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Abstract. We construct an action-angle transformation for the Calogero-
Moser systems with repulsive potentials, and for relativistic generalizations
thereof. This map is shown to be closely related to the wave transformations for
a large class ¥ of Hamiltonians, and is shown to have remarkable duality
properties. All dynamics in % lead to the same scattering transformation, which
is obtained explicitly and exhibits a soliton structure. An auxiliary result
concerns the spectral asymptotics of matrices of the form M exp(¢D) ast—co. It
pertains to diagonal matrices D whose diagonal elements have pairwise
different real parts and to matrices M for which certain principal minors are

non-zero.
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1. Introduction

In this paper we study four classes of classical integrable N-particle systems on the
line, which can be characterized by an N x N matrix-valued function L (referred to
as the Lax matrix) on a 2N-dimensional phase space Q, cf. (2.1),(2.17),(2.31),(2.32),
and (2.59) below. The symmetric functions S, ..., Sy of L are in involution, so that
the spectrum of L is conserved under the flow corresponding to any Hamiltonian
in the maximal Abelian algebra generated by S, ..., Sy.

It follows from general principles (the Liouville-Arnold theorem) that there
exists a canonical transformation @ : Q —Q (the action-angle map) which diagonal-
izes the Abelian algebra in the sense that the functions S, - @~ ! depend only on the
new generalized momenta (the action variables). However, this existence result
yields neither an explicit picture of @ nor a precise description of the action-angle
phase space Q. (This state of affairs is the classical analog of the quantum situation:
There the spectral theorem ensures the existence of a unitary joint eigenfunction
transformation & for the maximal Abelian quantum algebra, but does not provide
detailed information concerning & and related matters such as existence of bound
states, scattering, etc.)

Our main result is an explicit construction of an action-angle map & for the
systems mentioned above. We also determine explicitly the wave and scattering
maps for a large class of Hamiltonians, cf. Theorem 4.1. A crucial auxiliary result
concerns the spectral asymptotics as t— oo of two classes of t-dependent matrices.
For the first class this amounts to a quite straightforward application of
nondegenerate perturbation theory, since the t-dependence is linear, cf.
Theorem A1. However, for the second class the dependence on ¢ is exponential and
the result (Theorem A2) is of independent interest.

The systems I, and I, studied below are commonly known as Calogero-
Moser systems [1]. The subscript refers to the nonrelativistic Hamiltonians with
pair potential V(q)=1/q* for I,, and V(q)=1/sh*q for II,,. The relativistic
generalizations presented and studied in [2] are denoted [,,, and I1,,,. The results
of this paper have a bearing on the relations of the latter systems to soliton
solutions of various nonlinear PDE, which are detailed in [2,3]. We intend to
come back to this issue in a sequel to this paper, where we shall consider systems of
particles that behave as solitons, antisolitons and their bound states [4].

For the case I,, an explicit construction of @ can already be found (in a
somewhat different guise) in a paper by Airault et al. [5]. They observed that there
exists a commutation relation of the Lax matrix L with an auxiliary matrix-valued
function A on Q, which can be used to infer crucial spectral properties of L. This
state of affairs was further explained and elaborated on in a paper by Kazhdan et
al. [6]. We have followed the lead of these papers and exploit a generalization of
the commutation relation for the case I, to the other three cases. Further related
work includes a paper by Adler [7], who obtains detailed information about the
systems I, and 1, with external potentials, and various references listed in the
survey [1].

In all cases the action variables are simple functions of the eigenvalues of the
Lax matrix L, whereas the matrix A4 is diagonal and depends only on the positions.
Therefore, the similarity transformation turning L into a diagonal matrix L turns
A into a matrix A whose symmetric functions are commuting Hamiltonians on the
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action-angle phase space Q. It turns out that A is in essence equal to the Lax matrix
of one of the four cases considered here. We shall express this state of affairs by
saying that the two cases involved are dual to each other. Specifically, it turns out
that I, is dual to itself, cf. (2.24), I1,, is dual to [, cf. (2.49-50), whereas 1., is
again self-dual, cf. (2.73). The self-duality of I ,, (already pointed out in [5]) and I,
can also be expressed by saying that @ equals its inverse when Q and Q are
identified in the obvious way. (More precisely, for the case I1,,, this holds after a
scaling.)

It is known that the integrability of the systems I, and Il persists after
quantization, cf. [8]. As proved in [9], the systems I, and /], can also be formally
quantized in such a fashion that integrability is preserved. Elsewhere, we shall
return to the quantum version of these systems and present evidence to the effect
that the duality properties just described survive quantization, too; Moreover,
there exist again intimate relations with various well-known integrable quantum
systems [10].

We proceed by discussing the results and the organization of this paper in more
detail. Though the cases I, I1,,, I, may be viewed as special cases of I], it
turns out to be quite awkward to keep the action-angle map under control in the
various parameter limits leading to the former systems. Therefore, we have opted
for a case by case construction of @, which is presented in Sects. 2B-2D. As a
bonus, this brings out the peculiarities of each case and leads to a clear picture of
the duality properties. However, for conceptual and notational reasons we begin
with Sect. 2A, which explains the construction and its consequences in general
terms. The reader might skip this section on first reading and refer back to it when
needed.

The construction performed in Chap. 2 only involves some simple linear
algebra, including two versions of Cauchy’s identity (listed at the end of this
chapter). However, we have not found a way to avoid considerable analysis in
proving that the map @ is indeed a canonical transformation. We have relegated
most of these analytic aspects to several appendices. Specifically, we prove in
Appendix B that @ and its inverse are real-analytic, whereas Appendix C is
devoted to showing canonicity. In the latter appendix we make essential use of the
results of Appendix A and Chap. 3. Appendix A contains the spectral asymptotics
results already mentioned above, whereas Chap. 3 is devoted to a case by case
study of special flows whose relevant features can be established without using the
canonicity property of @.

Admittedly, our proof of this key property is not exactly straightforward. The
main analytic difficulty in our approach (which hinges on exploiting scattering
theory) is to justify a certain interchange of limits. Obviating this snag involves
holomorphicity arguments and the uniform estimates of Appendix A, and is
already nontrivial for the simplest case I,,. (In the previous work on this case
mentioned above this interchange is left unjustified.) Possibly, smoothness and
canonicity of @ can also be established by adopting a picture as presented in
[6,11], but from the information given there it is not obvious to us why the two
different descriptions involved should be related by a canonical transformation.

In Chap. 4 we study the scattering for a certain class of Hamiltonians. We
prove that all of these have the same wave and scattering maps as the special
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Hamiltonian studied in Chap. 3. For the nonrelativistic systems this invariance
principle had already been conjectured to hold in [12], where we presented and
discussed a quantum analog (cf. also [13], where similar invariance principles are
proved for several integrable field theories). Just as in [12], one may argue that due
to this invariance principle the various dynamics involved are “equally important”
from a mathematical point of view; in this picture the fundamental objects are L
and @, and the special Hamiltonians of Chap. 3 are singled out solely by their
simplicity and by their physical interpretation in terms of space-time symmetry
groups.

Chapter 5 contains some further developments. Specifically, in Sect. SA we
prove an asymptotic property of the action-angle map, which may be viewed as a
generalization of the invariance principle of Chap. 4. In Sect. 5B we show that one
can get new integrable particle systems by restricting @ to certain submanifolds.
These restricted systems may be viewed as being associated with the root systems
C,and BC,, in the same sense as the unrestricted systems are associated with 4,,
and A,, respectively (cf. [1]). In the final Sect. 5C we collect some further
observations of interest, including a striking property of matrices associated with
the case I, (i), a one-parameter generalization of the Lax matrix whose symmetric
functions still commute (ii), a symmetry property of @ (iii), and last but not least,
the relation between the four cases (iv).

This paper is in essence self-contained. In particular, we do not assume
involutivity of the symmetric functions of the Lax matrix, since this information
would not simplify our canonicity proof. Of course, once canonicity of @ is proved,
this commutativity property is an obvious corollary. Quite a few other previous
results are simplified and subsumed, as well. For instance, the explicit description
of the special flows studied in Chap. 3 can already be found in [1] for the cases I,
and I1,,, and in [2] for the cases I, and I1,,,, but its validity is proved here with a
minimum of labor (avoiding e.g. the somewhat involved arguments of [2,
Appendix B]).

We close this introduction by listing two versions of Cauchy’s identity in a
form which suits our later requirements:

[ed aZ
<m> ZB,-P - m] (1.1)

shz ShZZ
<m> - iE[j|:1 B Sh(Z+ yi_‘Yj)Sh(Z+ yj_yi)] . (12)

Note that (1.1) follows from (1.2) by setting z=af, y= fx and taking  to 0. For
further discussion of these formulas we refer to [2].

2. The Construction of the Action-Angle Map

2A. Generalities

We begin by sketching the construction of the action-angle map @ in general
terms. The systems studied below all have a phase space and action-angle space
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given by

Q={(g,0)eR*Mgy<...<q,}, =Y dg;rdb,, (2.1)

1

NS

1

dg, ndo,. 2.2)

Il
M=

Q={@,0)eR™0y<...<0,}, &
i=1
They are characterized by an N x N matrix L on Q, which also depends on certain
parameters, collectively denoted by g. These parameters take values in a region
G C €' which we shall not specify here, since G and [ depend on the case at hand.
The key to the construction of @ is a commutation relation of L with a diagonal
matrix A4 that is a simple function of the matrix

QEdiag(qla ~-~>qN)' (23)
This commutation relation is of the form
f@)[4,L]=e®e—F(4,L), (2.4)

where the complex-valued and matrix-valued functions f and F and the vector
e(g; q,6) depend on the case. In all cases considered below L is diagonalizable and
has real spectrum. Thus, an invertible matrix T exists satisfying

L=TLT '=diag(’,,....Ay), A€eR. (2.5)

Then (2.4) implies
f(@AfA;—2)=¢é&,—F(A,L);. (2.6)

Here, we have set
A=TAT ', (2.7)
é=Te, ée=T e (2.8)

(where t denotes transpose).

