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Abstract. We use the white noise calculus as a framework for the introduction
of Dirichlet forms in infinite dimensions. In particular energy forms associated
with positive generalized white noise functionals are considered and we prove
criteria for their closability. If the forms are closable, we show that their
closures are Markovian (in the sense of Fukushima).

1. Introduction

In the past decade the theory of Dirichlet forms [5] has become an increasingly
important link between probability theory, analysis, quantum theory and
stochastic mechanics [1-6]. The infinite dimensional case is of particular interest
for the development of infinite dimensional analysis and of quantum and
stochastic models with infinitely many degrees of freedom [1, 14, 19, 20].

Here white noise analysis [7-9,11,13] turn out to offer a particularly suitable
framework; the present article is just a first step towards the filling out of this
frame.

In Sect. 2 we assemble some pertinent material from white noise analysis, in
particular concerning positive white noise functionals and their representation by
measures. As in the finite dimensional case the underlying nuclear rigging is far
from unique, and different alternatives should be explored, with a view towards
different applications.

In Sect. 3 we construct energy forms from positive generalized functionals of
white noise. We give criteria for the admissibility of these functionals, so that the
forms correspond to positive self-adjoint operators, generalizing the generator of
the infinite dimensional Ornstein-Uhlenbeck process. We show that the construc-
tion goes beyond the case of measures which are absolutely continuous with
respect to white noise; i.e. much wider classes of sample functions are allowed to
occur. Finally we demonstrate the Markov property for the forms that we
construct and conclude the paper by commenting on the Markov processes, which
are generated by the Markovian semigroups associated with our forms.
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For simplicity of our exposition, we have written this article using the basic
nuclear GePfand triple,

^*(R)pL2(]R,Λ)P^(IR), (1.1)

which generates the probability space (^*(IR), (%, dμ) of white noise with one
dimensional time [7,8]. However, our constructions and results are readily
generalized to any GePfand triple of function spaces of the type (1.1). The class of
the associated Gaussian probability spaces will then for example include white
noise with higher dimensional time, Euclidean quantum field theory and so forth.

2. Generalized White Noise Functionals and Measures

To generalize the concept of white noise functional it is convenient to embed the
L2-space over the white noise probability space in a GePfand triple of smooth,
respectively generalized functionals. Such a construction is far from unique and
should be adapted to the case at hand. In the following we construct a particular
example of such a triple, the properties of which are convenient for our purpose.

Let (e^*(R), 3$, dμ) be the probability space of white noise (cf. [7, 8]) and denote

(L2) : - L2(^*(JR), Jf, dμ) . (2. 1 )

Recall the correspondence between white noise functionals F and^_sequences
(Fn, n e NO) of symmetric square integrable kernel functions Fn E L2(R") (F0 e (C)
given by

(L2)- φ L2(Sr,π!Λ) (2.2)
neNo

which is the standard isometry between (L2) and the symmetric Fock space over
L2(R,df) [7, 8, 13, 18]. It is convenient to implement (2.2) by the following
transformation:

(SF)(ξ) .=\F(x + ξ)dμ(x) (2.3)

for F e (L2) and ξ e y (R) [1 1 , 1 3]. If F e (L2) corresponds to (Fπ) in the above sense,
then

(SF)(ξ)= £ $ Fn(tί,...,Qξ(t1)...ξ(tn)d'<t. (2.4)
n = 0 IR"

Now let A be a densely defined linear operator on L2(IR, dt). Then there is its
"second quantized" operator [18]

Γ(A) = @A®n (2.5)
n

acting on the Fock space on the right-hand side of (2.2), and this way we are given
an operator S~ 1Γ(A)S on (L2). For simplicity we shall denote this operator too by
Γ(A). Note that Γ(A) is densely defined, linear and - on appropriate domains -

In particular we consider 12
Λ = l+ί2--2- (2.6)
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with Hermite eigenfunctions eh feeN0, and Aek = (2k + 2)ek. Denoting

, (2.7)

we obtain a chain of continuously and densely embedded Hubert spaces (p e N)

)C(//_,_ 1 )C. . . (18)

whose scalar products, respectively norms we denote by ( , )2ίp and || ||2)P. It is
easy to see that the system (( ? )2 ^ peZ) is compatible. Now we define the space

of white noise test functional as the projective limit of the chain (2.8), i.e.

and (£f) is provided with the projective limit topology. (5 )̂ is countable Hubert and
therefore its dual (ϊf}* is given by

C$0* = U(^-P)> (2-10)
P

since (^p)* = (^_p). By choice of A (if] is nuclear. As usual we shall say that
"Φe(ίO* has order p\ if p is the minimal element in N0 such that Φe(^_p).

