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Abstract. We continue the rigorous study of the large order behavior of the
perturbation series for the φ4 model in 4 dimensions started in [1]. In this
paper we prove a result announced in [1]. We show that the exact radius of
convergence of the Borel transform of the renormalized perturbation series for
Φ4 is greater than or equal to the expected value given by the position of the
first "renormalon" [2]. This result holds for any vector (φ2)2 model with N
components, and makes use of the "Lipatov bound" of [1]. This result is based
on a partial resummation of counterterms similar to the one of [3], but in a
phase-space analysis of the renormalized series.

I. Introduction

A) The Renormalon Problem

The large order behavior of the renormalized series for φ% field theory is expected
to be governed by the first "renormalon" singularity in the Borel plane [2]. It
happens indeed that this singularity, which should exist only in dimension 4 where
the theory is renormalizable, is closer to the origin than the "instanton" singularity
which is responsible for the "Lipatov" large order behavior [4] of φ4 series.
Therefore this Lipatov behavior is only expected to hold for the lower dimensions
1, 2, and 3, where the φ4 theory is superrenormalizable. Although this "Lipatov"
behavior in the superrenormalizable domain has now been rigorously established,
there is no theorem, up to now, on the existence of a single "renormalon"
singularity, except in the trivial case of "infinite component" vector models.

A rigorous study of renormalons is interesting for several reasons. The
renormalon is the modern version of the "Landau ghost" [14]. As shown in [2] by
Parisi and't Hooft, for those renormalizable theories which are not asymptotically
free (i.e. the one loop β function coefficient is positive), one expects singularities in
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the Borel transform induced by bad ultraviolet behavior at some points on the real
positive axis in the Borel plane. These singularities, called renormalons, are an
obstruction to resummation of perturbation theory. The connection between the
renormalization group flow for non-asymptotically free theories and the ap-
pearance of renormalons in the Borel plane has been further investigated in
[15,16].

An understanding of ultraviolet renormalons would shed some light on the
problem of triviality of non-asymptotically free theories like φ4. from a perturba-
tive point of view [13], i.e. a direct analysis of the renormalized perturbation
expansion. This point of view is different and somewhat complementary to the one
of [6], where new correlation inequalities were derived and used to prove that the
continuum limit of any φ4 theory regularized on a four dimensional lattice is a free
field under rather mild assumptions.

Another reason for interest in renormalons is the fact that non-abelian gauge
theories, although asymptotically free, should also have renormalons, of infrared
type. These renormalons should be related to the existence of non-perturbative
effects at long distance. An understanding of renormalons is in particular necessary
to define correctly the coefficients of the operator product expansion which has
been used to parametrize such effects in models like QCD [7].

The fact that the first renormalon singularity of φ4 in the heuristic analysis is
the closest one to the origin already suggests that a rigorous proof of its existence
should be feasible. The corresponding strategy was explained in [1]; one should
combine an upper bound on the instanton effects with a lower bound on the first
"renormalon effects." In [1], the first piece of this program was accomplished,
namely an upper bound on the piece of the expansion which does not contain
renormalons, with the exact value of the Lipatov constant. In this paper, using the
results of [1], we do prove that the renormalized Borel transformed series converge
and give an analytic function in the optimal expected disk, which is limited by the
position of the first expected renormalon. We can also identify many sources of
potential singularities when one approaches the corresponding point on the real
positive axis. However we have not yet found an organizing principle for these
singularities, which would allow us to rule out the very unlikely possibility of a
miraculous cancellation between all of them. It is a general feature that when signs
are not fixed, lower bounds are much harder to get than upper bounds.

For the (φ2)2 model with JV components and N sufficiently large, we do have
such an organizing principle, namely the ί/N expansion, and it should therefore be
possible to prove the existence of the first renormalon. Note that in this case the
delicate part of [1], namely getting the exact Lipatov constant in the estimates is no
longer necessary, since the instanton singularity, at large N, is arbitrarily farther
from the origin on the negative Borel axis than the renormalon on the positive axis.
However there is a new technical difficulty. In this paper, to obtain the correct
convergence radius in the Borel plane requires only studying the "effective coupling
constant flow" in an approximation where one retains only the first non-vanishing
coefficient β2 of the β function. To prove the existence of the first renormalon, even
at large N, requires controlling not only the position but also its "strength," and this
requires an analysis where one retains both β2 and β3 in the β function. The
"loglog" correction to the logarithmic decay of the effective constant induced by β3
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is well understood in the asymptotically free case; but in the case of a non-
asymptotically free theory it seems more difficult to control. We hope to return to
this problem in the future.

In conclusion we consider that the simple question "Is the renormalized series
of plain one-component φ\ theory Borel summable" or even "Does it have a non-
zero radius of convergence" is still open from the purist point of view, but we hope
that this paper is a step towards a convincing negative answer to these two
questions.

B) The Results

The perturbation expansion for a connected Schwinger function SN in the theory
with interaction — gφ4 is a formal power series in g defined as:

where a^ is the sum of all renormalized Feynman amplitudes for connected
graphs with n vertices and N external legs. This requires the choice of a
renormalization scheme, which we choose to be the ordinary BPHZ scheme with
subtractions at 0 external momenta for the massive theory [8], and the scheme of
[9] in the massless case. For simplicity we will assume that we are in the massive
case, and we will consider more precisely the large order behavior of two typical
quantities, the 6 point function at 0 external momenta and the 2 point function at
some external momentum p satisfying p2 = μ2, where μ is a fixed energy scale, but of
course our results are not limited to this particular case.