We now render T unique by imposing several requirements. First, we exploit
(2.6) to prove that the coordinates of é and & are non-zero and that L has simple
spectrum. Thus, we may and shall require

In<...<ZA. (2.9)

This determines T up to left multiplication by a diagonal matrix D with D;; 0. We
then fix D4, ...,Dyy up to a sign by requiring

e=e, (2.10)

cf. (2.8). Finally, the sign is fixed by first proving that (2.10) entails é is real and then

requiring
é;>0, i=1,..,N. (2.11)
Next, we reparametrize L, é, and A with points in Q. In particular, the

eigenvalue /; is written as a simple function of §,. By virtue of the uniqueness of T
we obtain a well-defined transformation @ from Q into Q in this way.
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To show that @ is a bijection, one need only solve (2.6) for 4 and regard A and L
as functions on Q, aftAer which the map can be “run backwards.” That is, one can
construct a map & :2—Q such that

Eob=id,, ®o&=idy, (2.12)

which entails that @ is bijective.

Since the eigenvalue /; of L is reparametrized in terms of f; only, the bijection @
diagonalizes any Hamiltonian H which is defined in terms of L (e.g., H="TrI¥), in
the sense that H o & depends only on 0. In particular, for any he CZ(IR) one can
define a Hamiltonian H, such that

N
(Hhocf»“’)(é@=i; hoy. (2.13)

Viewed as a Hamiltonian on Q, the right-hand side obviously generates the linear
flow

(4(@), 0= (G, +th'(@,), ..., 4x + th (), 0). (2.14)
However, it does not follow from this that the pullback to Q,
(1), 6(1) = &(g: 4(2), 9) (2.15)

is the solution of Hamilton’s equations for H,, unless one can prove that & is a
symplectic diffeomorphism.

We prove smoothness of @ and & in Appendix B in the general context of this
section. However, our proof of canonicity hinges on picking a special h, for which
(2.15) can be shown to solve the Hamilton equations for H, without assuming
canonicity of &. An important ingredient for showing this is a description of ¢(t) in
terms of eigenvalues of a matrix A(t) defined below. This description (for general h)
is given at the end of each of the following sections, and amounts to an explicit
picture of the position part of the Hamiltonian flow generated by H,, once we have
proved that & is canonical.

The matrix A(t) involves h and L in a simple fashion and reduces to 4 when
t=0. The notation

A=TAOT ', (2.16)

which we shall use below is therefore consistent with (2.10). We shall denote
evaluation of the matrices Q, L, and T'in the point (2.15) by appending a subscript .
Finally, we shall use the symbol ~ to denote similarity.

2B. The Case I,
The nonrelativistic rational case I, is characterized by the Lax matrix

1
L(Q;q,e)ijEéinj-l—Q(I—5ij)ﬁ, oeiR*, (2.17)
i~ 4j
Setting
A=Q, ¢=1, (2.18)
f=1), F=1, (2.19)
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it is clear that L satisfies the commutation relation (2.4). Moreover, L is

diagonalizable and has real spectrum, since (2.17) implies L= L*. Thus, a matrix T

exists satisfying (2.5). Then the transformed commutation relation (2.6) reads
Q_ljziij(ij_)bi)zéiéj_éi'. (2.20)

J

Taking i=j, one sees that ¢,&,=1, so that the coordinates of é and ¢ are non-
zero. Taking then i #j, it follows that 4;,— 4, + 0, so that (L) is simple. Hence, we are
now in the position to require (2.9) and (2.10). Doing so, we may reparametrize L
and Z; by setting

L=diag@,,...,0y), 0.,=.,. (2.21)
Since the requirement (2.10) entails ¢/ =1, we can now fix T completely by
requiring (2.11). Thus, in this case the requirements amount to imposing

&=6=1, i=1,...,N. (2.22)

We claim that the matrix 7, which has just been uniquely determined, is
unitary. To prove this, we note that we could have started with a unitary T to
diagonalize L, since L is self-adjoint. If we then require (2.9), the ambiguity left is a
diagonal unitary. But unitarity entails &=¢, cf. (2.8), so that the ambiguity can be
removed by requiring (2.22). By uniqueness one then obtains the same T as before.

At this point the reader might wonder why we did not require that T be unitary
to begin with. This would however lead to certain difficulties later on, which we
wish to avoid. In fact, we only need the unitarity to conclude that the quantities
g;= A, are real. [Indeed, this is obvious from the fact that A=A* when T is
unitary, cf. (2.18), (2.7).] Combining this definition with (2.20-22) and (2.17) we
conclude

A=1L(—0;0,9). (2.23)

Summarizing, we see that we have constructed a map @: Q—Q, (¢, 0)—(4, 0) by
diagonalizing L(g;q,0) with a uniquely determined unitary T,0, being the
eigenvalues of L and ¢; the diagonal elements of TQT ™.

Theorem 2.1. The map ®(g; q,0) is a smooth bijection from Q onto Q whose inverse
satisfies
6(0:4,0)=P - ®(—0;0.,9). (2.24)

Here, P is the permutation
P(x,y)=(y,x), (x,y)eR?*N. (2.25)

Proof. Using the self-duality relation (2.23) it is obvious how to construct a map
&:Q—Q satisfying (2.12), and bijectivity and (2.24) then follow.

Well-known facts concerning matrix-valued holomorphic functions entail
real-analyticity, and hence smoothness, of f(o;¢,0). The less obvious fact that
4(o; g, 0) is real-analytic, as well, is proved in Appendix B. []

As announced in Sect. 2A, we shall now conclude this section with a theorem
which, when combined with the canonicity property proved later, yields an explicit
description of the (position part of the) Hamiltonian flow generated by

H,=Trh(L), heCZ(R). (2.26)



134 S. N. M. Ruijsenaars

[Here, h(L) is defined by the functional calculus.] Note that (2.26) entails that (2.13)
holds true. The notation used in the following theorem and its proofiis explained at
the end of Sect. 2A.

Theorem 2.2. Let

A =Q+th'(L). (2.27)
Then
At)~Q,. (2.28)
Proof. We have A(t)=A +th'(L), from which it follows that
A(t)=L(—0;0,9)+tdiag(h'®,), ..., W (Oy), (2.29)

cf. (2.23),(2.21). From this formula and the definition (2.15) of (¢(t), 6(t)) we can now
conclude

T AOT=0,, (2.30)
so that (2.28) follows. [

2C. The Cases 11, and I,

We consider the nonrelativistic hyperbolic systems and the relativistic rational
systems alongside, since they turn out to be dual to each other. We shall use
subscripts to distinguish the two cases, unless the context prevents confusion. The
Lax matrices are given by
H .
L, (1, 0;9, H)ijE 5ij9j+ o1 —5;',')———, pne(0, ), geilR*, (2.31)
2sh> (4 —4;)

L (B, 0;4, H)ijEeXp [g (0;+ 0j):| (Vil/Z lelzcij) (Bo;q), Be(0,0:0), geilR*,

(2.32)
where
12 1/2
ViK; = 1— R 2.33
(3 9) ll;li[ (ql'—%)z:| ( )
)= - 2.34
Csay= oy (2.34)

(Here and henceforth, positive square roots are taken.)
The commutation relation (2.4), with L=L_, is satisfied when one sets

A=exp[uQ], e;=exp [gq} (2.35)

f=1/ug, F=A. (2.36)
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Since L is self-adjoint, we can find an invertible T diagonalizing L, so that (2.6)
reads here

1

@Alj(ij_)"l):éli)—gl]' (2.37)
Solving for A we get
f‘iijzéiéjc(_llé’;)~)ij> (2.38)
cf. (2.34). We now use Cauchy’s identity (1.1) to conclude
N MZQZ
Al=TT1é:[]é; - 2.39
A=negga | u2@2—</»i—1j)2} .

Since |A| =|A|=exp[u2q,] %0, the coordinates of ¢ and & are non-zero and a(L) is
nondegenerate. Hence we may and shall require (2.9) and (2.10).

Next, we claim that (2.10) entails reality of é. Indeed, since L* =L, we could
have chosen a unitary T to diagonalize L. Then we would get &=¢, so that (2.10)
can be satisfied by multiplying this unitary T from the left with an appropriate
diagonal unitary. Hence, the resulting unitary must be equal to the previous T up
to a matrix D with D;;= + 1, and reality follows. We can, therefore, require (2.11) in
addition to (2.10), which yields a unique unitary T.

We are now in the position to reparametrize the relevant objects with points in
Q, as follows:

i‘nr = diag(él’ L] gN) > gi = )"i ’ (240)
(éai=oxp Bq] Vi~ 100, 41

which entails
gnr = Lrel(.u’ —0; 9: q\) s (242)

in view of (2.38) and (2.31-33). Thus, we obtain a map @,,: Q—-Q, (g,6) — (4, 0).

The fact that @, is a bijection will be obvious from (2.40-42) and the
construction of @, on which we now embark. When L= L., we can satisfy (2.4)
by setting

A=Q, e=exp [g 9i] ViBe;9)'?, (243)

f=1/fo, F=L. (2.44)
Again, L is self-adjoint and hence there exists a matrix T satisfying (2.5). Now, (2.6)
reads
T . s
Next, we invoke (1.1) once more, to conclude

Iiui=|L|=exp[ﬁ;0i]¢o.
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Hence, the eigenvalues 4; are non-zero. Taking i =j in (2.45) it follows that ¢; and ¢&;
are non-zero. Taking then i}, it follows that ¢(L) is simple. Thus we can require
(2.9) and (2.10). Moreover, it follows in the same way as before that (2.10) entails
unitarity of T and hence reality of é. Thus, T can be rendered unique by imposing
the extra condition (2.11).