Let ξe^(lR) and consider the ^*(R)-functional

F(x) = eί<x*ξ>, xe<?*(R). (2.11)

Then

Γ(Ap)F(x) = ei<* APξ> + M (AP ~l}ξ\ (2. 1 2)

and hence the algebra $ generated by the functional of the form (2.1 1) is contained
in (y). By a result in [8] we therefore have

Lemma 2.1. (έf) is dense in (L2).

Another important property of this test functional space is the following
lemma:

Lemma 2.2 [11]. (ϊf) is an algebra.

The somewhat technical proof of this lemma is deferred to an appendix.
For xe^*(R) we define the normal ordered product (in a slightly informal

notation)

in y*(R") with respect to the (informal) covariance

E(x(r1)x(ί2)) = <5(t1-t2),

so that e.g. :x(ί,)x(ί2): =δ(tί — 12) (cf. also [18]).

Lemma 2.3 [12]. Each F <=(ί/} has a version F of the form

Σ<:x®":,F n > (2.13)
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with Fn in ,9 (̂1R"). Conversely any such F is in (y) iff

Σnl\\Γ(A")Fn\\2

2<aι (2.14)
n

for all peN0.

Let (y)o denote the subspace of (y) consisting of those F which have only a
finite number of nonvanishing Fn [cf. (2.13)]. Clearly (£f)0 is dense in all (έfp), ptTL.
For all Fe(^)0 and all /eL2(R,Λ) the Frechet derivative D, of SF [cf. (2.4)] is
well-defined. In fact, viewed as an operator on Fock space Df is nothing but the
annihilation operator of / [18]. The closure of this operator in Fock space is
denoted by the same symbol and we set

df:=S~lDfS. (2.15)

If in particular /= ek, k e N0, we simply write dk. We have the following

Lemma 2.4. For all /eL2(R,Λ),

df :(&)-+(&). (2.16)

Proof. By elementary calculation one derives the bound

\\dfF^\\^p^nίl22'n\\A~lf\\2\\F^\\^p+l (2.17)

for F(n} given by

Fn e <^(R"). Since F e (6?) is given by a sum of such functional satisfying (2. 1 4), it is
clear by Lemma 2.3 that the estimate (2.17) proves the assertion.

Let us denote

(2.18)

I2 being the Hubert space of square summable sequences over N0. We introduce

F:(L2)-+(J^2) (2.19)

by

7F:= (doFΛF^.AF,...), (2.20)

defined on (^)0. It is easy to see that V is closable. Its closure is denoted by the same
symbol. Also we set

|FF| 2 := Σ |δkF|2. (2.21)
keNo

Next we prove the following

Lemma 2.5. Fe(^) entails \VF\2ε(9>\

Proof. Let peN0. Then

2,^ Σ ll(3ΛF (m))(3ΛF (n>)||2,p,
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and by the estimate in the proof of Lemma 2.2 in the appendix we know that there
is geN and cq>0 so that

| <r V \\fl F ( m ) l l \\rl F ( M ) !I\2,P =
 Lq L \\ϋkr \ \ 2 , p + q\\ukr \ \ 2 , p + q

k, m, n

Now apply inequality (2.17), use Aek = (2k + 2)ek and Schwarz' inequality to
conclude the proof.

Next we want to summarize results [21], cf. also [15], about positive
generalized functionals and measures.

Definition 2.6. We introduce the cone of positive test functionals as

-a.e.}. (2.22)

and call Φ e(ίf)* a positive generalized functional if it maps (^}+ into the positive
real numbers.