Let us sketch our understanding of the large order behavior of φ4. The
"Lipatov" analysis would lead to an expected behavior:

an = n\ an(\ + ε(n))n , with lim ε(n) = 0 , (1.2)
«-> 00

where a, the Lipatov constant, takes the value a = (3/2π2) for an N component
model (note the discrepancy with the values of [2], since we do not use an
interaction — gφ4/4l).

In fact renormalization should disturb the Lipatov analysis in 4 dimensions, so
that one should expect a large order behavior [2] :

Γ — β Ί"
cξ = n ! —¥- (1 + ε(n))n , with lim ε(n) = 0 , (1.3)

where β2(N) = (N + 8)/(2π2) is the one loop coefficient of the beta function for an N
component φ^ model. Note that even at N = l, a = β2/3, so that (1.3) dominates
over (1.2). This situation persists for all N, and the ratio a/β2 tends to 0 as JV-»oo.

The main result of this paper is:

Theorem. For any number of components N, there exists a function ε(n) which tends
to 0 as n tends to + oo, such that:
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hence the Borel transform [10] B(b)= £( — b)"α^/n! of the renormalized perturba-
n

tion series is analytic in a disk of radius (2/β2) (which is the optimal expected disk).

C) Outline of the Proof

In Sect. II we rewrite the renormalized perturbation series, which is a power series
in the renormalized coupling constant, as an "effective" power series in an infinite
number of "effective coupling constants," one per "momentum slice," which are
related to each other through a renormalization group equation, truncated to
second order. This rewriting is accomplished by an explicit resummation of some
pieces of counterterms in the initial series, in the manner of [3]. In Sect. Ill, we use
inductively the "Lipatov bound" of [1] together with a combinatoric analysis in
the style of [8, Appendix C] to extend this "Lipatov bound" to the coefficients of
this effective series. Combining this bound with the ultraviolet behavior of the
effective coupling constants leads to the proof of the theorem.

II. The Dressing Process

A) The Renormalization Operator ]R

We write the usual decomposition of the propagator into momentum slices (see

e.g. [11]):
C(p)= $dxe-a(p2 + m2)= £ Cj(p), (II.l)

o

Λ ί ~ 2 < J - » αo

Cj(p)= j dαβ~α(p2 + m2); C°(p)= J d^e~a(p2 + m2\ (112}
' 1

where M> 1 is a fixed number which we can choose equal to e, so that LogM = 1,
which simplifies some of our equations. Moreover the renormalized mass m2 can
be fixed to 1, simply by redefining the unit of mass. Recall that in x space we have
the behavior [11]:

\Cj(x-y)\^0(l)M2je~(l/2}MJlχ-yl, (113)

where 0(1) is our generic name for a fixed irrelevant constant. The BPHZ
renormalization is performed by Taylor subtractions on the x-space integrand of
Feynman amplitudes, according to Part III of [12]:

R=Σ Π(-τβ), (IL4)
F g&F

where the sum is performed over all forests of proper divergent closed graphs (see
[8, 12]) and the Tg operator extracts the beginning of the Taylor expansion of the
integrand up to the superficial divergence degree for subgraph g at 0 external
momenta. The expression of Tg in x-space is somewhat messy so we refer to [12,
p. 27] for its exact definition. The amplitude for a Feynman graph G can then be
written as a sum over momentum assignments μ, where μ is a collection of L
integers μ(l), /= 1, ...,L, one for each of the L internal lines of G:

tt), (ii.s)



Large Order Behavior of Φ* 219

where v runs over the n(G) vertices of G, and xl9 yl are the positions of the two ends
of the line /. g is the renormalized coupling constant. Next we perform the
reorganization of forests which is crucial for analyzing renormalization in [8] and
[12]. We define for any forest F and any geF two indices ίg(F,μ) and eg(F,μ).
Barring subleties, the definition for i and e would be:

(11.6)

eg(F, μ) = 2ndmax {/*(/), I e E(g)Bg(F)} , (II.7)

where 2ndmax {A} means "second max of A" i.e. min (max {A — {a}}), and as in [8,
aeA

3, 12], Ag(F) is the union of the subgraphs of F inside g, and Bg(F) is the smallest
graph of F containing g. By convention when g = G is a full graph for the
perturbation expansion of the Sch winger function we consider, we put the external
index eG to 0. However in Sect. C) it will be convenient to consider some subgraphs
g also as full graphs, and one should remember that this convention does not apply
to them; they should keep as external index the index that they have as subgraphs.
The true definition of i and e is more complicated, both because it has to be
inductive, starting from the largest graphs of F, and because the possible presence
of "bipeds" and the necessity to take into account 1 PI and "closed" structures in
order not to make a large number of spurious subtractions create painful
technicalities. The correct definition that we will use in this paper is the one of [12,
p. 48] with a single slight modification: in Eq. (3.3b) the max is taken to be a second
max, even in the first line of the equation (the case "g triped or quadruped"). This
definition then corresponds exactly to the one in [3], but neither exactly to the one
of [8], nor to the one of [9, 12]. This slight change does not alter the basic lemmas
which we are going to state.

Let us associate to any forest F two other μ-dependent forests:
- the forest Dμ(F) of the dangerous graphs of F:

Dμ(F) = {geF .iβ(F)>eg(F)}, (11.8)

- the forest Σμ(F) of the safe graphs of F:

Lemma 1. Σμ is a projection: Σμ°Σμ = Σμ.

The forests F such that Σμ(F) = F are called compatible withμ.