We proceed by noting that (2.10-11), combined with (2.45), implies 4,>0.
Hence we may set

f’rel:diag(exp [Bgl]a ~~9exp [BgN])’ 9i5ﬂ_1 ln)"is (246)

which implies

(ére);=eXp |:§ 91] (2.47)
on account of (2.45) and (2.10-11). Finally, since T is unitary and A4 self-adjoint, the
numbers §;= A;; are real and (2.45), (2.30) imply

‘Zirel = Lnr(ﬁ> —0; 6: qA) . (248)
This completes the construction of @,

Theorgm 2.3. The maps @, (u, 0; q,0) and &,(B, ¢; q, 0) are smooth bijections from Q
onto Q. Moreover, their inverses satisfy

End1t,0:4.0)=P o D (11, —0;
éorel(ﬁa 0; qu é)Z Po ¢nr(ﬂa —0;
where P is the permutation (2.25).

Proof. Bijectivity and (2.49-50) are immediate from the above, cf. (2.40-42)
and (2.46-48). Smoothness follows from Theorem B2. []

.4 (2.49)
24), (2.50)

We continue by defining H,, for the case I1,,, via (2.26) (with L= L, of course).
In view of (2.40) the relation (2.13) follows again. Hence, the following theorem
gives information on the flow generated by H,, in the sense explained in Sect. 2A.

Theorem 2.4. Let

A(t)=exp[uQ]exp[tuh'(L,)] . (2.51)
Then
A(t)~exp[uQ,]. (2.52)
Proof. The analog of (2.29) reads
A(t)=Leof(1t, — 030, @) exp[tudiag((0,), ... K (O], (2.53)
cf. (2.40), (2.42). Hence we conclude
T, ' exp[5tuh (D] A() exp[ —3tuh (D] T, = exp[1Q,], (2.54)

s0 (2.52) follows. []
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Let us finally obtain the analogous theorem for the case I..,. In this case we

must replace (2.26) by
H,=Trh(f 'InL), heCXR) (2.55)

(with L=L,,,) to ensure that (2.13) holds true. The significance of the following
result for the H,-flow is detailed in Sect. 2A.

Theorem 2.5. Let

At)=Q+th'(f~'InL,). (2.56)
Then
A()~0Q,. (2.57)
Proof. By virtue of (2.46) and (2.48) we have
A()=L,(B, —0;0,9)+t diag(h'(@,), ..., h'(0y)). (2.58)
(

Hence, (2.30) holds here, too, and (2.57) results. []

2D. The Case I1,,,

The hyperbolic relativistic systems have Lax matrix

LB, .23 9, 0);;=exp [g(ﬁ’ﬁ- Hj):l (VI2ViRCy) (uz3q),  Boue(0,00),(2.59)

where
sh?z 12
Viwzg=T][1——————| . (2.60)
I+i EE .
sh ) (gi—a)
shz
Clu,z;9);;= P . (2.61)
Sh(Z“’ E(‘L‘"%))
Then (2.4) is satisfied with
A=exp[uQ],  e=exp [gqﬁ ge} Vi z:0)'", 262
f= ! F= 1(AL-!-LA) (2.63)
T 2thz’ -2 ’ ’
We first consider the choice
+ze€i0, ). (2.64)

Then C is self-adjoint, so L is self-adjoint, too. Choosing a unitary T diagonalizing
L, we get for (2.6) in this case
1

5is A=) =6~ F A+ 7) (2.65)



138 S. N. M. Ruijsenaars

with é=¢, since T is unitary and e real. Taking i=j and noting 4,,> 0, we see that
2:>0. Hence we may introduce real numbers ;="' In4, in terms of which we
can rewrite (2.65) as

Ay=ég eXP[— §(§i+§,~)J C(B, —z;0);, (2.66)
cf. (2.61). Hence, by Cauchy’s identity (1.2)
< sh?z
lAl=1Tl&)* 1 |1 - - (2.67)
Lo sh<2—4(§1—91)>sh<z——(HJ—HAL)>

But we have |4 0 [cf. (2.62)], so that &,+0and 0, + @j. We can, therefore, render T
unique by requiring (2.9-11).
In view of the above we have

L=diag(exp[0,].....exp[B0y]), O;=p 'InJ;, (2.68)

and we may introduce §eR” by setting

é=exp [g 0.+ %éi} Vi, —z:0)", (2.69)
so that
A=L, B, —z;0,9) (2.70)

by virtue of (2.66). This completes the definition of the map ®: (g, 0) — (g, 0) for the
case (2.64).
We shall now handle the case

zJ_r’—z’EEIR*. 2.71)
For these values of z the Cauchy matrix C is not self-adjoint, but now C is real, cf.
(2.61). Since one still has ¥;>0 [cf. (2.60)], L is real, too. Thus the symmetric
functions of L and traces of powers of L are real, and hence may be viewed as
Hamiltonians on €. Apart from this, the regime (2.71) is of interest, since it
connects the relativistic Calogero-Moser systems with the relativistic Toda

systems: The latter arise in the limit |y|— oo, where y=z+ % [14].

In order to define @, let us fix (¢, 6) € Q and consider the spectrum of L as y varies
over IR. Recall we have proved already that o(L) is simple and positive when y=0.
Now let ce(0, co] be the largest number such that ¢(L) is simple and positive for
Iy] < c. (The existence of ¢ follows from the continuity in 7y of the eigenvalues of L
and from the reality of L for y e R. In fact, we shall presently prove that ¢ = c0.) For
these values of y we can find a real and invertible T satisfying (2.5), which is
moreover continuous in y and reduces to the previous T when y =0. (Indeed, the
uniqueness of the matrix T constructed above is readily seen to imply its reality
when z= +in/2.) This leads again to (2.66), so that é and & must have non-zero
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coordinates. Now T is, so far, determined up to left multiplication by a matrix
diag(d,(p), ..., dx(y)), where d(0)=1 and d(y) continuous and positive. Hence we
can and shall fix T by requiring é = ¢, cf. (2.8). By virtue of continuity in y and reality
of T it then follows that é has positive coordinates. Thus we can define e R" via
(2.69), as before, so that (2.68-70) are valid again.

A priori, ¢ depends on the point (g, §) we have fixed. However, we shall now
prove that the assumption ¢ < oo leads to a contradiction. In view of the above
definition of ¢ this amounts to the assumption that for y = + ¢ < oo the spectrum of
L is not positive or not simple. First, assume o(L) is not positive. Since a(L) is
positive for |y| <c, this implies that L must be singular when y= +c. But we have

IL|=exp [ﬁ; 911 *0

for any 7y, so that this possibility is ruled out. Hence, 6(L) is not simple when y= +c.
But now consider the y-independent function Tr 4: By virtue of (2.66) and the fact
that é=2¢, it can be written

N
Trd=Y é?exp[—p0.]. (2.72)
i=1

The terms in this sum are positive, and the limits of the ; when |y|1c are bounded.
Therefore, the positive numbers €, ..., ¢y must remain bounded when [y|c. To
exploit this, we consider (2.66) with €=¢: On one hand, one must have |C]—0 and
hence |A]—0 when |y|1c, since two eigenvalues of L must collide for |y|Tc. On the
other hand,

|A|=|A|=exp [u;qi]

does not depend on y. This is the contradiction announced above.
Summarizing, we have constructed a map @ from Q into Q for both z-regimes
(2.64) and (2.71).

Theorem 2.6. The map (B, 1, z;q,0) is a smooth bijection from Q onto Q, whose
inverse is given by

éa(ﬁﬂ#’Z;qA>9)=Po¢(ﬂaﬂ> _'Z; g\qu)s (273)
where P is the permutation (2.25).

Proof. Bijectivity and (2.73) are immediate from the duality relations (2.68-70).
Smoothness is a consequence of Theorem B2. []

The relation between 2, and 0, is the same as for the case I,,. Hence we define H,,
by (2.25) to ensure that (2.13) follows. At the end of Sect. 2A we have explained the
relevance of the following result for the H,-flow.

Theorem 2.7. Set
A(t)=exp[uQ]exp[tuh'(B~*InL)]. (2.74)
Then
A(t)~exp[pQ,]. (2.75)
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Proof. In view of (2.68) and (2.70) we have
A(t)= L, B, —z;0, @) exp[tudiag(h'(D,), ..., " (Oy))]. (2.76)
Hence, (2.54) holds true, provided we replace L by ' InL, and (2.75) follows. []

3. A Special Flow and Its Temporal Asymptotics

By virtue of the results established in the previous chapter, canonicity of & would
imply that the trajectories (q(t), 0(t)) [cf. (2.15)] are the integral curves of the
H,-vector field. In this chapter we shall prove that thisis true for a function h whose
choice depends on the case at hand, without assuming canonicity. The asymptotics
of this special Hamiltonian flow is then determined by invoking the spectral
asymptotics results of Appendix A. As we shall show in Appendix C, this
information can then be exploited to obtain a proof that & is canonical. We now
present the details for the four cases involved.

3A. The Case I,
Theorem 3.1. Let

HE%jgl 0%_921§j<k51v((1j—14k)2’ geiR*. G
Then the functions
(q(0), 0(0) = 80 4y + 10y, ..., 4y + 10y, 0) (3.2)
(cf. (2.24) ) solve Hamilton equations and satisfy
N_qu+1(t):qj+tgj+0(lt|_l)’ -+, (3.3)
N—(ij+1(t)=gj+o(ltl_2)’ t—>+o0. (34
Proof. We begin by noting
H=3Trl?=H,, hx)=3x?, (3.5)
cf. (2.17), (2.26). Next, we claim that
Qi s~ 0, +4tL,. (3.6)

(The notation used here and below is explained at the end of Sect. 2A.) Indeed, if we
transform the left-hand side and the right-hand side with T;, ,, and T, then we
obtain A(t+ A4t) and A(t)+ AtL, respectively, and these matrices are equal, cf.
Theorem 2.2 and its proof.

