and deg^ = ̂ . Thus /0(z)eJSf(D) = Cl.

ii) Assuming fM(z) = const for |M|<|7V|, we have

fN(z) = coefficient of TN in [<F(z)-Φ(z) Σ Λf(*)ΊΓN]/Φ0(*)
| M | < | N |

Since the pole divisor of /N(z) also divides D (non-special), it follows just like i) that
/N(Z) = const. We then conclude

namely, A (Xc) is a free C [[T]]-module of rank 1 . It works similarly for the conjugate
sector. Π

Here it should be noted that Φ(z, T) and Φ(z, TΓ) given above are normalized as
w0 (TΓ) = vv0 (T) = 1 . We can then identify Φ(z, T) and Φ(z, TΓ) as the wave functions
associated with
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B) τ-Functionfor^g(/)

(5.5) Definition, (τ-function for ^(/)) [I.M.O.; A-G.G.R.; V.]. Define
as

where q (T) = ]Γ qnmtntm (cf. Appendix A-l). We call this a τ-function associated

"'m>0

(5.6) Theorem. For the τ-function (5.5) the following diagram is commutative:

By direct calculations we obtain the following :

.
*™>=,«'><-<™>,

which then implies that τ :^g(/)-^J^0

x is a lifting of zJ1 / 2.

(5.7) Remark. 1) In this way the fundamental problem (5.1) is solved affirmatively
with the τ-function given in (5.5). Define Λ1/2 is the line bundle associated with (C*-
bundle $g(JP)-+<$g(JP)< the τ(TΓ, Xc) gives a nowhere vanishing section of Λ,1/2.

2) The vacuum amplitude τ(0,^c) = Θ(c|Ω) depends only on jϊ = &~gx<Cg.

(5.8) So far we have no principle to eliminate the lifting ambiguity. From the
point of view of the two-dimensional conformal field theory it is unimportant
because the correlation functions depend only on the ratios of the τ-function (or its
derivative). On the other hand in string theory the lifting itself is a fundamental
quantity and provides the integrand of the string amplitude. It should then possess a
well-behaved automorphic property with respect to a modular transformation and
good boundary behavior towards the boundary of ̂  (stable curves [F.S. F. N.]).
We thus discuss the modular transformation property of the τ-function in the next
paragraph.

C) Modular Transformation Property of the τ- Function

(5.9) A modular transformation is induced by a change of the canonical homology

basis (α, /?), and is represented by a symplectic matrix y = l \ E S p ( 2 g , Z ) as

J = U JU )• In Partlcular MΔ = {yεM diagC f/) = diagΛ <B = 0 (mod2)}
\βj \β A) \βj

a M is a subgroup of M and keeps the Riemann constant invariant. Our τ-func-
tion (5.5) has the following well-behaved automorphy under the modular trans-
formation MΔ .
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(5.10) Theorem. For the τ -function (5.5) we have

^

for

where ε(y) is a constant with ε(y)8 = \ and depending only on y.

Proof. The modular transformation property of the following quantities on a
Riemann surface are given by

(See Appendix A for the notations.) Together with the transformation property of
the 6)-function [Mum. 1 A-G.M.V.] for yεMΔ\

we obtain the desired formula. Π

It should be noted that the τ-function has a simpler automorphic factor than the
Θ-function itself (when 6>==0) because of the prefactor Qιq(^\

Similarly the τ-function has the following well-behaved automorphy with
respect to c e (D7 :

(5.11) Theorem.

for \/

This is a direct consequence of the quasi-periodicity :

This automorphy turns out to be very important to characterize the τ-function,
which will be discussed in Sect. 7,D).

D) Scattering Operator S(XC) [I.M.O.; A-G.G.R.; V.]

(5.12) Before closing this section, we construct an operator S(XC) which generates
the state vector \Xcy of the Fock space

where Xc = (R9(oί9β)^c,u)e^g(^) and we assume <9(c|ί2)φO. This S(XC) is very
convenient in practical calculations (see Sect. 6). For example Wick's theorem in the
calculation of various Appoint functions can be easily verified by means of this
operator.
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We expand the Szegό kernel [Fay So.] of the line bundle 5£A ® ϊ£c around Q e R
as follows:

Θ ( I [ z ] - I [ w ] + c\Ω) 1
c v ' ' Θ(c\Ω)E(z,w) z-w

then a basis, {ζμ}μE%h of "̂, can be given by

ς" = e* (μ>0) ,

1

or equivalently in the matrix form

,,,,-"-1/2

(μ>0) ,
v > o

\

It is easy to check that ξ "μ belongs to U(Xc) = ]/duH°(R, ^Δ ® J^c(*£>))
for μ>0.

