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Abstract. Consider an interaction-round-face potential on the lattice Zd,
which may include nearest-neighbor and next-nearest-neighbor pair inter-
actions, as well as more general plaquette terms. Assuming some periodicity
of the potential it is shown that, under the condition that equilibrium states
can be distinguished by expectation values of sufficiently local observables,
equilibrium states possess a global Markov property. The condition under
which this Markov property is shown to hold is met in particular in case the
equilibrium state is unique or determined by the magnetization. The proof is
based on an application of the variatίonal principle to states which are
constructed like Markov chains.

1. Introduction

We consider systems of classical spins on /d with, per lattice point, values in a
compact metric space. The Markov property entails that upon fixing the confi-
guration on the boundary of a volume the distribution of the spin configurations
inside the boundary becomes independent of the spin configuration outside the
boundary. The very definition of Gibbs states for a finite range potential states
that Markov properties hold for finite volumes, see e.g. [1]. In this case one speaks
of a local Markov property. In case such a property holds for an infinite volume
this is called a global Markov property.

Gibbs states for finite-range potentials possess thus local Markov properties.
However, the question whether or not Gibbs states possess global Markov
properties is not easy to answer. Indeed, for the three-dimensional Ising model
Goldstein has constructed an example of a Gibbs state that does not have the
global Markov property with respect to a plane, [1]. Other examples of this type
are given in [10].

Global Markov properties are an important ingredient in Nelson's scheme of
Euclidean field theory because these properties are essential in constructing the
Hamiltonian of the theory (see e.g. [2]). Despite their importance, global Markov
properties are known to hold in relatively few cases. These cases can be divided
into two main groups:
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A) The interaction is attractive or such that F.K.G. inequalities hold. The maximal
Gibbs measure ( + magnetization) and the minimal Gibbs measure ( — magneti-
zation) then have global Markov properties. Such cases are discussed in [1,3,
and 4].

B) The potential satisfies Dobrushin's uniqueness criterion, implying that there
exists a unique Gibbs state, cf. [9]. This unique Gibbs state then has the global
Markov property with respect to all surfaces, [3 and 5].

One consequence of Theorem 1 below is that these results can be extended: If the
interaction has the properties specified in Theorem 1 and admits a unique Gibbs
state then this state has a global Markov property specified below.

This paper is inspired by methods used by Schlijper in [6]. In particular the
technique of entropy inequalities used in Lemma 2 is taken from [6].

The proof of the main result (Theorem 1) of this paper uses the variational
principle. Briefly outlined the argument goes as follows. Consider a state on two
planes of the lattice. A construction is presented which yields a state on all of the
lattice having a global Markov property and which is an extension of the state on
the two planes. [In fact two versions of such a construction are presented in this
paper.] This construction is then applied to the restriction μ2, to two planes of an
equilibrium state μ on Zd yielding a (new) state μ on all of Zd. If μ already had
the global Markov property then μ = μ, but irrespective of this it is shown that μ
always is an equilibrium state (with a global Markov property and coinciding with
μ on the two planes).

The proof that μ is an equilibrium state rests on two observations,
1) the energy density of μ equals the energy density of μ,
2) the entropy density of μ is not smaller than the entropy density of μ, since these
two observations, by the variational principle (Theorem 0), imply that μ is also an
equilibrium state. The second of the just mentioned observations is obtained making
use of two lemmas (Lemma 1 and Lemma 2). Theorem 2, for the case of a
two-dimensional lattice, states a further relation between the constructed state μ
and the original equilibrium state μ.

We introduce some notation. Let Ω0 be a compact metric space. For A ^ /d

we put ΩΛ=(Ω0)
Λ. We write Ωld = Ω. We equip ΩΛ with the product topology

and denote by C(ΩΛ) the space of continuous functions on ΩΛ. Let αΛ Λ:ΩΛ^ΩΛ

be the restriction map for A ^> A. We write α Λ =α Λ > z d. Define ($Λ= {/:ί2->C|;
there exists fΛ:ΩΛ-+C such that f = fA'UA}. Denote by g(/l) the set of complex
valued functions on ΩΛ.