It now follows from (3.6) and nondegenerate perturbation theory that
Ly Ly;

4g;=Lj;, §;=2% (3.7)

k¥jq;—dy
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We have suppressed the argument and subscript ¢, since ¢ is arbitrary. Using the
definition (2.17) of L this can be rewritten as

1
i=0,, §=—-202°Y — . 3.8
=7 9 ¢ k;j(qj‘_‘h)s G8)

But from the definition (3.1) of H one sees that the functions at the right-hand side
are equal to {q;, H} and {0, H}, respectively, so that (q(1), 0(t)) solves Hamilton’s
equations, as claimed.

It remains to prove the temporal asymptotics (3.3-4). To this end we observe
that the right-hand side of (2.29), with h'(9)) replaced by 0, is of the form (A11).
Hence, (3.3-4) . are immediate consequences of (A 12-15). To derive (3.3-4)_ from
(A12-15), we need only transform A(t) with the reversal matrix

0 1
R=| .7 (3.9)
1 0,
and replace t by —s. Indeed, (A 12-15) then applies to the s— co limit, since we have
—RLR =diag(—0y,...,—0,)e2. (3.10)
Thus the proof is complete. []

3B. The Case 11,
Theorem 3.2. Let

2
02— Y M Le(0,00) 0eiR* (311
1 R T P

N|—
N ES

H=

J

Then the functions

(q(0), 01) = (1, 0341 + 10, ..., 4 + 10y, 0) (3.12)
(cf. (2.49)) solve Hamilton’s equations and satisfy
N_qﬂ1(z)=qj;541j(é)+zéj+0(exp[$zR]), t—+o0, (3.13)
Nﬁi;l(t)zg"Jr O(exp[ ¥tR]), t—-+ 0, (3.14)
where
R=umin{0,—0,,....0y_,—0,}, (3.15)
AJ(B)Ek;j 5(9j—9k)—k§j o(0,—0,), (3.16)
and

5(9)5;1*‘1{1—“;’2]. (3.17)
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Proof. From (2.31) it follows that (3.5) holds here, too. The analog of (3.6) reads
eXp [:uQHAt] ~eXp [IL‘Qz] €Xp [A t,uL,] . (318)

Indeed, this relation follows from Theorem 2.4 and its proof in the same way as
(3.6) follows from Theorem 2.2 and its proof.

From (3.18) and nondegenerate perturbation theory it now follows by a long,
but straightforward, calculation that

. . u
4;=Lj;, ¢;=p vajkijCthz(qj—qk)’ (3.19)
k+j
Using (2.31) this reads
. . U
4=0;, §;=—4’ ¥ chg(qj—qk)/sh35(q,-—qk), (3.20)
KFj
which equals {¢;, H} and {0;, H}, respectively, by virtue of (3.11). Hence it remains
to prove (3.13-14).

To this end we observe that Theorem A2 applies to the matrix (2.53) with
h'(x)=x. Indeed, the matrices

M=A(0), D=pudiag®@,,...,0y) (3.21)
belong to .# and 2, respectively. Therefore, we may conclude from (A 31) that
expuqr)] =exp[td;] (1 + /1) (3.22)

for t large. In the case at hand the numbers d; and m; [cf. (A29)] read
d;=pb;, (3.23)
m=exp[ud;]exp [ -2 A,@] , (3.24)

by virtue of (3.21) and Cauchy’s identity (1.1). Thus, (3.13-14), follow from
(A31-34) and the relation 6;=4;, cf. (3.20). Finally, (3.13-14)_ can be reduced to
(A 31-34) by using the reversal permutation £, just as in the proof of Theorem 3.1,
cf. (3.9-10). O

3C. The Case I,
Theorem 3.3. Let

N [32@2 1/2
H=p""Y exp[p0;] 11 [1 — ——2] ,  Be(0,00), gcilR*. (3.25)
i=1 K j (g;—q0)
Then the functions
(q(0), 0e)=&(B, 0541 +texp[0,], ..., 4y + texp[f0y],0) (3.26)
(cf. (2.50)) solve Hamilton’s equations and satisfy
q; (O=4;+texp[B0]+0(™"), t-+o0, (3.27)
N—j+1
0, (=0,+0(t %, to>tow. (3.28)

N-j+1
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Proof. In this case we have
H=p"'TrL=H,, hx)=p"'exp[fx], (3.29)

cf. (2.32), (2.55). Moreover, (3.6) holds true by virtue of Theorem 2.5 and its proof.
Hence, (3.7) follows, as before. In this case we should use (2.32) to rewrite it. This
yields

q;=exp[p6,1V}, (3.30)
4;=24; . 40, InV;. (3.31)
k+*j
Here, we used the relation
1
CyCij=0InV;,  k=*j, (3.32)
q;—dx

which readily follows from (2.33-34). If we now equate the time derivative of the
right-hand side of (3.30) to the right-hand side of (3.31) and solve for 6, we obtain

0;= =B~ Yexp[A0I0;Vi. (3.33)

Here, we also used the equality
O InV,=—0,InV,, k=+j, (3.34)
which follows from (3.32). Since the right-hand sides of (3.30) and (3.33) are
equal to {q;, H} and {0, H}, respectively [cf. (3.25)], we have now proved that
the function (g(t), 0(t)) solves Hamilton’s equations. -
To prove (3.27-28), we first note that the right-hand side of (2.58), with h'(0))

replaced by exp [ﬁéj], is of the form (A 11). Thus, (3.27), follows from (A12) and
(A 14). Moreover, (3.30) implies

0;=p"'In[g;/V], (3.35)

so that (3.28) ., follows from (A 12-15) by using (2.33). Finally, (3.27-28)_ follow
from (A12-15) by using £ in the same way as before, with the relation

— RLR =diag(—exp[p0y], ..., —exp[p0, 1)) e 2 (3.36)
playing the role of (3.10). []

3D. The Case II_,,
Theorem 3.4. Let

sh?z 1/2

N
H=B"1 Y exp[BO] [] | 1— o |,
=1 k<) L 1
sh E(qj‘—‘h)

pB,ue©,00), +zeil0,n)u (% +]R>. (3.37)
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Then the functions
(q(e), 0 =E(B, 1 2:4y +texp[ 011, ... 4w+ texp[ O], 0) (3.38)

(cf. (2.73)) solve Hamilton’s equations and satisfy
4; ()=4;F34{)+texp[pO,1+O0(xp[F(R]), -+, (3.39)

N—j+1

0, ()=0,+0(exp[F(R]), t->+oo, (3.40)
N—-j+1
where
R=ymin{exp[p0,]1—cxp[p0,], ....exp[A0y 1 —exp[B0x1},  (3.41)
and where A{(0) is given by (3.16), with

2
{0O=pu 'ln |1— shz

(3.42)
sh? g ]

Proof. Due to (2.59) and (2.55) the relation (3.29) holds in this case, too.
Furthermore, (3.18) is satisfied by virtue of Theorem 2.7 and its proof. Thus, (3.19)
follows. The definition (2.59) of L then implies that (3.30-31) hold true, the relation

it

2
[which follows from (2.60-61)] playing the role of (3.32). Thus (3.33) follows again,
so that (q(1), 0(t)) solves Hamilton’s equations.

To prove (3.39-40) we note that Theorem A2 applies to the matrix (2.76) with
K(x)=exp[px], since one has

¢ths (4~ g)CxCy=0InV,, k4] (343)

M=A0)e.#, D=pudiag(exp[p0,],....exp[p0y))eZ. (3.44)
Thus, for ¢ large (3.22) holds true again, with
dj=pexp[p0,], (3.45)

and m; given by (3.24), (3.16), and (3.42). Indeed, this follows from the definition
(A29) of m; and Cauchy’s identity (1.2). The proof is now reduced to (A31-34) by
arguing in the same way as in the proof of Theorem 3.2, using the relations
(3.35-36). O

4. The Invariance Principle for the Wave and Scattering Maps

In Appendix C we have proved that the diffeomorphisms @ constructed in Chap. 2
are canonical by using the results of Chap. 3, which pertain to a special
Hamiltonian flow on . We shall now determine the temporal asymptotics for a
large class of flows on Q, which are defined as pullbacks under & of linear flows on
Q. Since @ is a canonical transformation and the Q-flows are complete and
Hamiltonian, the Q-flows are complete and Hamiltonian, too.
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We shall formulate the asymptotics in terms of notions from time-dependent
classical scattering theory (cf. [15, 16]). To this end we first introduce the incoming
and outgoing phase spaces

dg* A doE . (4.1)

1

I 2

Q*={(¢*,0%)eRM0F S...S0F), o=

3

Thus, Q* can and will be identified with Q [cf. (2.2)], whereas the reversal map
Ry, .qn,01,...0)=0n>--q1,05,...,07) 4.2)

yields a canonical transformation from Q~ onto Q* ~Q. It is convenient to regard
Q% as subsets of the auxiliary phase space

N
Qo={(x,y)eR*™},  wo=7Y dx;ady;. (4.3)
i=1

We shall consider a class €, of Hamiltonians H, on Q, which depend only on
y. Hence, the corresponding flows are linear and leave Q* invariant. The class %,
consists of all functions

H,=F(y)e Cg(RY) (4.4)
which are invariant under permutations of y,, ..., yy and satisfy
OnF) ) <...<(@,F)(y) when yy<...<y,. 4.5)
Due to the symmetry of F this is equivalent to
ONF)(»)>...>(0,)(y) when yy>...>y,. (4.6)

We are now prepared to introduce the class ¥ of Hamiltonians H on Q for
which we shall determine the scattering. This class is defined as the pullback of the
class €, under the canonical transformation @:Q—-Q~Q" CQ,. Thus we have

H(g,0)=H,~ ®(q,0)=F(0), 4.7)

cf. (4.4). We note that for the Hamiltonians H, defined by (2.26) and (2.55) in the
nonrelativistic and relativistic cases, respectively, we get

N
F(O)= ) h(0,) (4.8)

cf. (2.13). Thus we have
H,e% < HK(y) is strictly increasing 4.9

cf. (4.5). In particular, the Hamiltonians Tr L belong to € whenn=2,4,6, ... for I
and I1,,, and when n=1,2,3,... for I, and II . In the latter two cases the
symmetric functions S, ..., Sy_, of L also belong to %, as a moment of reflection
shows.