Define an operator Q(XC) as follows;

= dz

(»)

Note that β^) is constructed from creation operators only and thus belongs to P_
and its exponential,

are well-defined operators on 3F .

(5.13) Proposition.

<p's dual of ξμ : ( ξ μ \ ξ v ) = δμ + v'°.

2)
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6. Action of Operators on the τ-Function and Correlation Functions

(6.0) Using the concrete expression of the τ-function for ^g(/) given in the
previous section (5.5), we study the action of various (vertex, current, energy-
momentum) operators. We can derive Appoint functions of Riemann surfaces of
arbitrary genus (obtained recently by several authors [I.M.O. A-G.G.R.]). Thanks
to the fermion-boson correspondence, we can derive Appoint functions in two
different ways to obtain nontrivial identities [V.V. E.O.2; Fay], which are closely
related to the Schottky problem [Mum.3; v.G. Sh.].

A) Action of Vertex Operators

(6.1) The vertex operators Vk(z) (keΈ) has been defined as follows (4.4):

Ί ^ 1 _ πiι*z

Letting the vertex operators operate on the τ-function, we obtain the following
result.

(6.2) Theorem.
N

\n = l i = 1

• Π E(zi,z})^
l ^ ϊ < j ^ N i = l

N

where K= Σ ^ί (total charge of operators Vk^(z^... VkN(zN))

See Appendix A for the notations. In the derivation of this formula we have used
the following relation:

In particular for Λ^=l and k{= +1, we obtain the following:

(6.3) Corollary.

-
tnφ (z)

These are just the BA-functions Φ(z, TΓ) and Φ(z, T) given in Theorem (5.4).
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B) Action of Current Operators

(6.4) The bosonized expression of the current operator has been given by

in (4.5). When the current operator /β(z) passes through the bilinear factor e
the τ-function, it receives the following change;

Note that JB(z) = JB(z,X} depends holomorphically on the data π(Xc) =

(6.5) Proposition.

JB(Zl)...JB(zN)τ(τ,Xc)= Σ f Π
comb. \ pairs

= 1 i = 1

VVZΪ/Z

~ τ(Tί,Xc) = e^τ)~

αwrf Σ ^ β summation over all the combinations of dividing (1,2, .. JV)
comb

OΊ^)5 Oa 4), ••• (hk-ihk) and the rest of the numbers (i2k + ι, . . . , %)•

(6.6) Corollary.

In order to see the meaning of this equality, we make use of the following
definition.

(6.7) Definition. For neZ with n>0 we define holomorphic vector field v(n} on
by

Note that φ(n\z, X) = ] ω($(X) depends holomorphically on the data X=π(X) e
(cf. Appendix A).
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(6.8) Theorem. Consider the diagram below

1) v(n} is a holomorphic vector field on P(^(0)) along the image of^g(/) and thus
induces a vector field on ^g(/}

2) The induced vector field ι>(n} on ^g(/) is tangential to the fibre of the fiber ing
π : ̂ g^/^-^^g and the action on this direction is given by

We can see that /β(z) is an operator which generates infinitesimal deformations of
line bundles.

C) Action of Energy Momentum Tensor

(6.9) Since the bosonized expression of the energy momentum tensor is given by

(Z —W)

in (4.5), we can easily obtain the action of TB(z) by using Proposition (6.5).

(6.10) Theorem.

Ί oo oo g ft

- X tntma>($(z)ωφ(z)+ Σ Σ ?nωg>(z)ωi(Z) -,

where S(z,X) is a projective connection (Appendix A-5).

We obtain the vacuum expectation value of the energy-momentum tensor

(6.11) Proposition [A. W.; So.; I].

Using the heat equation of the (9-function :
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we can recognize that the energy momentum tensor induces infinitesimal defor-
mations of moduli [So.; E.O.I].