Theorem 2.7 [21]. For any positive generalized functional Φ there is a unique
positive finite measure v on the Borel algebra over ^*(IR) such that for all F e (£f\

<Φ,F>=JΛ/v (2.23)

Remark. Φ plays, as in finite dimensional analysis, the role of a (possible
generalized) Radon-Nikodym derivative, and here as there the notation dv = Φdμ
should not mean to imply absolute continuity. For short we shall write (L2)v for
L2(Φdμ\ and similarly (j^2)v.

Example 2.8. Consider any strictly positive operator K on L2(R, dt) which obeys

IM-*(£-l)4-*|)H. s.<l, \\A-*K2A-p\\H,s.«v. (2.24)

Then
J £?'•<*» ξ>Φ(x)dμ(x) = exp( - 1/2(£ Kξ)) (2.25)

defines a positive generalized functional Φ of order p. We shall also use the
notation

Φ(x) = Ncxp(-\/2(x, Kx)) (2.26)

with K = K ~ {(l — K), generalizing from the case of trace class K, for which the N
indicates division by the expectation.

3. Dirichlet Forms from Positive White Noise Functionals

In this section we shall study "energy forms" generated by positive generalized
white noise functionals Φ. For clarity of our exposition we shall focus on forms
given by

v, (3.1)

leaving more general expressions such as e.g.

<Φ,

for a separate investigation.

<Φ, X G'W) (W )> + <Φ, HF2} (3.2)
ik
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Theorem 3.1. The energy form ε arising from a positive generalized white noise
functional Φ, defined on (&*), is a positive, densely defined, symmetric quadratic form
on (L\.

Proof. Note that by Lemma 2.2 and Theorem 2.7,

. (3.3)

Furthermore, the algebra generated by functionals of the form (2.11) is dense in
(L2)v (by a Stone- WeierstraB argument) and is contained in (ίf\ so that the
embedding (3.3) is dense. The other assertions are obvious.

We now turn to the problem of closability of the quadratic form ε.

Definition 3.2. A positive generalized functional Φ is called admissible if the
corresponding energy form (3.1) is closable on (L2)v.

As a consequence we have the following

Theorem 3.3. Let Φ be admissible, ε denotes the closure of ε, Q)(ε) its domain. Then
there exists a unique positive self-adjoint operator H with &(H1/2) = £}(ε) and such

This is a direct consequence of general theorems given in [10]. The same is true
for the following

Theorem 3.4. ε is closable if

P*:(J^2)V-+(L2)V (3.4)

is densely defined.

Example 3.5. Φ = l: in this case — / / i s the Laplace-Beltrami operator

H = Σ S f d k , (3.5)
fc

where <3j* is the (L2)-adjoint of dk. H is of course the S-transform of the number
operator on Fock space and generates the infinite-dimensional Ornstein-
Uhlenbeck process on ^*(R) [14, 19].

In order to describe a convenient criterion in the case that v is absolutely
continuous with respect to μ with positive density Φ, we introduce the spaces (LP*q\
p = 2, 3, ..., geN0, which are the completions of the algebra $ generated by
functionals of the form (2.11) under the norms

||F| |p,q: = | l ( l+H) 9 fΊ lp, (3.6)

where H is the number operator (3.5). Note that (^)C(Lp q)C(L2) for all
p = 2,3, ...,geN0 and that these embeddings are dense and continuous.

Theorem 3.6. Assume that Φ>0 (μ-a.e.) and Φ 1 / 2e(L 4 < 1). Then Φ is admissible.

Remark. The condition on Φ in this theorem is not optimal, but it allows for a
transparent proof. However, note that our condition is less restrictive than the
one used in [19].

The proof of Theorem 3.6 makes use of the following
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Lemma 3.7. Under the hypothesis of Theorem 3.6,

(3.7)

for all k e N0 in (L2)-sense.

Proof. From the assumptions it follows that there is a sequence (fn\n e N) in $, so
that

/^Φ1/2 intL 4 ' 1)

and

f2-+Φ in(L2).