We continue by defining the canonical transformations in terms of which the
temporal asymptotics of the flows generated by Hamiltonians in 4 can be
described. First, we introduce

T:Q—)Qa (qAaé)H(‘jl_%Al(as'-':qAN—%AN(é)7®3 (410)
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where
4/0)= Z 0(0;—0,)— Z 0(0;—0,), 4.11)
and
0, I, 1.
s@)={ " e, I 4.12)

u tln [1 ——shzz/sh2§0], I,

It is easily seen that T is a canonical transformation with inverse

T74,00=(q, +34,0), ..., 4n +34x(0). 0). (4.13)
Second, we set
U_.=6TR, U,=6T !, (4.14)
where R: Q™ —>Q7 is defined by (4.2). Third, we define
S=U;'U_=T’R, (4.15)

which amounts to
S(qy s qn, 015 0y)=(qy +A507), ....qr +4,(07),05,...,07) (4.16)
in view of (4.10-11).

Theorem 4.1. The symplectic diffeomorphisms U _, U ., and S from Q~ onto Q,Q~
onto Q and Q~ onto Q7 respectively, are the wave maps and scattering map for any
H €% with comparison dynamics Hy€% . That is, one has

lim [e"(q,0)—e™(q*,0%)]=0 (4.17)
t—> T oo
uniformly on compacts of Q, where
(@*,07)=Uz'(q.9). (4.18)
Proof. We begin by setting
(q(0), 0() =e"(q,0), (4.19)
and noting that the above relation between H and H, amounts to
(a(0), 0(t)) = &(g; 4+ t(VF)(0), 0) . (4.20)
Then (4.17) can be rewritten as
4 (0—4;£34(0)—10;F)(O)-0, 1>+, (4.21)
N—j+1
0, 0)—0,-0, t->+ow. (4.22)
N—j+1

To prove (4.21) we set

D=diag(d,,....dy), d;=

{ a( O, Ll (4.23)

o;F)0), 11,11,
M=L(;0,9), (4.24)
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where ¢ denotes the dual coupling constants, cf. (2.23), (2.42), (2.48), and (2.70).
Then (4.21) follows in the same way as (3.3), (3.13),(3.27), and (3.39), since D € Z due
to (4.5).

To prove (4.22) we cannot proceed as in Chap. 3, since for a general F there
exists no sufficiently explicit expression for 6 (t) in terms of g(¢) and 4(t). Instead, we
exploit the relation (4.21) and various other results already obtained. We shall only
prove (4.22) for the case 11, the proof for the remaining cases being similar, but
simpler.

We begin by showing that the quantities |0(t)| are uniformly bounded in ¢. To
this end we consider the Hamiltonian

Po=Tr(L+L ")/2=H,,, hox)=chpx, (4.25)
which is explicitly given by

N
Pyo(q,0) =j; chpO;Viu z:q). (4.26)

[To verify this, use (2.59) and Cauchy’s identity (1.2) to obtain
(L™1);;=exp[—p0,1V;. 4.27)

From this (4.26) is obvious.] The desired a priori bound on the |6(t)| then follows
by recalling that V;=1 and no}ing that the quantity P(g(t), 6(t)) does not depend
on t. [Indeed, it equals ) chf0; on account of (4.20).]

Next, we set

L,=B,+5,, (4.28)
where
B,=diag(exp[f0,(t)], ....,exp[BON?)])- (4.29)
We claim that there exists a constant C >0 such that
S <Cexp[—|t|R/2], VteR, (4.30)

where R is the minimal distance between the quantities d, ...,dy, cf. (4.23) and
(A4-5). Indeed, the error term in (4.21) is O(exp[ —|t|R]) due to (A 33), so (4.30)
follows from the definition (2.59) of L and the boundedness of the |6 (t)|. (Of course,
no a priori bound is needed in the nonrelativistic cases.)

We now assert that there exist permutations 7, € Sy and a number T >0 such
that

where R is defined by (4.31)
R Emjin {exp[BO;]—exp[p0;, 1} (4.32)

To prove this, we first observe that points in € whose distance to o(B,) is larger
than ||S,| belong to the resolvent set of B,+ S,=L,. Indeed, this is clear from the
second resolvent formula and the self-adjointness of B,. Since L, has spectrum

{exp [:Bél]s -+ EXPp [ﬁéN]} )
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this is equlvalent to the distance of exp [ﬂ@ 1 to o(B,) being <|S,|| for all
je{1,...,N}. But in view of the bound (4.30) we can ensure that |S,[| < R/4 by
picking |t| large enough, from which the above assertion readily follows.
It is now clear that (4.22) holds true, provided we can prove that t, equals the
identity and 7 _ the reversal permutation t,. We shall prove 7, =id, the proof that
_ equals t, being analogous. To this end we introduce the eigenprojection

P—~)ijLd (4.33)
L r

where [} is a circle around exp [B0,] with radius R/2, and where t>T. Then the
dlstance of a(B)) to I is > R/4 due to (4.31-32). Iterating the second resolvent
formula for R(z, L,) and using the bound (4.30), one now concludes that L, has
eigenvectors given by

w=Pb., ;,=b.;+x;, |x]|=0(xp[—tR/2]), (4.34)

where {by, ..., by} is the standard basis of C". Hence, the matrix 7, ' diagonalizing
L, is of the form

“t=Col(uy, ...,uy)diag(cy, ...,cy), (4.35)

wherecy, ..., cy are non-zero normalizing functions, cf. Chap. 2. But then T; is given
by

T,=diag(c; ', ...,cy HCol(dy, ..., ) =Col(vy, ..., vy), (4.36)
where
di=b,,+%, o=13', [%|=0(xp[—tR/2]). 4.37)

Let us now specialize to the regime +iz €(0, o0), the point being that then 7; is
unitary. This entails that the normalizing functions satisfy

lejl —1]=0(exp[—tR/2]) (4.38)
in view of (4.34-35). Thus, setting

wi=cyy;, (4.39)
it follows from (4.36-37) that
w;=b,;,+y;, |y|=0(exp[—tR/2]). (4.40)
We now recall from Chap. 2 that T, diagonalizes the matrix
exp[tD/2]M exp[tD/2],

where D and M are given by (4.23) and (4.24) with ¢ =(u, f§, —z). Hence we may
conclude that

exp[tD/2]M exp[tD/2]w;=Z;w;, (4.41)
where
Ai=expluqit)]. (4.42)



Action-Angle Maps 149

We are now prepared to derive a contradiction from the assumption that o +id.
Indeed, if this holds true, then there exists je {1,..., N} such that

ol)y=i, i=1,...j—1, o(j)=k>j. (4.43)

Using (A 31) and setting 6, =d,, —d,, it then follows from (4.40) that the upper j—1
components of (4.41) can be rewritten as

Vi1 exp[td,/2]
M._, .

J

) +O(exp[ —tR/2])
Vij—1exp[1d;- /2]
yjrexp[—10,/2]
=mj1 +Qj)( : , t—o0. (4.44)
Vjj—1exp[—1d;_/2]

[Note that the second vector at the left-hand side would be O(1) when o(j)=}.] Let
us now multiply this by M j—_11 and take t—o0. Then it follows that

lim y; exp[t6,/2]1=0, I=1,...,j—1, (4.45)
t— oo

cf. also (A 33). Therefore, if we multiply (4.41) by the matrix
diag(exp[ —16,/2],...,exp[—16;_,/2],exp[ —td;], ...,exp[ —td;]) (4.46)

and take t to oo, then the left-hand side converges to 0, whereas the right-hand side
converges to m;b, 0. Thus, we have arrived at the contradiction announced
above, so that (4.22), follows when +ize(0,n).

We shall now handle the second z-regime (2.71). Then T, is not unitary, so that
we have no control over the normalizing functions c;, and the above argument
cannot be used. Instead, we reduce this case to the previous one, as follows. We fix
(4,0) € Q and then consider the point (¢(t), 6(t)), defined by (4.20), in its dependence
ony=z+in/2eR. Inspection of the bound (A 33) and the z-dependence of M then
shows that the error term in (4.21) (understood to refer to the fixed point in Q
instead of a given point in Q) can be chosen uniformly for ye K, where K=[—1[,[]
with [>0. Likewise, the a priori bound on the [0 (t)| can be chosen uniform on K.
From this it readily follows that we can choose the constant C in (4.30) uniformly
on K. But then we can find a T'> 0 such that the estimate (4.31) holds true for any
v € K. A priori, the permutations 7, occurring there could depend on y. However, it
follows from Theorem B2 that & is continuous in 7, so that the quantities [0 (¢)| are
continuous in y in view of (4.20). Hence, the permutations 7. in (4.31) must be
constant on K for a fixed ¢t with |¢{|> T Since we know already that t, =id and
7_ =1, when y=0, it follows that this holds true on K, too. Since [ is arbitrary, we
have now proved (4.22) for both z-regimes.