D) N-Point Functions [Ku.; E.O.2; A-G.G.R.]

In the following we fix the data set Xc = (R, Q, (α, β),&Δ®&c, u) such that τ(0, Xc)
= Θ(c|Ω)φO and denote \Xcy=B'1τ(Ί,Xc)e^r.

(6. 12) Definition. The N-point function of operators (9ί (z^, . . . , (9N(zN) on a state
\Xcy e ̂  is defined as follows :

Since we assume Θ(c|ί2)Φθ, we can represent |JΓc>e J^ as

hence the TV-point function can be expressed as follows :

where

is a field operator corresponding to the Heisenberg picture.
On the other hand we can express the TV-point function in the bosonized form :

In the following we calculate the TV-point functions of ι//, i/^'s and /'s in two different
ways given above.

(6.13) The fermion 2τV-point function is obtained by putting fc/= ±1 in the
formula (6.2):

Π E(zi9zj) Ω

while in the fermionic representation

<ψ(zι\ . . . , ψ(zN) ψ(wN), . . . ,

and

μ > 0
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where
Θ(I[z] — I[w] + c\Ω)

(Z' W} = θ(c\Ω)E(z,w)

is the Szegό kernel.
Identifying these two expressions, we obtain the following formula:

(6.14) Proposition (Fay's trisecant formula) [Fay; V.V. E.O.I].

N N

j,Wi) θ Ω

" "*" v l 5 3J H E ( z i 9 W j ) θ(c\Ω)

The bosonic representation of current TV-point functions can be obtained
from (6.5):

(6.15) Proposition.

&MΩ) co^\^ω(Zi'Zj)J\^\^

On the other hand, using the fermionic representation of /(z, Xc), we obtain

/ _ l \V
lim (ψ(z)ψ(w) ^(J^)

z —w

and taking the vacuum expectation value <0|... |0>, we obtain the following
relations:

(6.16) Proposition.

</(zO ... J(zN}yXc = detNx NS?*(zi9 zj) ,
where

.

By equating these two expressions (6.15) and (6.16), we can derive various identies
obtained by Fay. In order to get explicit expressions it is convenient to use the
expression of the connected part of N-pomt functions
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(6.17) Proposition. (1) Bosonic representation:

</(2l)...^)>Γn = Σ

297

(2) fermionίc representation:

Γ VeΓ

where Γ is a connected oriented loop which passes through the points zί,z2,
and for f = (zi9 z7 ) eΓ:S< = Sc(zi9Zj).

(6.18) Proposition (Addition Formula).

,zN once

The following are special cases of this formula for N=2 and /V=4:

(6.19) Corollary [Fay].

1) ω(z1;z2)+ £ ωi(

)

- -(5(1234) + ̂ (1342) 4- 5(1423) + 5(1432) + ̂ (1243) + 5^(1324)}

Sc(zί,z7)Sc(zJ.,zk) 5 ,̂̂ )5^ ,̂.) (see Fig. 2).

2 1 2 1

3 I 3 4 3 4 3
1 2 1 2 1 2

4 3 4 3 4 3

Fig. 2
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7. Fundamental Equations

(7.0) In this section we derive differential equations for the τ-function τ(T, Xc)

, defined on ^(/). Throughout this section we write
1 simply as ΦB(S) for ^G® [see (2.32), (4.4)].

A) The Fundamental Equations

(7.1) Theorem (Fundamental equations). The τ-function satisfies the following
three equations:

1) (Equation of motion)

,Xc) for W e © ,

where a(S,Xc)= ~& Resz==α/(z)S(z,Z);
2) (Gauge condition)

Σ - 7= j ^Λτ(T,JQ = Φ5(φ)τ(ΊΓ,JQ for

3) (Hir ota's bilinear equation)

[See Appendix A) for the definitions of A(X) and A(X).]