Lemma 2. Let F be compatible with μ; then there exists a forest Hμ(F) such that:
- FuHμ(F) is a forest,
- Σμ(F') = F *> FGF'eFu#μ(F).

The proof of these two lemmas is the same as in [8]. From Lemmas 1 and 2 we
obtain the following reorganization of the IR operator:

ΣR=Σ Σ Yl(-τg) Π d-τβ)
μ μ F geF geHμ(F)

Σμ(F) = F

= Σ Σ Π(-τg) Π (i-τ;). (mo)
F μ geF <?eHμ(F)
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B) Resummation of Useless Counterterms

The Taylor operators in (11.10) corresponding to the safe forest F generate pieces of
counterterms which we call "useless counterterms" [12], because they do not
contribute to the cancellation of ultraviolet divergences, but are forced by the
requirement of locality for the total counterterms. It is these pieces of the
counterterms which can be combined with the renormalized coupling constant to
generate effective constants [3]. We are now in a position to resum the most
important useless counterterm, which corresponds to the one loop graph

G2 = y^ ^X, with iG2(F) < eG2(F) (note the strict inequality). This process

generates running coupling constants according to a law governed by the one loop
β function. To resum all the useless counterterms, even for the sole graph G2,
would be difficult to control. Therefore we will resum only the pieces truly
responsible for the "first renormalon behavior." For this purpose, let us define a
projection π on the set of triplets (G, F, μ) made of a graph G, a forest F in G, and a
momentum assignment μ compatible with F [i.e. such that Σμ(F) = F']. (This
resummation is inspired by what is called the "first resummation" in [3]; the
"second resummation" of [3] will not be necessary here.)

π° is defined by reducing to a single vertex, in G, every subgraph g of F which is
isomorphic to G2 and such that ig(F) < eg(F). This reduction gives the graph G', a
forest F' and an assignment μ' (obtained by reducing in the obvious way F and μ to
G'). Clearly F' is compatible with μ', and we put π°(G, F, μ) = (G', F', μ'}. Iterating
this process until stationary, we can define the projection π as the limit of (π°)fc as
fc->oo [the limit is obtained for any fixed G for some finite fc^n(G)]. The
renormalized perturbation expansion can be viewed as an infinite formal sum over
the triplets (G,F,μ):

Σ ίΠ^(-g)"(G)Z(G,F,μ), (H.11)
(G.F.μ) u e G

where Z(G F>μ) is defined as:

Z(G,F,μ)= IK-?;) Π (l-7i)ZG,μ. (11.12)
0eF geHμ(F)

We define the "fundamental triplets" as the (G,F,μ) such that:

π(G,F,μ) = (G9F,μ). (11.13)

We now organize perturbation theory as a sum over fundamental triplets:

Σ = Σ Σ (H-14)
(G,F,μ) (G,F,μ) (G'.F'.μ')

fundamental π(G',F',μ') = (G,F,μ)

The second sum in the right-hand side can be explicitly performed, since it will be
shown to correspond to a dressing of the coupling constants of G. Indeed:

Z(G,F,μ) = Zπ(G,F,μ) Π (~~^h/F,μ) (11.15)
Λ e F

h reduced by π

In this formula h/F is the graph obtained by reducing to a single vertex the
subgraphs of F in h. This new type of vertex is called a "reduction vertex." Remark
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that from the definition of π, h/F is always isomorphic to G2. The integrand Z^μ
is the result of the factorization due to the Taylor operator (— Th) which has to be
there from the definition of π. Finally the lines in h/F have momentum assignments
fixed by μ.

For a given fundamental triplet (G, F, μ) and for any vertex v e G, let us define

et/F,μ) = 2m/max{μ(/), I hooked to υ and leBv(F)}.

Performing the second sum [over (G',F',μ')] in Eq. (11.14) we can rewrite the
renormalized perturbation expansion as:

Σ ί n dχv(-gr
G>z(G,P.μ}(G,F,μ) veG

= Σ ί Π dXυz(G,F,μ} Π (-gf (g)K (Π.16)
(G,F,μ) veG veG

fundamental

where gf f(g) depends only on ev(F, μ) and on the renormalized coupling constant g.
We write:

gf(g) = gcίW,μ),g). (11.17)

In the next section we will study more precisely this effective coupling.

C) The Effective Coupling Constant

Clearly the effective constant gjff(g) is the result of the sum over all subtriplets
which the operation π reduces precisely to the vertex v. Therefore it is useful to
define "parquet triplets" as triplets (G, F, μ) such that π(G, F, μ) is a single vertex.
Recall that this vertex has an index ev = ί (for short) and that the assignments on
G/F, which has to be isomorphic to G2, satisfies the last constraint iG(F)<ev = i.
Therefore:

grff(i,g) = Σ g" ( G ) fΠ^ΠPW. (Π.18)
(G,F,μ) veG heF
parquet

One might worry about the convergence of the sum in (11.18). But from our
restrictive definition of the π projection, this sum is in fact a polynomial in g of
order at most 2\ hence perfectly well defined. Since h/F in the formula above is
isomorphic to G2, we need only to define the following integrand, which
corresponds to the graph G2 with momentum assignments j1 and j2 on its two
internal lines 1 and 2, at 0 external momenta:

Z(h, J2) = β ί d*xC»(Q9 x)Cj*(x9 0) , (II. 1 9)

where β is a numerical coefficient corresponding to the symmetry factor associated
to G2. Furthermore we can define:

r(0= Σ Z(jl9j2). (11.20)
min{jι, j 2} = ι

Lemma 3e The sum which defines Y(i) is absolutely convergent. Moreover there exist
constants K and K' such that:

Ki), (11.21)

where β2 is the one loop coefficient of the β function defined in Sect. I.
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The proof follows easily from the α-representation of the propagator CJ (11.2).
Reexpressing the compatibility condition between F and μ in the case where F

is a parquet forest we can rewrite Eq. (11.18) as:

yι<G) Σ ΐ \ Z ( J ί ( h ) , j 2 ( h ) ) ,(ί,g)= Σ g"
(G.F)

parquet

(11.22)

where the sum over the momentum assignments j^h), j2(h) of the two lines oίh/F is
constrained by

mm(jΐ(h\j2(h))<mm(jΐ(h')J2(h')) if (11.23)

This is essentially because in a parquet triplet each reduced subgraph has exactly
two internal lines and two external lines internal in the next subgraph of the forest,
hence the second max coincides in this case with the min (see Fig. 1). Let us call cn(ί)
the coefficient of order n of geff(ί,g):

geff(ί,g) = Σ g"Cπ(0. (Π.24)
n^ i

Since parquet triplets have a tree structure with coordination number 2 (see Fig. 2)
the coefficients cn satisfy the simple recursion relation:

cn®= Σ Σ cnι(j)cΛ2(j)Y(j)
n \ + H 2 ~ n j < ί

(11.25)

with initial conditions c0(j') = 0, C j (_/) = ! Vy. This recursion relation leads to:

(π.26)
hence to:

geff(U)=g + Σ nτ)(geff(j,g))2,
J<1

(11.27)

This is the usual form of the renormalization group recursion equation for the
coupling constant, with the initial condition geff(0, g) = g.

\

Fig. 1. Parquet triple

7

1 2

Fig. 2. Parquet graphs; ordinary vertices, reduction vertices
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D) The Borel Transform

We use as definition of the Borel transform of a power series £ ang
n the power

series "-1

Σ^n—^ (Π.28)

With this definition we have the usual correspondence between functions and their
Borel transforms and the usual theorems on Borel summability [10] and the
"Borel convolution" formula takes the simple form:

Blfg'] (b) = f Bin (V)Blg\ (b - b'}db', (11.29)
o

where J5[/] means the Borel transform of /.
Let us write £eff(i,h) for £[geff(z,g)]. Then (11.27) becomes:

5eff (i, b) = £eff (i -1, b) + Ύ(i -1) f βef f (i -1, b')Beff(i -l,b- b')db! (11.30)
o

with jBef f(0,i?)=l, from which follows the obvious bound

(11.31)

A last lemma will give a global bound for the Borel transform of the product of
all factors geff(ί, g) in a fundamental contribution with n vertices. We define im(μ)
(or im for short) as the maximal momentum assignment appearing in μ:
im(μ) = sup μ(/). Then we have [recalling that n(G\ or simply n, is the number of

ίeG

vertices of G]:

Lemma 4. We have, for any fundamental (G, F, μ):

(11.32)

β«(c,Λμ,= ΠCg^ίF.^g)]. (H.33)
u e G

Proof, To get this estimate, one has just to remark that geff(i, g) is a polynomial in g
with positive coefficients and that each coefficient of geff(fe, g) is bounded by the
coefficient of same order of geff(fc', g) if k^k'. Then (11.32) follows simply from
(11.31) and the Borel convolution rule (11.29).

Finally combining (11.21) and (11.32) we obtain:

e^^^, (11.34)

where c is a numerical constant.
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III. The Bounds

In [1] the following "Lipatov bound" was proved for the piece of the perturbation
expansion which does not contain "useless counterterms" :

Theorem III.1. There exists a function ε(n) such that ε(n)-»0 as n— >• oo, and such that :

Σ JΠ^JZ ( G ι FJ:gn!K£[l +£(«)]", (III.l)
(G,F,μ) veG

n(G) = «, F = 0

where KL is the Lipatov constant of Sect. I. Furthermore there exist constants C and
ε>0 such that:

Of course ε in (III.2) can be replaced by any number ε' < ε, which means that ε can be
taken as small as desired in (III.2); in particular we will assume later that ε<l/2.

This estimate was shown in [1] to hold for a fixed Sch winger function at fixed
external momenta. The main theorem was expressed by inequality (III.l) but the
detailed proof shows that (III.2) [which obviously adds information to (III.l)] also
holds.

In fact we also need the following corollary of the results of [1]:

Corollary III.L For any η>0, under the same conditions there exists a positive
function ε(n) and constants C and ε (depending onη) such that 1 +ε(ri) satisfies the
bound (III.2), and such that:

X J Π dxυ\Z(GtF,μ}\e<2-^M^n\KlV + s(nϊ]n. (III.3)
(G,F,μ) veG

n(G) = n, F = Ψ

Proof. The proof in [1] of the theorem above uses only the fact that if F = 0 there is
an exponential decay in the space of momentum assignments μ, but does not use
the coefficient of this decay, which only affects the function ε(n) [more precisely the
coefficients C and ε in (III.2)]. But by power counting the exponential decay in
momentum assignment space is at least 2 [12], which is the worst superficial degree
of convergence after renormalization, corresponding to the convergence degree of
6 point functions and of renormalized 2 and 4 point functions. Therefore after
multiplying by e(2~η}ίm(μ} we still have exponential decay in momentum space (of
strength at least η) and the analysis of [1] does apply, leading to the stated
Corollary.