To complete the proof of the theorem, we claim that the error terms in (4.21)
and (4.22) (viewed again as corresponding to given points in Q) are locally uniform
on Q. Indeed, for (4.21) this is an easy consequence of the estimates (A 14) and (A 33).
But this implies that one can get a locally uniform bound on ||S, |, so that our claim
for (4.22) follows from the estimate (4.31) with 7, =id, t_ =r1,, and its obvious
analogs for the three remaining cases. Uniformity on compacts then follows from a
standard argument. []
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5. Further Developments

5A. Asymptotic Constancy

The following result amounts of a reformulation and generalization of
Theorem 4.1. 1t is included so as to make clear that the asymptotics of the point
exp[tH](q,0), H e ¢, may be viewed as a special case of an “asymptotic constancy”
property of &.

Theorem 5.1. Let

(q(0), 0(r)) = &(g; 4(1), 0), (5.1)
where
d{)=4;+1ta;, ay<..<a;, T€Sy. (5.2)
Then one has
qt(j)(t)—qu(t)—) —%A](é)a t—o0, (53)
Bt(j,(t)—HAj—»O, t— oo (5.4)

uniformly on compacts of Q, where A j is given by (4.11-12).

Proof. The proof of (5.3) proceeds in the same way as for the special case considered
in Chap. 3: One need only invoke Theorems A1 and A2 for the pair

g — aj Inr’Irel
D=diag(dy,....dy), d;= {Wj’ Tl (5.5)
M=P 'L(g;0,4)P., (5.6)

and recall the relation of the quantities gy(t)< ... <q(t) to the eigenvalues of the
matrix E(t). Here, P, is the permutation matrix

(Pr)jkzat(j),k’ (5.7)

and ¢ denotes the dual coupling constants.

To prove (5.4), we observe that (5.3) leads to (4.31), via the same arguments as
for the special case t=id. Thus, we need only show that the permutation 7, in
(4.31),. is equal to 7. This can be proved along the same lines as before; Here, the

matrix
ex E DM E D

is diagonalized by P, ' T,P,, so that one should replace w; by w,; in (4.41). Then the
assumption that 61t =t 't id leads again to a contradiction, so that (5.4) results.
Finally, the uniformity assertion is easily seen to follow from (A 14)and (A33). [J

5B. Integrable Systems Associated with C, and BC,

The integrable systems considered so far may be viewed as being associated with
the root system Ay _ 4, cf. the review [1]. We shall now show that one can obtain
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new integrable systems on the phase space
1
Q,={(¢g0)eR¥0<q,<...<q,}, o,=Y dg;ndb;, (5.8)
i=1
associated with the root systems C, and BC, by restricting the pair (4, L) with
N=2] and N=2]+1 to the submanifolds of Q given by
‘QeE {(qa O)EQ,(ql’ s 917 tee Bl)egr
Qe1=—Gp - qu=—q;, 0 1= —0,....,0,=—0,}, (5.9)
and
QOE{qﬁ)EQI(qb o015, 0)€Q,, =0, =0,
GQi+2= G- »q9ur1= —q10p50= =0, ....05 ., =—0,} (5.10)

respectively. To this end we introduce the phase space
1
Q.={(4,0eR¥0<0,<...<0,}, &,=Y dg,nab;, (5.11)
i=1

and submanifolds Q¢ and Q° of Q via (5.9) and (5.10) (with carets added, of course),
and identify Q¢ and Q° with Q,, and Q° and Q° with Q,, in the obvious way. The
following theorem has various consequences that parallel results obtained above
for the root system A, _, so we refrain from spelling them out.

Theorem 5.2. The map ® restricts to a symplectic diffeomorphism @, from Q, onto Q,.

Proof. From the construction of @ in Chap. 2 it is far from obvious that &(Q°)C Q,,
s=e¢,0. Therefore, we proceed in another way, exploiting results already obtained.
We only consider the case I1,,, the other cases having a similar, but simpler, proof.
First, we introduce the Hamiltonians

1
H;(q,0) Ejg,l Chﬂejf(z%) kl;[j f(qj_Qk)f(qj+ qx) (5.12)

and

1 1
HJ(q,0) Ej; chf0;f(q;)/(2q)) kl;[j fla;—a)f(q;+ qk)Jr%jI:]1 fAa) (5.13)

on Q,, where

g |12
flg)= [1 —sh*z/sh* —2~] . (5.14)
These are obtained from the Hamiltonian 1P, given by (4.25-26) with N=2]
and N =2[+1, upon restriction to Q° and Q°, respectively.

Next, we introduce the (a priori local) flows

(q(0), 6)=exp[tH;]1(¢,0), (q.0)€Q,, s=e,0, (5.15)

and define corresponding trajectories (g%(t), 0°(t)) in Q°CQ. Then a long, but
straightforward calculation shows that the trajectory (q%(¢),#°(t)) is an integral
curve for the Hamiltonian P, on Q.
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Now we have P,e® in view of (4.25) and (4.9), so that

qi(t)—q;+34,0)—tpshpd,»0, >0, (5.16)
651)— 0,50, -0, (5.17)

on account of (4.21) and (4.22). On the other hand, one has, e.g.,
() +0%1)=0, VieR, (5.18)

since the trajectory belongs to Q°. Hence, (5.17) implies 0, + 0y =0, with a similar
conclusion for the other §, Using now (5.16) in the same way, the desired
conclusion @(Q%)C Q° readily follows.

By duality it is clear that C may be replaced by =, and real-analyticity of the
restriction @, and its inverse &, is evident from the real-analyticity of @ and &
established in Appendix B. Canonicity of @, can be seen from canonicity of @,
but also follows by using Appendix C for the Hamiltonians H; on ,: The
explicit description of the associated flows which we have just obtained plays
the role of Theorem 3.4 for H, so that we are reduced again to justifying an
interchange of limits. To prove that this is legitimate, it clearly suffices to show
that the function ((t, g, 0), Az, ¢, 0)) associated with the Hamiltonian P, on Q
has a holomorphic extension converging uniformly to the holomorphic exten-
sion of the function (q*(q, 0),0% (g, 0)). But this follows in the same way as for
the Hamiltonian H: One need only replace the function exp(-) by the function
Bsh(-) in (C10-12), and reinterpret ¢; and ¢; accordingly. [

5C. Miscellanea

(i) (Functional equations for I, ). The following result concerns functions of the
Lax matrix for the case I,,. Note that its proof only involves the properties of the
matrix T constructed in Sect. 2B.

Proposition 5.3. Let f:R—C be an arbitrary function. Then one has
Y f(L);=0, (5.19)
i*j

where L is given by (2.17).
Proof. We have shown in Sect. 2B that a matrix T exists such that

TLT '=L, Te=T ‘e=e, e=(1,...,1), (5.20)
where L is diagonal. Hence we infer

@ f(L)ii> e®@e=(Trf(L)e®e=e®ef(L)e®e

=e®eT f(L)TeQe=e®ef (L)e®e (5.21)
=<§ f(L)ij> e®e.

From this (5.19) is evident. []
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(i) (A generalized Lax matrix ). Let us denote by L, the matrix obtained when
one replaces the Cauchy matrix C in (2.59) by

(Ca)ijEC(%Z;CI)ij"‘O‘eXpl:— g(fli—qj'):'a aeC. (5.22)

Proposition 5.4. The symmetric functions of L, commute.

Proof. From (2.62) it follows that

L,=L+0A 'e®e. (5.23)
Transforming this with T yields
L,=diag(@,,....0,)+0d " 'e®é. (5.24)
Recalling (2.69-70) we see that L, is of the form
(L)y=exp [ - gq} M, (0);exp B ci,»] . (529)

This clearly implies that the symmetric functions of L, transformed to Q, depend
only on 6. Since @ is a canonical transformation, the proposition follows. []

In fact, the symmetric functions of L, are proportional to those of L, the
proportionality factor depending only on « and z. This is a consequence of a
generalized Cauchy identity established in [9]: If one sets

a=e “shz/sh(t—z), (5.26)
then the right-hand side of (5.22) can be written

_.[ e Zsht \[sh(x+1) shz u
¢ <Sh(‘E—Z))< sht Sh(x+z)'>’ Y= E(qi 9)- (5:27)
The assertion now follows by setting
vu—z, vi—t, vou/2 (5.28)

in Egs. (3.19-20) of [9].
(i) (Evennessin g and z). The following result implies that the minus signs in
the duality relations (2.24), (2.49), (2.50), and (2.73) may be omitted.

Proposition 5.5. The map ® is even in ¢ (cases I, 11, 1..,) and z (case 11, ).

Proof. The substitution ¢g— —p in the Lax matrices (2.17), (2.31), and (2.32), and
z— —z in the Lax matrix (2.59), is equivalent to transposing L(g; g, 6). Hence, the
corresponding vector 0 is invariant, whereas

T(—0)=T() Y, o=o,z (5.29)

in view of (2.5), (2.8),(2.10) and the evenness of e. Now for the cases I/, and I1,,, the
vector § is determined by ¢, cf. (2.41), (2.69). Hence, (5.29) implies 4 is unchanged.
For the cases I, and I, one has §,= A;;, cf. (2.23), (2.48). Since 4 is real and does
not depend on g, and since T is unitary in the latter cases, (5.29) again implies 4 is
even. [



154 S. N. M. Ruijsenaars

(iv) ( The relation between the four cases). We conclude this final chapter by
specifying the parameter limits needed to reach the cases 1., I1,,,, and I, from the
case I1,.,. To this end we substitute

z=fug/2 (5.30)

in (2.59-63). If we then take p to 0, the matrices L and u~'(4 —1) converge to the
matrices L., and A, of Sect. 2C. If, instead, we take § to O, then the matrices
B~ YL—1) and A4 converge to the matrices L,, and 4,, of Sect. 2C. Finally, the
matrices L and A4 of I, result by taking either yx to 0 in the matrices L and
u~(A—1) of II,, or by taking B to 0 in the matrices f~(L—1) and A4 of I,

Appendix A. Spectral Asymptotics

In this appendix we determine the t— oo asymptotics of the spectrum of N x N
matrices of the form

Et)=M+1tD, (A1)
and of the form
E(t)=M exp(tD). (A2)

The first type of t-dependence arises for the rational systems I, and I,,, the second
one for the hyperbolic systems II,, and II,,. Throughout this appendix the
matrices D are assumed to belong to the set

9 ={diag(d,, ....dy)lde C",Redy<...<Red,}. (A3)
We also use the notation
ri=Re(d,—d,), ry=Re(dy_,—dy),

. (A4)
rjEmln{RC(dj_l—dj), Re(d]_dj+ l)}’ j=2, ...,N_I 5

and we set
R=min{r,,...,ry}. (A5)

The matrix M in (A1) is arbitrary, whereas in (A 2) it has properties to be specified
below.