Proof. The equation 3) is already given in Theorem (4.16) and equation 2) is a
rewriting of the following :

( z , X τ ( Ί , X c f o r

which can be derived from Theorem (6.8).
Lastly we show 1). In the following diagram,

τ(TΓ, A1,.) and τ(T, A^) are related as

where C:^9(ί/)->C* is a holomorphic function satisfying C(λXc)= λC(Xc)
(/leC*). Letting ?(/), /e®, operate onτ(ΊΓ, Zc), we obtain the following relation
from Proposition (3.35):
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Then we obtain the desired equation. The term a(έ,Xc) is given by

and depends only on Xc . The explicit form will be given in the next paragraph. Π

The τ-function being considered as a period map on ^C/), the differential
equation 1) is regarded as a defining equation of the Gauss-Manin connection, the
equation of motion of the physical vacua in the interaction picture.

B) Determination of the Anomaly Term a(έ,Xc)

In case ^e©0 the Eq. (7.1.1) can be viewed as the so-called "Ward-Takahashi
identity". The term a(έ,Xc) corresponds to the anomaly term. In this view the
equation in the following proposition can be identified as "Wess-Zumino
consistency condition". Those principles symbolized by these terminologies which
are familiar to physicists come very naturally into the formulation.

(7.2) Proposition (Consistency condition). For ^1,£2e(5,we obtain the following
relations:

where

is the Schwinger term.

Proof. Consider the following equality :

From the action of this operator on τ(T, Jfc) written in two ways, we obtain the
desired result. Π

(7.3) We now determine the form of the anomaly term a(f , X) corresponding to our
τ-function.

(7.4) Theorem. For the τ-function the corresponding anomaly term is given by

where S(z,X)(dz)2 is the projective connection (see Appendix A-5).

Proof. First we show the following:
1) a(^Xc) = Q for /e(51 ?

2) a(^Xc}= -A- Resz = «/(z)S(z, X) for ttB(X\
3) a(f, Xc} satisfies the consistency condition.

3) is Proposition (7.2) itself, while 2) can be obtained from Theorem (7.1-1) by
taking f eB(X) since θ(έ) = 0. 1) can be shown from the following representation of
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τ with the bosonization operator B (4.2) :

1/2 Λ<Γ3 / 2 Λ . ..) ,

where (<Γ1/2, <Γ3/2, ...) is a frame of U(XC) (cf. Sect. 5, D)).
From this expression we obtain the following for / e @ι :

τ(TΓ, έ?ε'jrc) - 6

Hence a (/, A"c) = 0 for
Due to 1) tf (/, Xc) reduces to a linear function of/ on ©/©x . Fixing a sufficiently

large TV, we can take representatives of bases, ίn e © (n = 0, 1 , 2 , . . .), of ©/©! in the
following :

d
£n = (zn + l + lower order terms) — eB(X) ,

dz

d\N~n d
τ} /* , -
dz dz

For 77 ^7V, a(ίn,Xc) is given in 2). For 0^n<N, one obtains the following relations
by induction on n and with the consistency condition (7.2):

= -̂  Resz = „ /π(z) ̂  5(2, ΛΓC) = - ~ Res2 = „ /„ _ t S(z, ΛTe) .

In the derivation from the first line to the second we used the formula given in
Appendix B. We thus obtain the desired result for all n. D

(7.5) Corollary.

Σ Σ ̂ W(

This equation is obtained from the result of Theorem (6.10) and (7.4). Π
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(7.6) Proposition. The projectίve connection S(z, X) (dz)2 is transformed under the

modular transformation y = ί \ e Γ as follows :
C D

Proof. This relation is obtained from the expression of the projective connection:

and the transformation formula of <9-function. D

C) Characterization of the τ-Function

(7.7) Main Theorem. For a holomorphic map /:^C/)-»^x the following
equations determine f uniquely up to a constant: /(ΊΓ, Xc) = Cτ (T, Xc) with Ce(C:

c) for

where

2) : -p^ . X } dφ -^ /(T, Xc) = ΦBO)/(T, Xc) for Vφ(z)eA(X)

3)

for a,beZe .

Proof. In equation 2) the left-hand side vanishes when φ e A (X), which specifies the
form of /(T, Xc) as

Taking φ(n)eΆ(X) (see Appendix A-2) in equation 2), we obtain equations

-t«sr)/.-o. -1.2.3.....

which naturally lead to the following form for /(¥, Xc) :

From the automorphy relation 3) with respect to the Jacobian parameter c e C9, we
obtain the proportionality of f0(I(T) + c,X) and Θ(/(T) + c|Ω), i.e.