The case of 4 and 2 point functions is controlled by the following bounds:

Corollary III.2. For a 4 point Schwinger function:

Σ Γ Π /^Y 17° \ 0(2 - l)[im(μ) ~ ic(F , μ)]
J 11 aXv\^(G,F,μ)\e

(G,F,μ) veG

(III A)

where Z° is similar to Z, except that the (1 — TG) operation in the definition of Z is
replaced by TG (hence Z° is the counterterm associated to G). Remark that now we
have only exponential decay between the maximal (im) and minimal (iG) assignments in
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G, hence the corresponding exponential increase in (IIL4) has to be restricted to
lm~~lG'

For two point functions (which, say in a 6 point function, will appear only as
subgraphs) it is convenient to include in the corresponding estimate one of the
external legs of G, and to get :

Corollary III.3. For a 2 point Schwinger function plus one of its external legs:

V f Π //Y 17° U
L J ii aXv\^(G,F,μ)\e

(G,F,μ) veG

(2-ί?)[im(μ)-iG(F,μ)]

(IILSa)

V f Π ήv I71 \p(2-η)[im(μ)'iG(F,μ)]
L J 11 axv\Zj(G, F,μ)\e

(G,F,μ) veG

(IILSb)

where Z° and Zl are respectively the mass and wave function counterterms
associated to G. Recall that by convention in (ΠI.5b) one of the two external legs of G
has been included in the estimate, to bear the derivative associated to the Taylor
operator for the wave function counterterm [12].

These last identities are easy generalizations of Corollary III. 1, just taking into
account the divergence of the global counterterms which are logarithmically
divergent for the coupling constant and wave function renormalizations and
quadratically divergent for the mass renormalization; notice that by (II.7) the
quadratic divergence of a two point subgraph is always compensated by the
quadratic convergence of any of its two external legs.

A last remark will be useful. The bounds (III.l) and (IΠ.3)-(IΠ.5) are expressed
for unlabeled graphs; if the summation was made over "'labeled graphs" with
distinguished vertices (which is better for correct graph counting) there would be
simply an (ft!)2 instead of ft! in the right-hand side of the bounds. It is this form of
the bounds that we will use below to establish (III. 15).

We want now to bound the total ftth order of effective perturbation theory in
(11.16), i.e. we want a bound on the sum over fundamental triplets (G, F, μ) which is
not restricted to the triplets with an empty F. Our target is to prove:

Theorem III.2. For any η' > 0 there exists a function δ(n) (depending on η' ) such
that (5(n)->0 as ft-»oo, and such that:

Σ ί Π dxv\Z(G9F,μ)\e(2-^iM^nlKll\+δ(n)r. (111.6}
(G,F,μ) fundamental t eG

Al(G) = Λ

Moreover the details of the proof will give the bound:

l+<5(ft)^exp{-f C(logloglogftΠ} (III.7)

for some constants C > 1 and c> 0 (depending only on η'). Of course this bound is
not optimal and the log log log has no physical significance. In what follows we
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always assume implicitly in formulas like (III.7) that n is larger than
exp [exp [exp 1 ]] so that log log log n > 1 indeed for n bounded there is no problem
at all.

In order not to obscure the argument too much, we treat first a simplified case
in which the sum is restricted to graphs G which have no two point subgraphs. The
subgraphs of F (all of which have 4 external legs) can then be classified into four
classes:

- Class 1. These are the subgraphs geF which have n(g/F)^3.

- Class 2. These are the subgraphs g e F which have n(g/F) = 2 (hence g/F is
isomorphic to G2) and have ίg(F, μ) = eg(F, μ).

- Class 3. These are the subgraphs geF which have n(g/F) = 2 (hence g/F is
isomorphic to G2), have ίg(F,μ)<eg(F,μ\ and are such that g/F has exactly one
reduction vertex [for the definition of this type of vertex, see after (11.15)].

- Class 4. These are the subgraphs geF which have n(g/F) = 2 (hence g/F is
isomorphic to G2), have ig(F, μ) < eg(F, μ), and are such that g/F has exactly two
reduction vertices.

Notice that this exhausts all possibilities because of our resummation rule. For
a given (G, F, μ) let us call /?1; p2, p3,

 and £4 the number of subgraphs of classes 1, 2,
3, and 4, and p^Pi +p2 + p3-hp4 the total number of subgraphs in F. First we
remark that:

P 4 ^ P ι + P 2 - l > nence P4^P/2 (III.8)

This is because a class 4 subgraph must contain two disjoint subgraphs of F of
class 1 and 2.

As in Appendix C of [8], we separate F into layers Lb 1 ^i^λ(G)^p:

L~{geF\Bβ(F)eLi+1}. (III. 10)

We also define ht ̂  1 as the number of elements in the layer Lt and

kt= Σ hr. (111.11)

Next we order arbitrarily the disjoint subgraphs in each layer, and we label them in
the following way:

Lί = { g j , j = ki^ + \,...,kί}. (111.12)