The map

gives then a one-to-one correspondence between g(/l) and gΛ. Henceforth we will
identify g(/l) and SΛby this one-to-one correspondence. Under this correspondence

C(ΩΛ) = CΛ = {feC(Ω)\ there exists fΛeC(ΩΛ) such that / = /Λ αΛ}.

Denote by 93Λthe smallest σ-algebra of subsets of Ω with the property that functions
from CΛ are measurable with respect to it. 33 Λ is the σ-algebra generated by
cylinder sets with finite base in A. Write 93Z<* = 93. Let 93 (/I) be the Borel σ-algebra
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of ΩΛ. Upon identifying sets with their characteristic function, 23(/I) as a subset
of g(/i) is identified with 23 y l <=g yl. States on CΛ=C(ΩΛ) are identified with
probability measures on 23Λ = 23 (Λ), through the Riesz-Markov Theorem.

For fceZ we introduce Pfc = (xeZ^X! = fe} and

(Zd)kιδ = {xeZd\δxί^O} for £ = + .

We say that a state μ on C(Ω) has the Markov property with respect to Pk, if Ejf / =
E^/ for all fGL2(μ;^B(^) ), where E£ and E(^ are orthogonal projections on

L2(μ;23) with ranges given respectively by L2(μ;23PJ and L2(μ;23(zd} _).
For aεZd consider τ(α):Zd->Zd which maps xeZd onto τ(β)xeZd given by

τ ( f l )x = x + α. By transpositions (with the inverse) Ί_d acts on ί2, and gzd. Note that
C(ί2) is invariant under this action. Thus by one more transposition /d acts on
EC(Ω)9 where EC(Ω) is the set of states on C(Ω], All these actions of aeZd on the
various spaces are also denoted by τ(α). Then, for instance, τ(f l)gΛ = gΛ + f l.

Let Φ: |J βΛ->R,
Λ ^ Z d

Λ finite

with Φ°aΛeC(ΩΛ) for all /I finite, be a potential which is nonzero only round faces
of Zd, i.e., Φ°oίx = Q whenever there exist x, yeX such that maximum ( I x , —
^| ί = l , . . . , d } > l .

We will make use of the variational principle. To this end we assume that Φ
is //-invariant, i.e., Φ<>τ(α) = Φ for all aeH, where H ^Zd is a subgroup of finite
index in Zd. Let μ0 be a probability measure on ί20. Denote by μ(

0

Λ) the product
measure on ΩΛ= (ί20)

Λ constructed from μ0.
The pressure Pφis defined by

Pφ=lim—lnZΛ,
/itz^l7 1 !

where

ZΛ= $ μ(

0

Λ)(d
ΩΛ

with

HΛ«Λ)= Σ Φ°^MΛ\
X^Λ

Lim denotes limit in the sense of van Hove and | A \ denotes the number of points
A\τά

of A c /d.
If μ is a state on C(ί2) such that its restriction to C(ΩΛ) is absolutely continuous

with respect to μ(

0

Λ) we denote its Radon-Nikodym derivative by μ(A\ The average
entropy density per lattice point, s(μ), of a G-invariant state μ where G is a subgroup
of Zd with finite index in Zd, is defined by

s(μ) = l im—-S Λ (μ)
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with SΛ(μ)=- J μ^(dξ^(μ(A>(ξ^\nμ(/ί(ξ^) if the restriction of μ to C(ΩΛ) is
ΩΛ

absolutely continuous with respect to μ(

0

Λ) and SA(μ) = — oo otherwise.
Let MO d J_ά be such that {τ(a)M0}aeG is a partition of 1ά. Note that |M0| < oo

since G has finite index in Zd. Suppose {Λι}weN is a van Hove sequence
such that each Λn is a union of sets from the collection {τ(α)M0}ΛeG. Then
s(μ) = wϊ(l/\Λn\)SΛn(μ). In particular s(μ)^(l/\Λn\)SΛn(μ) for all nelU Further-

neN

more the functional s is upper-semicontinuous on the set of G-invariant states.
The proofs of these assertions for a general subgroup G CΞ Zd with finite index

are a modification of the proof in case G = /rf, cf. [8]. For xeZd define y4(φ}6C(β) by

(x)

where £ means taking the sum over finite subsets of X of Zd with x as first element
x

of Jf for the lexicographic order of Zd.
The variational principle is stated in the next theorem where E^Ω) c EC(Ω} is

the set of G-invariant states and where ^φis the set of Gibbs states for the potential
Φ.