It is easy to check that for every /ceN0 dk is a derivation on <f, so that for every
k e NO 3fc/tt

2 is Cauchy in (L2). Moreover dkΦ is in (L2), which can be seen as follows:

where the last inequality followed from Meyer's equivalence, cf. e.g. [17]. Thus the
closed graph theorem implies that

dkΦ = θ,(Φ1/2)2 = lira djn

2 = 2 lim/A/B = 2Φ1 / 2e> tΦ
1 '2,

n n

where the limits are taken in (L2).

Proof of Theorem 3.6. Let (F f c;fceN0) be a sequence with Fk = 0 for almost all
fee NO and FΛe<? for all keN0. Then ¥ = (Fk)e(^2)v and

(3.8)
k

where xk is the multiplication operator (xkF)(x) = <x,ek>F(x). Thus

uμ\Λ)*Λf\Λ,) L\~uk^~ Λkμ'k\Λϊ

k

Since Fke<ί and Φe(L2), it is a trivial application of Schwarz' inequality to show
that the first of the last two terms is bounded. For the second term note that each Fk

is bounded and that the sum has only a finite number of terms. Thus it suffices to
show that

is bounded. By Lemma 3.7 this expression equals

which is finite by our assumption.
In the case that Φ is a genuine generalized functional, i.e. v not absolutely

continuous with respect to μ, we have the following criterion.

Theorem 3.8. Φ is admissible if dkΦ = BkΦ with Bke(^) for every /ceN0.
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Remark. Here we mean by dkΦ for Φe(^)* the distributional derivative

which exists to all orders.

Proof. Let G = (G fc;/ceN0)e(J^2)v, i.e.

ΣllGJI (

2

L 2 ) v <cχ>. (3-9)

Then F* acts as ,*G,Σ(_^_W. (3.10)
k

Thus P* is well-defined on the space of those sequences G in (^2}v which have only
a finite number of zero entries from (^\ This space is clearly dense in (^2)v.

Other, more general, conditions may be thought of, but the above already
suffices to demonstrate that the class of admissible generalized functionals and
hence our construction of energy forms is not restricted to ΦeLi(dμ), i.e. to
absolutely continuous measures v < μ.

Example 3.9. Consider (cf. Example 2.8)

Φ=:exp(-l/2(x,JCx)):5 (3.11)
for which one finds

Bk(x)=-(Kx)k=-<x,Kek>, (3.12)

which is in (&>) if K maps ^(R) into itself.
As a next step in the development of our subject we would like to investigate the

Markov property [5] of the energy forms which we have constructed.

Theorem 3.10. Let Φ be an admissible positive generalized functional and E be the
closure of the associated energy form ε. Then E is Markovian in the sense of
Fukushima [5].

Proof. By j/ we mean the algebra of functionals generated by sin< , £>, cos< , £>,
ξ e y(R). Using a WeierstraB argument we find that the composite g ° F of a
functional F e stf with a C1(R)-function g is in @(ε). Moreover note that ̂  is dense
in £^(ε). Now let F e ®(ε), g 6 Qj, and (Fw; n e N) be a sequence in j</ approximating
F in ^(έ), i.e. Fn-*F in (L2)v and ε(F — Fn)->0. Selecting a subsequence, we may
assume that Fn-*F a.e. Since v is finite and g bounded, the dominated convergence
theorem implies that goF π ->goF in (L2)v. Furthermore, by the chain rule [16]

The first term vanishes since ε(F — Fn)-^0 and the second converges to zero by the
dominated convergence theorem. Since ε is closed g ° F e 2(£).

Now let φδ, 5>0, be the smooth truncation defined in [2, Theorem 3.2], then
(using the chain rule and closedness of έ)

for all Fe^(ε).
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We conclude this paper by some remarks concerning the processes associated
with the forms we have constructed.

From Theorem 3.3, Theorem 3.10 and general theory [5] we know that an
admissible positive generalized functional Φ e (&**) defines a positivity preserving,
strongly continuous contraction semigroup (Pt; t e R+) on (L2)v with Pt\ = 1 for all
ίeR+, whose generator is H=7*V. This semigroup extends to a positivity
preserving, strongly continuous contraction semigroup on all (Z/%, l^p^oo,
[18].