[There are of course π^!) possible different labelings.] By a slight abuse of
notations we will say that) is of class 1, 2, 3 or 4 if gj is respectively of class 1, 2, 3 or
4. We fix which /s are of class 1, 2, 3 or 4, paying a factor 4P in our estimates. We
also define n>>/l as the number of vertices of the reduced graph gj/F and Sj^O as
the number of reduction vertices in gj/F. By convention we write G = gp+1. Then
the following relations must be satisfied:

kλ(G) = Pl Σ nj = n + p ; X sj = hi.li. (111.13)
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To obtain the desired estimate (III.6) we use Corollary III.2 inductively, starting
from the minimal graphs of F, and inserting them into larger and larger ones to
build the whole forest. Let r7 = n } — s7 be the number of ordinary vertices in g7 /F. As
in [8], Appendix C, the binomial coefficients

count the choices respectively of ordinary and reduction vertices in g7 /F. For each
j, a factor (4!) takes into account the identification between the 4 external legs of g7

and the 4 lines attached to the reduction vertex corresponding to it. When the ways
of inserting the g/F's have been chosen, it remains to bound the amplitudes of the
inserted objects, which is done using Corollary III.2 (and Corollary III.l for the
last graph G/F), since the inserted pieces do not contain useless counterterms
any more. However we apply these corollaries with η = η'/2; hence we preserve a
factor Qxp{ — ηim(μ)} for later use. /To see that this is possible one should notice

that iw(G/F,μ)+ £ [im(h/F,μ)-ihl]£F,μ)}^im(G,μ) = im(μ).\ Therefore we get a
heF J

bound which is the sum over the choices of p, λ, {fe f}, {n7 }5 {s7 } satisfying the
constraints (III. 13) of:

. Σ )-^j- .Π L/^i 7.̂ Π +1 ̂ β/^1 + εWJ KLJK !

xl^ + ̂  + ι02e~* / m ( μ ). (HI.15)

Remark the similarity of this formula with (C.I9) in [8]. Here the factors 1/n! and
the (rijl)2 take into account the fact that we establish (III. 15) by an analysis at the
level of labeled graphs. Furthermore (4)p takes into account the choices of the class
of g7 , ni(hi\)~l restores correct counting by dividing out the multiple counting due
to the arbitrary labeling of the forest, and the integer w7 corresponds to the factor
(e — k) in the bound (III.4) when Corollary III.2 is applied to G — g/F.

We will need only the following immediate properties of w7 :

- for g7 in class 2, w7 = 1, (Hl.lόa)

- for g7 in classes 1 and 4:

(IILlόb)

- for g7 in class 3, there is one and only one maximal g7 , included in g7 and
corresponding to the unique reduction vertex of g7 ; then

mj£eβj(F9μ)-igjt(F9μ)9 (111.17)

simply by using the fact that both g7 and g7 / belong to a forest F compatible with μ.
Let us define S7 as the binomial coefficient:

CK.;s;)5 (111.18)

where for simplicity of notation we write C(n;p) for the binomial coefficient of xp

in the development of (1 +x)w. Then, using relations (III. 13), (III. 15) is reduced (by
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9 j ( r k )

Fig. 3. A chain of type III subgraphs above a particular subgraph h with five vertices

telescopic simplification of factorials) to:

p + 1

(111.19)

where by convention mp+1 is 1 (and we recall that η = η'/2). First let us replace all
factors nij for; of class 2 by 1, and for j of class 1 or4by im(μ\ using (ΠL16a,b). Then
if we define q as pl +p4 we can write:

[im(μj]9e~ηim(μ)l2^(2η-1)qq\. (111.20)

For the graphs of class 3, we must be more careful. These graphs are grouped into r
chains of rk graphs, with 1 ̂ r f cgp3, ]Γ rk = p3 (see Fig. 3); the /cth chain is a

k = 1, r

maximal subset of subgraphs g; (1), .. ,g; (rk) of class 3 completely ordered by
inclusion, such that gj(l) corresponds to the reduction vertex in g7(/ + i). Note that
these chains are completely determined by the choices of which g; are of class 3 and
which graphs of layer i — 1 correspond to the reduction vertices in layer i. Since
these choices have been taken into account in (III. 15), there is no sum to perform
over the rk, but only a supremum to take over all choices of rk. Another important
fact to notice is that for each such chain, the reduction vertex in gj(1), the smallest
graph of the chain, cannot be of class 3, hence must be of class 1,2 or 4. Therefore
we have r r g p j -f Pι + P4~<? + P2? hence

Hence using (III.8) we get:
q + p^p + p,-(r/2). (111.21)

For such a chain one sees, using (III. 17) that (after telescopic simplification):

rk

Σ nii ̂  ii — n\
\=\

hence (IΠ.22)

Using again inequality (111.20) but with q replaced by p3, we find that since

Γ2π~ 1 Ί p 3 P ! Γ2w~ 1 l p 3 p !
r* Ί

Π Π m,
vM 'J

(111.23)
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where the last inequality follows from convexity of the function x logx. Combining
(IIL20) and (111.23) and using trivial bounds we get (remember that p3 + g:gp):

lγq\rp\ (111.24)

We will now write a lemma which bounds the product of the factors [1
using the bound (III.2).

Lemma III.l. Let{rij}J = l, . . . ,p+l be a collection of p + 1 integers such that Πj^2
and Y,nj = n-i-p. Then for any C>\ and ε with 0<ε<l, there exists a constant

C' > \, depending on C and ε, such that (we assume log log log n > 1, and log logp > 1,
otherwise the bounds are much easier):

Ylexp{Oz/logftj)"6} ^exp{C[p(loglogp)2ε + n(logloglogft)~ ε]}. (III.25)
7

Proof. First we can bound each factor in the left-hand side of (III.25) with n}< 10
by a constant, hence all these factors contribute at most exp{C p const}, which
can be absorbed in the term exp{C'p(loglogp)2ε} in the right-hand side of (111.25).
Then we take logarithms on both sides of (111.25) and use the concavity, for x ̂  10
^e1 +ε, of the function ;c(logx)~ε. This reduces the proof of (111.25) to the proof of:

Since p + 1 ̂  n we have : (ΠI.26)

ε. (111.27)

The proof of (111.26) is then trivial if one distinguishes the two cases
p:gn(loglogrc)~ε and n(\og\ogn)~ε<p^n. In the latter case one has loglogp
>(loglogn)1/2.