Theorem 0.

2. If μeEc(Ω), then

2. The Main Result

Introduce Pk(N) = {xeZd\Xι=k;-N ^xt<N for ϊ = 2,...,d}, where fceZ and
NeNu{oo}. Let μ^ be a state on CPo(ΛΓ)uPι!ΛO and let EjN)and E^be the
orthogonal projections in L2(μ(

2

N);Spo(N)u?ι(N)) with ranges given respectively by

L2(μW; ®Po(N)) and L2(μ^;»Plw). Put Λ(N)1= {xeZd - N ̂  x, < Nfor i = 2 , . . . , d }
and put TI = τ«ι ° o» for (l,0,...,0)eZd.

Next we introduce two states μ t̂

} and μ^ which are extensions of μ^ to C^w.
The state μ t̂

} will be constructed such that it is reίlectionally invariant. In fact
μ($ is the unique state on C^w that is a reflectionally invariant extension of μ(

2

N)

which has the Markov property with respect to P0(N) and Pί(N). Formally, let
μ|3? be the state on C^w defined by

\k=-L

'fo /i [̂ f (/2 Ej^ua ' ' ' E(_!)^(/L) •"))]}

for LeN and /zeCPz(JV); / = — L,...,L.
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We have introduced^ = τ~l+δ~ u~ 1}7/ and also -11 = J, and + 1 f = f. In case μ^
satisfies μ(

2

N)(τι/) = /4N)(/) f°r all /eCPo(N) we also introduce the state μj^ on CAw.
The state μ[^ is the unique state on CΛw that is a T! -invariant extension of μ(

2

N)

to C fίΛo which has the Markov property with respect to P0(N) and is defined by

L

π

for LEN and /zeCPz(N); / = — L,...,L. We have introduced

~ z/z when / ̂  0

~l + 1fι when / > 0.

The method given above for constructing μ t̂

} and μ^ relates to a method
discussed in [2], see pages 122-125 and references given there. Let θk be the
reflection of the lattice in the plane Pk. Thus θk maps xeZd onto θkxεZ.d, where
θkx is given by (θkx)1 — 2k — xl and (θkx)i = xt for i = 29...9d. A reflection θfc acts
in a natural way on ί2^w, C^w and on the space of states on C^w. These actions
are denoted by #k too. Note that θk is also well-defined for /ceZ + i The state μ t̂

}

is ^-invariant for all fceZ, while the state μ[̂  is TJ -invariant. Note that if μ2

N) is
01/2-invariant then μ t̂

} = μW. If τ(a)μ(ao} = μ^ for some βeZd with αj =0, then
also τ(fl)μ^} = μ^} and τ(a)μ[^ = μ(£v\ By construction the states μ^} and μj^
have the Markov property with respect to Pk for all fceZ. [For instance considering

μlϊ) one readily verifies that E(̂  ( f Q f l •••/„) = /0E
(

i

00)(71 (E(

T

co)(/2 •••£(_!)„

(7n)'")))> where fkeCPk and ^ef^J and where the same definition of fl has been
used as above for / = l,...,n.] For wel^l and μ a state on C^w we denote by μ®
the product state on C(Ω) defined by

ft® — FT τ((0,2nn2,...,2nnd))β

Consider the situation where μ(

2

00) is a state on CPouPl and μ(

2

n) is, for neN, defined
as the state on CPo(n)uPl(Aj) obtained by restricting μ(™\ i.e.,

Like above define the states {μl1ϊ}n6f^, μlu } and, assuming τ1(μ(

2

00) \c ) = μ(

2

00) |
also the states {μ\^y}neN and μ^.