The equations 1) shows that the factor C(X) does not depend on X. Π

D) Principles to Determine the Lifting of Aί/2

(7.8) We know already that our τ-function has the following properties:
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1) Automorphy under MΔ *xTL2g

a) τ(

exp(π|/^Tίc(CΩ + I))"1C(2/(T)-fc))τ(T;Zc) for

b) τ(

2) τ(0, Xc) depends only on .Tg x C9.

(7.9) Theorem. Let f be a lifting of A1/2 satisfying 1) and 2) in (7.8):

1) 7/zefl // can be written in the form :

where C : 3/~ -*(£* is holomorphic and MΔ-invariant and π :
2) Furthermore C(π(Xc)) is constant if g^3.

Proof. 1) If we write /(T, JQ - C(XC) τ(T, ATC), C(XC) does not depend on c from the
automorphy l)-b). From this, l)-a) and 2) we obtain the first half of the theorem.

2) If 0^3 moreover, we know that 3~\MA has a compactification whose
boundary is of codimension > 1 . Hence there is no holomorphic function on it (i.e.
no M^-invariant holomorphic function on ̂ ) besides constant. D

Appendix

Here we list the notations and formulas on the theory of abelian functions which we
use in this article. For details see for example [Fay; Mum.l]. We fix a Riemann
surface R, a canonical basis (α, β) of H^R, Έ), a point QεR and a (formal) local
coordinate z : z(Q) = oo. The whole data are denoted by X= (R, (α, β), Q, z). We set

(cf. Sect. 2).

A) Abelian Differentials and the Green Function on Riemann Surfaces

1) Abelian differentials

(1st kind) ωl = ωl(z)dz , i = l...g ,

n>0
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(2ndkind) QeR

f ωg> = 0 , f ωg) =

m>0 m

2) Green Functions
(Prime form): a holomorphic section (unique up to a constant) of the line

bundle πf^f 1 (gπf^V1 <g)(5*(θ) over #x K, with a simple zero only at P = Q
where π x , π2, δ are defined in the following diagram:

(P Q) P-Q
RxR -

-= y
H,ra>0

(multiplicative meromorphic half-form with a simple pole at QeR)

I— ydzw
2 V E(z,w)

(multivalued meromorphic functions with poles at QeR)
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QO

If we set A(X)= £ <Eφ(n)(z)^K(& closed subspace), then the following sequence
is exact n = 0

0 -> A(X) -> A(X) -> <E^ -> 0

2π]/-l β,

(Fundamental normalized differential of the second kind)

(Szegδ kernel)

c ' θ(c\Ω)E(z,w) z-wμ

where ceC9 with Θ(c|Ω)Φθ .

3) The 6)-function and the Abel-Jacobi map

(6>-function)

Θ (z|Ω)=

ί

(Abel-Jacobi Map)

I:R-+(L9 R is the universal Abelian covering of

Q

4) Modular transformation properties.

For =
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\βl /

D -

(z|β) ,
IA

where ε = ε(y) with ε8 = l .

5) Projective connection

fe2- -6 lim

ω(z, w)=- rτ + - S(z) +higher order terms
(z — w)^ 6

where

( , wf" 3 /VY
{w, zj =—- — - I —- 1 (Schwarzian derivative) ,

w 2 \w )

- ι / d

with =— .
dz

B) Transformation Property and θ(^-Derivatives

For f — f(z) —e©0, θ(^) is essentially a generator of coordinate transformation
dz

which fixes z(g) = oo :

We can thus calculate θ(/)-derivatives of geometrical objects from the data of their
transformation properties.

1) Let f ( P ) be a /-form on R and define /(z, Z) ̂ -^((z"1)) by
f ( P ) = f ( z , X ) ( d z ) j for ^r=(Λ, β,z). We have the following relation:

On the other hand the transformation property as a /-form implies
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It then follows that

-
dz

2) Let S(P) be a projective connection on R and define S(z, X) :
by S(P) = S(z, X) (dz)2, then just like 1 ) we have

S(z, etfX) (dz)2 = S(w, X) (dw)2 - (w(z), z} (</z)2

which lead to the following :
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