Using the estimate (III. 2), the lemma leads immediately to:

Π [1 + εfy)]"' ̂  exp {Cp(log logp)2ε} (1 + δ'(n)}n , (111.28)
7

where δ'(ri) satisfies a bound similar to (III.7).
We are now in a position to combine (III. 19) with (111.24) and (111.28). By so

doing, the proof of (III.6) is reduced to the proof of:

KL4\γr^q! [SΛ !] exp{Cp(loglogp)2ε} ̂

(111.29)

where δ"(n) satisfies a bound similar to (III.7). In (111.29) the sum is over choices of
λ, p, {/C;}, {tty}, and {Sj} satisfying the constraints (III.l 3) and a supremum should be
taken over p1? p2, p3, p4, q^pi+pi and r satisfying the constraints (III.8) and
(111.21).

To prove (111.29) we replace first all the nj and Sj for j of class 2, 3 or 4 by 2
(which is the value oϊnj9 hence a bound over Sj). Since the labeling of the gj with; of
class 2, 3 or 4 does not play a significant role any longer, we relabel the subgraphs
gj of class 1 with indices j = 1, . . . , p1? by simply skipping in the former numbering
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all the numbers corresponding to subgraphs of class 2, 3 or 4, and we rename
G = gp+ 1 as gpl + j . With these notations the left-hand side of (111.29) is bounded by:

Σ(32>Γ X4!)V^! 'π* [SΛ !] exp{C'p(loglogp)2ε} . (111.30)

In (III. 30), the sum over λ and p can be bounded by n2, hence absorbed in the factor
[1 + δ"(n)~]n of (111.29). The sum over the choices of {fej, using (III.l 3), is bounded by
2P. Hence there exists a constant D = 64η~1KL4l depending only on η such that
(111.30) is bounded by:

sup Σ DV3g! [SΛ !] exp{Cp(loglogp)2ε} , (111.31)
p , q , r , p ί , p 3 {nj},{Sj} j= 1

where the constraints over the sup and the sum which arise from (III. 8), (III.l 3),
and (111.21) can be rewritten in terms of the integer variables p,q,r,pl9p3 and

j ; n7 ̂ 3 for any j; O^s^n,-; £s^p;
j

(111.32)

The only constraint that the reader may find questionable is npl + 1 ̂  3; it is true if
we look at a 1 PI Schwinger function with 6 external legs or more. Of course this
condition is completely unnecessary in fact, and we use it only to slightly simplify
the following lemma:

Lemma III.2. Under the conditions (111.32) we have:

Π^("-P-Pι) f 6 p l . (ΠI.33)
j

Proof. The left-hand side is the product of n — p + 2p 1 integers. First we can bound
pί blocks of 3 integers by (1.2.3)P1 = 6P1. There remains then a product of (n — p — pj
integers; by listing them as first the integers in npl + l \ 9 then these in 4.5... rip
j = 1 , . . . , p ! , each of them is smaller or equal to the one of corresponding rank in the
product 1.2.3...(n — p — Pi), which proves (III. 33) (it is here that we use that
«P1 + 1^3).

Using (111.33), (111.31) is bounded by:

sup X (6Dγrf*ql(n-p-p1)\Pγi Sj exp{C>(loglog/7)2εj .
p,q,r,pι,ps {nj},{sj} j= 1

(111.34)

The next lemma bounds the factor rp3ql(n — p — pj! with the help of constraints
(111.32):

Lemma III.3. Under conditions (111.32) we have, for some fixed α and A:

rp3q\(n-p-pl)l^Aep-n\e~-"plOBlo*p (111.35)

(a is small, and A is large).
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Proof. We distinguish three cases:
- if p3^Ξp/4, then q + p3^Pι + (3p/4); by Stirling's formula rp*^epp3l, and
g ! p3 ! (n - p - pj ! ̂  [n - (p/4)] ! but (n - s) ! ̂  w ! (s/2) ~5/2, which for s = p/4 gives a
much smaller bound than the right-hand side of (111.35).
- if p3>p/4 and r>p3(logp)~1 / 2; again by Stirling's formula we bound
rp* q\(n-p-pι)\ by ep[n-(rβ}~\\, using (111.21) hence further by
ep[n-(p/8)(logpΓ1/2]!, hence further by epnl(s/2Γs/2 with s = (l/8)p(logp)~1/2,
which again is bounded for some constants A' and α' by
A' epnl - exp{ — a' p(logp)1 / / 2},ifpis large enough, a much smaller bound than the
right-hand side of (111.35).
- ifp 3>p/4 and rigp3(logp)~1 / 2 we get the worst bound; we simply bound rps by
epp3\(logp)~Pls; then using (III. 32) we can bound p3lq\(n — p — p^l simply by nl,
and we get the bound (111.35), with α = l/8.