Lemma 1. Let n 0 ef^l, nQ ^ 1. Let H be the subgroup ofZd generated by {a(l)}ί = 2

where af = n0δίtj. Assume μ(

2

00) is H-invariant.
1) Define for keN.k^ 1 the state p^J on C(Ω) by

Then

Mimp^-μ^.
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2) Assume τ1(μ(

2

co) \Cp) = //(

2

GO) \Cp . Define for fceN, k ̂  1 ί/ze state p£}

v on C(Ω) by

n(k) _ Y _(α) r.(kn0

"inv *"1 ^ t /-*inv

tlimp^v = μ\^.
Ό

Proof. The proof of 2) parallels the proof of 1). We therefore only present the
proof of 1).
1) Take f = f o f ι , > . ,fL with //eCPz(JV) for / = 0,...,L and some N < oo. It is
sufficient to prove

Choose ε:0<εe(R.
Since the monotone sequences of projections {E(")

T}nel^j converge strongly to
E ,̂ there exists meN such that for m ̂  m,

||(Eί?1)It - E^H/^V^α,^ -A.! E('^t(/L)..-))||L2 ̂  ε

for all / = 2, . . . , L. Thus for αe// and m ̂  m,

τ(α)0[Γ(m) o τ(~β) F(°°)/ Wί'r^fΊF^ 0 0 );-^! Γ Γτ(α)7 "ίίF(co)ί Mα) 7 Ί . . Λ ϊ II <P° ° — ι+ι^( -(τ JL-I)^-^^^ JL) ))\\LI = £>

where we used E[^°τ(a) = τ(a)°Έ^^ and the fact that H acts isometrically on
the L2 space.

Both of these last properties are consequences of the ίf-invariance of μ(™\ If

Hence, for aEχH(m;n) where XH(m;n) = {aeH\τ(a}P0(m) ^ Po(n)},

+ιτ(...(τW7L_JE<^^
fc = 0

for / = 2, . . . , d. For aεXH(m; ri) one thus readily deduces,

^ 1 1 / o l L I I / ι l l o c e + f i Σ Π l l Λ l l o o
l=3k=2

From the definitions of μ^f and μ^} it follows therefore
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whenever aeXH(m\n) and n^N. Consider the estimate

PT Σ iwr
-aeXH(m kn0)

<—ί- Σ 2 i ι / ι i c

! Σ εC/0,..,/L-aεXH(m;kn0)

The first sum in the last upper bound is a sum over a number of terms bounded
by a constant times (2k)d~2.

Hence,
, ,

-> oo

and the lemma follows. Π
For m,L,KεN define /I (m; L, X) c Zd as

Λ(m;L,JO = {xeZ d | -L^x 1 ^K + l and - m ^ x f < m for ί = 2,...,d}.

Let M + 1 be the Radon-Nikodym derivative of the restriction of μ<$ ( = the
restriction of μ) to C^w with respect to μ(£2). Define M _ 1 = Θ1 / 2M + 1.
Furthermore define

and

M _ ! = J dμJf^^M.i.
βPl(«)

Then the Radon-Nikodym derivative, μ(m)(Λ } of the restriction of μ^ to CA(m,L,κ

with respect to μ(Q(m'L'K}) is given by

τ 1

L + 1 M ( _ 1 ) -L + ι M+ 1

(Note that M + 1 , M _ l 5 M + 1 , and M _ x can be assumed to be continuous functions
in case μ(

2

00) is the restriction of a Gibbs state of /l^.) Then

Reasoning similarly one also obtains

Lemma 2

a) Consider the situation in 1) of Lemma 1. Then
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s(μffl) = lim -—^T [Sp^p^M00') - ^SPΰ{n)(μ^ - iSPl(n)(^>)].
n-> oo \^ft)

b) Consider the situation in 2) of Lemma 1. Then

s(μ\£) = lim _1 [S (B)(/4«>) - S^M-')].
K-> oo l^™j

Prop/. The proof of b) is analogous to the proof of a).
We present the proof of a).

a). By Lemma 1 one obtains, using upper-semicontinuity of the entropy,

s(μffl) ^ limsup s(p<*{) = limsup s(μ^).
k-> GO /c-> oo

From (*) for rceN, n ̂  1,

Therefore

1
0 ̂  limsup----^

fc-* oo (^^^O/

= lim

On the other hand, by repeated use of the strong subadditivity property of the
entropy,

^/l(/«0;/,/)(^alt ) ~ S/l(/n0;/,/-l)(^aϊt ) + ^P ;(/«0)uF ;_ ^In^ftaίt ) ̂  SpflnrfWaTt )

<• C ί'/Tί00)^ _L ^ ί'/"/(c o)^
= °Λ(lπ0;U-2)lralt J "•" ^p^_ I(/n 0)uP /_ 2(/π 0)vA talt /

We used that by ^-invariance of μ^) for all fceZ,

and

and
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Therefore,

= iim — [Sp^^M00') - iVM"") - iVM00')]- D
«-»• oo \£n,)

Consider now an interaction Φ like in the introductory section, i.e., Φ is nonzero
only round faces of /d and invariant under a group G with finite index in Z.d.