Now note that (^*(R), dv) is regular in the sense of Albeverio and Hoegh-
Krohn [1, Sect. 3], because dv, as constructed above, is the extension of a cylinder
set measure on (̂<5^*(R)). Hence the arguments in [1] apply to associate with
(Pt; t eR+) a canonical time homogeneous Markov process (X(ί); ί eR+) realized
on path space ((^*(IR))[0'co),ίiω). Here dω is the extension of the cylinder set
measure defined by the initial measure dv and the transition probabilities given by

Appendix

In this appendix we prove Lemma 2.2. Remark that this result had already been
announced (in a slightly more general formulation) by Kubo and Takenaka in
[11].

First we introduce some notation. We denote L(R",n!dnί) by Γ(n) and set
^(n):=s-lr(n\ so that

(L2)= φ Jf(n) (A.I)
n = 0

in the sense of Sect. (2).
If fe Γ(n} and r e Rk, fe ̂  n, then we mean by f(r ) the corresponding element in

Γ(n~k\ If /(r ) is in the domain of Γ(A)]Γ(n-v, we write Γn_k(A)f(r; ) for the
element in Γ(n~k) which results from the application of Γ(A)]Γ(n-k) to /(r ).

Furthermore, in order to avoid cumbersome formulae, we shall use the
(somewhat informal) notation (cf. Sect. 2):

<:x® B : ,/> = ί/(ί1,...,g:x(ί1)...x(ίΛ):d"ί (A.2)

for an appropriate function / of n variables. Now let

φ e (¥}(n ' m} : = (<9> } n ̂  (n ' m) and ψ e (^)(m)

be of the form
φ(x)= j f(tl9...,tn^x(t,)...x(tn__J:d?-mt,

]Rn- m

φ(x)= j g(ί !,..., ίj:x(ί1)...x(ίj:dwί.
Rm

It is then a straightforward, though tedious computation using the definition of
the normal-ordered products to derive the following formula (/CΛ / = min(/c, /)):

n - m Λ m ιγι

(φψ)(x)= Σ Λ ! , , 1 (/(r;.)®g(r;-))(ti,...,tn-2,)
-

(A.3)
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which is the decomposition of φip into its homogeneous components in the spaces
2^(n-2k)

Now we are ready for the proof of the following

Proposition A.I. Let φ and ψ be as above. There is a constant K, independent of
φ, ψ, n, m, p, so that

Proof. Since Γ(AP) = Γ(A)P, it suffices to consider p = l. Using formula (A.3) and
(2.2) we find

n — m Λ m

\\Γ(A}φy\\i= Σ c(n,m,k)

J J rn_m_k(A)f(r;t)®rm_k(A)g(r,t)dkr
]Rπ-2k ]Rk

L
< n vγ\

k ! 1

Using Schwarz' inequality and H^" 1 ! ! ^1, we obtain the estimate

n — m Λ m

c(n,m,k)\\Γ(A)f\\l(^m}\\Γ(A)g\\l2(^}

Thus it remains to show that the above sum is bounded by Kn. But this is easily

done using (n-2k)!(k!)2^rc!, Σ ( ? ) =( / and Stirling's theorem.
fc = o \ k / \ q J

Now we can prove Lemma 2.2:
For φ,φe(y\ let φ(n\ψ(n} denote their components in (<f}(n] and set

ψψ(x)= Σ Σ φ("~m)(x)tpίm)(x). (A.4)

Then we have to show that the sum (A.4) converges in (£f\ i.e. in every i
But

norm || ||2 p.

2 , p ^ ( Σ. ΣJl9 ( f I " m y m ) i l2.p ι

^( Σ κπ Σ H ^ ( l l ~ w ) l l 2 f p l l ψ ί M ) l l

00 «

where we used Proposition A.I, | |φ ( n ) | |2,p^ \\A~γ\\qn\\φ(n}\\2,P + q and Schwarz'
inequality, q was chosen such that 2^X^1/2, i.e. independent of φ and ψ.
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