Using (IΪI.35), we see that (111.34) is bounded by:

A sup £ Dfpn \Pγi Sj exp {C'p(log logp)2ε - αp log logp} , (111.36)
p {WjUsj} j = l

where D' = 6eD is another constant depending only on η, and the constraints
(111.32) can be simplified to the less stringent ones (where j runs from 1 to p1 -f 1):

(111.37)
j j

Since ε in (III.2), hence in (111.25) and (III. 36) can be taken arbitrarily small, and in
particular strictly smaller than 1/2, we have for any pg; 1 :

A D'p exp {C'p(log logp)2ε - (l/2)αp log logp} ̂  D" , (111.38)

where D" is again a constant depending only on D', C, α, and ε, but not on p. To
achieve the proof of (111.29), it remains therefore only to show that under
constraints (111.37) we have:

logp Σ Π [SJ^CH-^'WΓ, (111.39)
p {nj},{Sj} j= 1

where δ"(n) behaves as δ(n) in (III. 7).
Firstly since nj ̂  1 , and ]Γ n ^ n + p we can bound by a standard combinatoric

j
argument the choice of the integers {HJ} by the binomial coefficient C(n -f p; PI + 1).
Then we use the following bound on binomial coefficients:

C(m; m') ̂  em'(m/mT' , (111.40)

which is essentially given by Stirling's formula. Hence in this case we can bound the
choice over the {w;} by (since p^^p):

ep+ll(n + p)/(p + \)Y+i^(2ey+1ln/(p+l)Y+l. (111.41)

Secondly, let us choose, paying a factor at most 2P+ 1 , which 57 are 0. Recall that
the corresponding Sj are 1 , hence can be forgotten. Let p' ^ p + 1 be the remaining
number of s; with s^ 1, and let us rename thems^,/ — 1, ...,p' (we also write Πy for
fty, where j in the old labeling corresponds to/ in the new one). Since Σ5/^/7"

'
1, the choice of these {sjf} is bounded again by a factor 2P + 1. Then using

(111.40) we bound each Sj, by (e njf/Sj,)Sj'. Using the concavity of the logarithm, we
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have therefore: _ _ „ _ _ _ , _ .

πs,s,* p!±?Π' sH.r Γ-Jϊΐ . (IIW2)
j' L P J L P + i J

Collecting all these factors, the left-hand side of (111.39) is bounded by:

Γ w Ί2 p + 2

D" sup e-(«/2)piogiogp(32e 2f+ 1 - - . (111.43)
n LP+IJ

Again we distinguish two cases:
- if p + l<n(loglognΓ 1 / 2 we have (n/p+ l)2p + 2^exp{2c'χioglognΓ1/4} for
some constant c", since exp{(l/x)logx} is bounded by exp{c"x~ 1/2} for x >0 [here
we apply this relation with x = n/(p-f-l)]. Hence since:

D" sup ^-(«/4)piogiogp(3 2g2)p+ι^D/// (111.44)

1 ^p+ 1 ̂ «

for some constant D'" depending only on D" and α, we can bound (111.43) by:

j D/// β2c"»(loglog«)-ι/^ (ΠI.45)

which is better than the desired form (III.7).
- if p + 1 g:ft(loglogn)~1 / 2 we have p^(l/2)n(loglogn)~1 / 2, hence under this
condition:

(HI 46)

for some constant D"" depending only on α. Again using (111.44) we can in this
second case bound (111.43) by D'" D"" hence by a constant (depending finally only
on η'\ This achieves the proof of Theorem III.2, in the case where no 2-point
subgraphs are present in G.

When "bipeds," i.e. two point subgraphs, are present they complicate a little
further the argument, but can essentially be considered as class 1 subgraphs, the
ones for which the argument above is therefore the easiest. Let us sketch why this is
true. The mass counterterms, which are bounded by (IILSa) at first sight seem
dangerous because of their quadratic divergence, but when combined with one of
their external legs, which is quadratically convergent, they become bounded. (Note
that we can always associate to an 1PI biped one of its external lines, so that the
same line is not attributed to two different bipeds.) Hence the worst case is the
wave-function counterterms, for which the bound (IH.Sb) gives a factor (e — k) after
one of the external legs has been combined with the biped. But the block made of a
wave function counterterm plus one of its external legs is really a (one particle
reducible . . .) four point subgraph, which has at least 3 vertices since the only biped
with a single vertex is the tadpole, which vanishes in the BPHZ prescription.
Hence it can be estimated exactly as a class 1 subgraph in the analysis above, since
we never used the fact that class 1 subgraphs were one particle irreducible. This
sketchy argument (the reader is invited to fill in the details . . .) extends the proof of
Theorem III.2 to the general case.

The proof of the Theorem of Sect. I is now easy. Let us take a radius r < (2/β2),
and define η' = β2\_(2/β2)-r]. Then by (11.16) and (11.34) the Borel transform of the
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renormalized series is bounded for \b\^r by

Σ V f FT Γ!Ύ 17 I— p(2-η')im(μ) + c.r.
2~ι J 11 u^v\z^(G,F,μ}\ / Λ \ I ^ 5

« (G,F,μ)fundamental f e G (^— U

hence, applying Theorem IΠ.2 it is bounded by:

[2KrΎ~l

Σ W^L -̂  β2c//h[(l + δ(n)Y. (111.47)
" L PI J

Since 2KL/β2^2/3 (the value 2/3 corresponding to ordinary φ^ with AT =1) the
Borel transform of the renormalized series is analytic in the disk |b| ̂  r, because it is
a sum of analytic terms (in fact polynomials in b) and this sum is bounded
uniformly for b in this disk by (111.47), which is an absolutely convergent series.

Since this is true for all r < 2/β2, this shows that the radius of convergence of the
Borel transform of the renormalized perturbation series is at least (2//?2) which is
equivalent to the Theorem of Sect. I by Hadamard's formula.
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