Theorem 1. Let μ be a G-invariant Gίbbs state for the interaction Φ, where
\Zd/G\<vo. Put

1) Assume that Φ and μ are θk-invariantfor all fee/. Construct the state μffl from
μ%. Then μ(^} is a Gibbs state for Φ.

2) Assume that Φ and μ are invariant for translation over (fe, 0, . . . , 0)e/rf/or all fee/.
Construct μ\^ from μ(f\ Then μ\^ is a Gibbs state for Φ.

Proof. Since G has finite index in /d there exists n0 ̂  1, π 0 ef^J such that
{α(l)}i = 2 d ̂  ̂ j where a( ) = nQδij. Let // be the subgroup of G generated byK0} ;̂:;,.
1) By the same reasoning as in the last part of the proof of Lemma 2,

S(μ) g lim — i-f- [̂ .̂ ^ (̂μ ̂ *) - iSPo(n)(μ<2»>) - iSp.^^O]-
«-*oo l^^J

Thus 5(μ) ̂  5(μ^}). Furthermore, for pairs (x,X) with xeP0uP1 and Jί c: Zd such
that xe X is the first element of X (in the lexicographic order of /d) and Φ°αΛΓ Φ 0,
we define f(x,J^)c=/d by
a) if X c P0 u P! , then l(x, ̂ Γ) = X,
b) if Jί ̂  P0 u P! , then X(x, X) = θl X.
Thus always X(x9 X) c P0^>Pί. Then, since the states μ and μ^} as well as the
potential Φ are invariant under the reflection Θ 1 ?

and

/ 7 ( c o ) / j ( x ) \ _ ,7(oo)
/^alt l ^ Φ J — /^alt

for xePo^Λ But
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for xeP0uP1. Therefore, if xeP 0 uP l 5

Next note that μ and μ(^} as well as Φ are invariant under the group generated
by //and(2,0,...,0)eZd.

An application of Theorem 0 for this last group (with M0 = P0(n0)uP1(n0))
gives, from the inequality

that 5(μ^}) = s(μ) and that //<£> is a Gibbs state for Φ.
2) The proof of 2) is analogous to the proof of 1). Π

Corollary 1.

1) Consider the situation described in Theorem 1.1). Let G(

0

2) be the group generated
by GnP0 and (2,0, . ..,0)eZd. Assume Φis Θk-invariantfor all kεZ. Consider the
condition C1:

ί// ί/ze Gibbs states μ1 and μ2 for the potential Φ are both G^-and
1 [θk-invariant for all /ceZ and μ1 \CP^PI = ̂ 2 tcPoU/v

 then V>i=t*2-

If C1 holds then every G^2)- and θk-invariant (for all A eZ) Gibbs state for the
potential Φ has the Markov property with respect to Pkfor all /ceZ.

2) Consider the situation described in Theorem 1.2). Assume (1, 0, . . . , 0)eG. Consider
the condition C2 :

~ \ If the Gibbs states μ1 and μ2far the potential Φ are both G-invariant and
2 1/Ί ίcPoUPι = ̂ 2 rC p o U P ι ? then μ1=μ2.

If C2 holds then every G-invariant Gibbs state has the Markov property with
respect to Pkfor all fceZ. Π

Note that Corollary 1 implies the following. If the states determining equilibrium
are recognizable by observations on a plaquette (and have some invariances),
Theorem 1 implies that Markov properties hold with respect to Pk for all feeZ. A
particular case of such situations occurs for models with a phase diagram described
by the expectation value of the spin on a lattice site (magnetization).

Note. In a forthcoming paper we show that for models with nearest-neighbor
interactions (and with some periodicity properties) leading to an invertible transfer
matrix (for instance the g-state Potts model for nontrivial coupling) the conditions
stated in Corollary 1 are met.

In two dimensions a further relation between the states μ and μffi (or μ and
β\™J) can be given which shows that these states do not become disjoint over finite
distances in the 1 -direction. We will make use of the concept of relative entropy
of states. When μ and v are probability measures on Ω the relative entropy S(μ\v)
is defined by
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if μ « v and the Radon-Nikodym derivative of μ with respect to v, (dμ/dv), is such
that (dμ/dv)ln(dμ/dv) is v-integrable. Otherwise S(μ\v)= — oo by definition. If
{ vn}nei^j *s a sequence of states converging to the weak* topology to a state v and
μ is a state such that S(μ\vn) ^ — k for all ne N, where k ̂  0 is some finite constant,
then μ « v. Application of this result together with some more details can be found
in [7].

Theorem 2. Let the lattice be two dimensional, i.e., I2. We use notation introduced
in the proof of Lemma 2.

1) Consider the situation described in Theorem LI). Then

for all LeN.
2) Consider the situation described in Theorem 1.2). Then

/7(oo)

' CΛ(oo L,L)

for all LeN.

Proof. We only present the proof of 1) since the proof 2) is analogous. 1) introduce
n 0 : l 5Ξ n 0 E f \ J like in the proof of Theorem 1. Let E
be the orthogonal projection for fcel^l.

Note that the restrictions of two Gibbs states to a finite volume are mutually
absolutely continuous. Thus the following definition of the state μk on CΛ(x.LL) is
justified:

for f^CA(^.LL). The Radon-Nikodym derivative hk of μ f c with respect to μk

is given by

(Λ(kn0,L,L))

/ Λ « "C
Malt

Therefore

From the product-type structure of the density of μ(^Ό)\^Λkn LL with respect to
μ(Λ(kn0 ,L,L))^ ̂ Q already used in the proof of Lemma 2 for calculating entropies, and

the fact that μ coincides with μ(^o) on CP / ( / b J o ) u P / + ι ( Λ n o ), one obtains

Hence,

L-2

; = o
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where

L(/C«O)Λ\ .__ ~ ' s ~ ^

On the other hand

ΓC

The variational principle implies

Σ μ^0^)^^)- Σ

Since the number of xeP0(kn0)uP1(kn0), such that there exists Jf c= I0 with Φ.
αx ̂  0, X has x as first element in the lexicographic order of Zd, and X φ Λ(kn°\ is
uniformly bounded

where K ^ 0 is a constant independent of fe. Thus

Moreover

One obtains

Theorem 2 1) therefore follows. Π

Acknowledgements. The author would like to thank A. G. Schlijper and M. Winnink for several
stimulating discussions.

References

1. Goldstein, S.: Remarks on the global Markov property. Commun. Math. Phys. 74, 223-234 (1980)
2. Simon, B.: The P(Φ)2 Euclidean (Quantum) field theory. Princeton, New Jersey: Princeton

University Press 1974
3. Follmer, H.: On the global Markov property. In: Quantum fields-, algebras, processes. Streit, L.,

(ed.) pp. 293-302. Wien-New York: Springer 1980
4. Bellisard, J., Ho'egh-Krohn, R.: Compactness and the maximal Gibbs state for random Gibbs fields

on a lattice. Commun. Math. Phys. 84, 297-327 (1982)
5. Albeverio, S., Ho'egh-Krohn, R.: The global Markov property for Euclidean and lattice fields. Phys.

Lett. 84B, 89-90 (1979)
6. Schlijper, A. G.: Exact variational methods and cluster-variation approximations. J. Stat. Phys. 35,

285-301 (1984); and Variational Approximation in Classical Lattice Systems. Thesis, University of
Groningen (1985)



Global Markov Property for Equilibrium States 189

7. Frδhlich, J., Pfister, C.-E.: On the absence of spontaneous symmetry breaking and of crystalline
ordering in two-dimensional systems. Commun. Math. Phys. 81, 277-298 (1982)

8. Ruelle, D.: Thermodynamic formalism. Reading, MA.: Addison Wesley 1978
9. Simon, B.: A remark on Dobrushin's uniqueness theorem. Commun. Math. Phys. 68,183-185 (1979)

10. Israel, R. B.: Some examples concerning the global Markov property. Commun. Math. Phys. 105,
669-673 (1986)

Communicated by M. Aizenman

Received December 16, 1986; in revised form August 16, 1987