We shall need information on o(E(t)) for pairs (M, D) with M self-adjoint and D
real to determine the pointwise asymptotics of the Hamiltonian flows occurring
above. However, we also need information that is uniform on complex neighbor-
hoods of a given initial point (g, §) € 2, in order to obtain a rigorous proof that the
bijection @ of Chap. 2 is a canonical transformation. Therefore, we consider pairs
(M, D) of a more general type and obtain bounds on error terms that are expressed
in terms of appropriate norms. The uniform information we need involves a ball B,
in @ around a fixed D, which is given by

Bo={De 7D —Dy <Ro/4}. (A6)
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Here and below, || - || denotes the operator norm derived from the standard scalar
product on C". Note that one has
rizro;i—Ro/2ZR/2 (A7)

for any D e B,,.

To obtain explicit formulas for eigenvalues we use some standard techniques
from finite-dimensional perturbation theory (cf. [17, Chap. IT]). Specifically,
setting

R A=(C—-4)"", (A8)
where 4 is an N x N matrix and { ¢ 6(A), we shall employ the formula
A=TrAP,, (A9)

valid when 4 is a simple eigenvalue of A. The eigenprojection P, is given by
1
P,=—[R(, AL, A10
1= 5 IR AL (A10)

where I’ is a circle around A whose radius is smaller than the distance of A to the
remaining spectrum of A. Also, here and below contours are oriented
counterclockwise.

We are now prepared to deal with matrices of the form (A1). From now
on the symbol C denotes positive numbers that do not depend on the relevant
variables, and whose magnitude is of no importance.

Theorem Al. Let
Et)=M+tD, MeMyC), DeZ. (A11)

Then there exists Ty 21 such that E(t) has simple spectrum for t > Ty. The (suitably

ordered) eigenvalues A,(¢), ..., 2x(t) satisfy

Aft)y=M;;+td;+ 1), (A12)
At)=d;+0t), (A13)
where the remainder functions obey
oIS Ce™ HIM|P(ID]ry 2+, (A14)
o= Ce= 2| M|(IDlIr 2 +r; ) (A15)

for any t= Tg. Now fix Dy € & and let B, be defined by (A 6). Then Ty can be chosen
uniformly for (M, D) in the closure of

U(K)={M]| |M| <K} x By. (A16)
Proof. Let us introduce the auxiliary matrix
A) =D+t *M=t"1E(1). (A17)
We denote the circle with radius r;/2 around d; by I. Then
IR(z,D)||=2r; ", Vzel, (A18)
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so picking T; with
Tz4r; Y| M| +1 (A19)
€nsurcs
[t"'MR(z, D)|| £%, VizT,, Vzel]. (A20)

Hence, the iteration of the second resolvent formula
R(z, A(t) =R(z,D) Y. [t”'MR(zD)]" (A21)
n=0
converges uniformly on I for any t= T}, so

)= 5. | R A (A22)

L,

is well defined. Moreover, P (t) is one-dimensional, since P (o) is. The eigenvalue
inside [ is then given by [cf. (A9)]

at)y=d;+t" "M+t~ 'o[1), (A23)
where
oit)= i r(tD+ M) j R(z,D)[t"*MR(z,D)]"dz. (A24)
But we have
TrD | R(z, D)MR(z,D)dz=0, (A25)
I,

since D is diagonal. Hence, using (A 18) and (A20) the bounds (A 14-15) easily
follow. Moreover, putting

Ty=max{T,,..., Ty} (A26)

it follows that for any t = T, the matrix E(t) has one and only one simple eigenvalue
4(t) inside tI}, which is such that (A12-15) hold true, cf. (A17).

It remains to prove the uniformity claim. To this end we note that the above T;
is restricted only by (A 19). Recalling (A7), we conclude that it suffices to choose

T,=8K/Rq+1 (A27)
to handle all (M, D) in %,(K) simultaneously. []

To control the spectral asymptotics for matrices of the form (A2) is a lot more
arduous. The main problem is to bypass two related difficulties: There is no
formula for the norm of the resolvent R((, A) in terms of the distance of { to o(A)
when A4 is not normal, and, secondly, the presence of diverging matrix elements (as
t—o0) can a priori cause drastic spectral changes under small perturbations. (For

instance, the matrix
0 b
00
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has spectrum {0} for any b, whereas

5o
s 0
has spectrum { +(bs)'/?};if b is big, this may amount to a sizable change even when
s is small.) However, it turns out to be possible to obtain explicit formulas for the
relevant resolvents in terms of matrices whose elements do not diverge as t— oo,
and this is how we shall be able to avoid these snags in the case at hand.

We proceed to define the set .# of matrices M for which we shall study (A2). To

this end we denote by M ; the j x j matrix obtained from M by deleting the rows and
columns j+1,...,N. Then we set

M ={MeMyQ@)|[M,|+0,j=1,...,N}. (A28)

Note that .# is an open set containing the positive matrices and the regular
diagonal ones. For M e .4 we also set

m=M,;;, m=|MJ/M;_,|, j=2,..,N. (A29)
Theorem A2. Let
E(t)=Mexp(tD), Med, De9D. (A30)

Then there exists Ty such that E(t) has simple spectrum for t = Tg. The (suitably
ordered ) eigenvalues A,(t), ..., A(t) satisfy

At)=mjexp(td,) [1+o[t)], (A31)
Afty=m;exp(td;) [d;+d0 (1) +6,0)], (A32)

where
o) <exp(—tr)P(lmy, [m 1, |M; 1], [IM]), (A33)

|00 Sexp(—tr)(id;—d|+ ... +ld;—dyDQmyl, Imj| =1, | M1, I M]) (A34)

for any t = Ty, with P and Q polynomials. Now fix Dy€ @ and let B, be defined by
(A6). Also, fix Mye ./ and choose ¢ so small that the closure of

By (e)={MeMyQO)||IM—M,| <&} (A35)
belongs to M. Then T; can be chosen uniformly for (M, D) in the closure of
Uo(e)= By (€) X By (A36)

To prove this theorem we need the following lemma, which concerns a j xj
matrix of the form

F)=A(t)"'G, (A37)
where G is a jx j matrix and
A(t)=diag(exp(td,), ...,exp(td;_,),1), O<Red;_;<...<Red;. (A38)
Thus we can write

F(t)y=H+V(1), (A39)
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where
0
H= < > , (A40)
Gjl “en ij

V(t)=diag(exp(—19d,),...,exp(—1t6;-,),0)G. (A41)

Lemma A3. Suppose G;;+0 and let I' be the circle around G ;; with radius 3|G ;;|. Then
one has

|R(z, H)| £aG), Vzel, (A42)
where
A(G)=12IG;|*| G, (A43)
and || - ||, denotes the Hilbert-Schmidt norm. Now fix T such that
exp(—TRed;_,) |GlluG) <3, (A44)

Then one has for any t=2T and z€e T,
[R(z, F(t)| =24(G), (A45)
IR(z, F(t))l| S 4exp(—tRed; 1) (16, + ... +16;- 1) |G (G)*. (A46)

Moreover, the matrix F(t) has one and only one simple eigenvalue e(t) inside I, given
by

e(t)=G,;+R(1), (A47)
where
IR <exp(—tRed;— PG, ", IGI), (A48)
IR()] Sexp(—tRed; 1) (16,[+ ... +16;- 1 )PAIG ;. 1GIl) (A49)
for any t =T, with P,, P, polynomials.
Proof. 1t is easily verified that the H-resolvent is explicitly given by

Z—-ij 0
R(z,H)= t 1 . (A50)
z—Gj z 0 z—Gj;
G - Gyioy oz
Hence,
IRGH S LG+ 1+ 161 =126, 2IGl,  VzeT,

lz—Gjjl I2] (AS1)

proving (A42).
Next, we note that

IV(OR(z, H)|| sexp(—tRed;_ ) [Gla(G)s53, VizT, Vzel, (A52)
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cf. (A44). Thus
Rz FO)=R(: H) ¥ [VORE H)" (AS3)
n=0

converges uniformly for ze I" and t= T, and the bounds (A45-46) readily follow.
Moreover, the projection

P(t)= i [ R(z, F(t))dz (A54)
2ni r
is well defined for t= T, and since the projection
1 0
P = _— H =
(c0) 2mi ;R(Z’ iz (Gﬂ/ij... 1> (A359)

[cf. (A50)] has rank one, P(t) is one-dimensional, too.
We conclude that F(t) has one and only one eigenvalue e(t) inside I" given by
(A47), where

R(t) zTr[V(t)P(oo) + 2% il (H+V(0) | Rz. H) [VORC, H)]"dz] . (A56)

From this it is easy to verify (A48-49) by using (A41) and the bounds
(A51-52). O

Proof of Theorem A2. We are going to study the auxiliary matrix

A(t)=exp(—td)E(t), je{l,..,N}. (AS7)
To this end we introduce the complex numbers
o=d,—d;, k=1,..,N (AS8)

and the j xj matrix A(t) given by (A38). (Here and below we have suppressed
dependence on j to ease the notation.) Now we split up M in 2 x 2 form and write
A(t) as the sum of a “big” and a “small” matrix, as follows:

_(Mae ML \(A@) 0\ _ (M, 4@ 0
B”)=<M_+ M__><0 0>_<M‘+A(z) 0)’ (A59)
S(t)= A(t)— B(t)= M diag(0, ..., 0,exp(td; 1), ..., €xp(tdy)). (A60)

Thus, B(t) has the same spectrum as the j x j matrix
Zt)=M, A1) (A61)

(up to an eigenvalue O when j<N).
Next, we note that M, . =M, so that Z(¢) is regular due to our assumption
M e /. Moreover, if we set

F=z@n™', G=M;"', (A62)
then the assumptions of Lemma A3 are satisfied, with G;; being given by

Gy=M;Yy=IM; ,|/\Mj=m;" (A63)
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[cf. (A29)]. Hence, it follows that for t = T [where T satisfies (A44)] B(t) has one
and only one eigenvalue b(t) inside the contour

F={(eC{ erl}, (A64)
which is given by
b(ty=m;/[1+m;R(1)], (A65)

cf. (A47), (A63).
We now make the key observation that the B(t)-resolvent can be simply
expressed in terms of the F(t)-resolvent, as follows:

=TT F(OR(CE F() 0 )

(MM, RELEQ) (A66)

R, B(t)= (_
Indeed, the validity of this formula can be readily verified by using the above
relations between B and F. Consequently, we are able to estimate the norms of the
B(t)-resolvent and its time derivative on the contour I' by using the bounds
(A 45-46). This yields

IR, BO)| = Q(Iml, Imyf =%, | ML, M), (A67)
IR, B@)| Sexp(—tRed; ) (10,14 ... +18;- ()Qallmyl, Imf =, 1M, | M})
for any t=T and {eT, with Q,,Q, polynomials. (A68)
We proceed by concluding from (A 67) that one has
ISORE B@)| <5, WV2T2T, Vel, (A69)

provided T; is chosen such that
exp(T;Red; ) IMIQ,(Imyl, Imy{ =, IM; 1, IM])<3 (A70)
[cf. the definition (A 60) of S(r)]. Hence,

R({, A(1))=R((, B(t)) io [S(OR(E, B@)]" (AT1)
converges uniformly when ¢>T; and { e I". Also, the projection
= 1
Pi=~— ; R(, A())dl (A72)

is well defined for any ¢ = T}, and using (A 66) and (A 37-38) one infers that lim P(1)

exists and is one-dimensional, so that P(t) is one-dimensional, too. o

As a result we have now shown that both B(t) and A(t) have one and only one
eigenvalue b(t) and a(t), respectively, inside I for any t> T.. Moreover, these
eigenvalues are related by

a(t)=Tr A(t)P(t) = b(t) + i Tr [ S()R(E, B(t)d¢
2ni r

+ 2%1 ni Tr[[=1+(C+SWIRE BO) SORE BO)JdC. (AT3)
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Indeed, this follows by using (A 71-72); we have gotten rid of the “big” matrix B(r)
by using

BR({,B)= —1+(R((, B).
Defining now g/(t) by setting
alt)=m;[1+041)], (A74)

and combining this with (A73) and (A65), it is not hard to obtain the bounds
(A33-34) on ¢; and ¢;: One need only use the estimates (A48-49) and (A67-69),
recall the deﬁnltlons (A 4) and (A60) of r; and S(t), and observe that the modulus of
the denominator in (A 65) is bounded below by 1, since b(t) lies inside I for any
t = T;. It is then obvious from the definition (A 57) of A(t) that E(t) has one and only
one elgenvalue 4{(t) inside exp(td; )I', which satisfies (A 31-34). Finally, defining T},
by (A26) and noting that all bounds are decreasing in ¢, it follows that E(t) has
simple spectrum for any t = T, with eigenvalues satisfying (A31-34).

It remains to prove the uniformity statement. To this end we recall that the
above T; is restricted only by (A70) and the requirement T;< T, where T is solely
restricted by (A44). These requirements are expressed in terms of functions of M
that are continuous on .# and in terms of exponential functions involving D. The
latter functions can be uniformly majorized on B, by using the lower bound (A 7).
Also, since By, (¢) is a compact set which belongs to .#, the former functions are
uniformly bounded on it. Hence we can choose T} uniformly on %(e), and defining
T;, by (A26) the proof of Theorem A2 is complete. []

Appendix B. Real-Analyticity

In this appendix we show that the bijections @ and & constructed in Chap. 2 are
real-analytic functions of (¢, 0) and, therefore, diffeomorphisms from Q onto Q and
Q onto Q, respectively. In fact, we shall prove more, namely, that these maps are
real-analytic in the coupling constants, too. Just as in Sect. 2A we denote these
parameters collectively by g and their definition domain by G C €'; this enables us
to handle all cases simultaneously.

We have occasion to use the following lemma, which summarizes some results
from nondegenerate perturbation theory. In essence, these facts can be found in
[17, Chap. I1], but since this may not be visible to the unaided eye, we sketch a
proof.

Lemma B1. Suppose M = M(z) is an N x N matrix that is holomorphic in a polydisc
around zy € C* and suppose that M, = M(z,) has simple spectrum. Then there exists a
( possibly smaller ) polydisc D around z, with the following properties: The spectrum
of M is simple in D, the eigenvalues A, ..., Ay of M are holomorphic in D, and there
exist corresponding eigenvectors uy, ...,uy that are holomorphic in D.

Proof. Let 4, be an eigenvalue of M, with corresponding eigenvector u, and
consider the series

R M)=R(Mo) 3 [(M= MR Mo)) (B1)
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[cf. (A 8)] where { belongs to a circle I" around 4, such that all other eigenvalues lie

outside I'. Picking z close enough to z, ensures that the series converges uniformly

on I, so that we can define P, via (A10). Then P, is a one-dimensional

eigenprojection of M, since P,(z,)= lim P,(z) is one-dimensional. Using Hartog’s
z—zZg

theorem one now infers that P, and the corresponding eigenvalue 4 [given by
(A9)] are holomorphic near z,. Hence, the function u= P,u, is holomorphic near
zo. Moreover, since u(z,) = P,(zo)uo =u,+0, one has u=+0 near z,. It is now clear
how to complete the proof. []

Theorem B2. The bijections P and & = @~ constructed in Chap. 2 are real-analytic
functions in G x 2 and G x Q, respectively.

Proof. We shall only prove this for @, since the assertion for & is then obvious from
duality. Let us fix a point P in G x Q. Inspection of the definitions of L(g; g, #) and
e(g; g, 0) shows that there exists a polydisc in €' x €C*N around P in which L and e
are holomorphic. Moreover, we have proved in Chap.2 that L has simple
spectrum on G x Q. Hence, Lemma B1 applies, with M =L and z,= P. Using the
notation introduced there, we can now define a regular matrix

H=Col(uy, ..., uy), (B2)

which is holomorphic in D. Furthermore, eventually performing a permutation
and multiplying H from the right by a constant, diagonal and invertible matrix, we
can achieve that H(P) equals the matrix T~ '(P) of Chap. 2.

Next, we introduce the vectors

a=H 'e, d=H'e, (B3)
which are holomorphicin D, as well. Now consider the functions h; = 4,/d;. Since we
have a(P)=a(P)=¢(P)>0 (B4)

(cf. Chap. 2), there exists a polydisc U C D around P such that hy, ..., hy are non-
zero and holomorphic in U. Hence, the functions r;=h}/?, with r(P)=1, are
holomorphic and non-zero in U, too. Multiplying the eigenvector u; by r;, we get a
regular matrix, denoted again by H, for which the vectors d and a [cf. (B3)] are
equal, and which is holomorphic in U. Moreover, the coordinates 4, ...,dy are
holomorphic in U and positive in P.

We are now in the position to invoke the uniqueness of the matrix T,
established in Chap. 2, to conclude that we must have

H'=T, a=¢, Wg:9.0)e(UnGxQ). (B5)

As a consequence, T and é are real-analytic in G x Q. Real-analyticity of the
functions §; and 0; is then clear from their definitions, and the proof is
complete. []

Appendix C. Canonicity

The purpose of this appendix is to state and prove the following theorem which
justifies our interpretation of the maps @ of Chap. 2 as action-angle transfor-
mations.
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Theorem C1. The diffeomorphisms ® from Q onto Q constructed in Chap. 2 are
symplectic.

Proof. We shall prove this for the case I1,.,. The proof for the remaining three cases
proceeds along the same lines, with simplifications occurring at various points.
First, let us introduce

a; (¢,0)=4;—34,0), (C1)
0/ (q,0)= éj, (C2)
and observe [cf. (3.16) and (3.42)] that 4; can be written

Aj(9)=2u_‘ln(ﬂf(gj—gk)/l—[f(gj—gk)), (C3)

k<j k>j

Shl 1/2
o= 1-— (C4)

Sh2 5 0

From these relations it follows that it suffices to prove that the map ®* : Q—Q,
(q,0)— (q*,0") is canonical. To this end we use (3.39-40) to infer

q"(g,0)=lim 4(z,4,6), (C5)
0" (q,0)= lim 8(t, 9, 0), (C6)
where
gi(t,q,0)=q,(t)—texp[O,(1)], (C7)
0(t.q.00=0/1). (C8)

Now we have
(q(t), (1)) =exp(tH)(q, 0)

by virtue of Theorem 3.4. Since Hamiltonian flows are canonical, it follows that the
functions §;, #; have Poisson brackets

{qp qk} = {gj’ gk} =0,

C
{‘7;" gk} =0j )

for any teR.

In view of (C5-6) it remains to prove that one may interchange the t— oo limit
and the differentiations with respect to g; and 6, implied in (C9). To this end, let us
fix (qo, 0,) € Q with image (4, 0,) € @ under ®. From Theorem B2 and its proof we
then conclude that there exists a polydisc X ¢ €*" around (g, 0,) such that (4, 0)
depends holomorphically on (¢, ) € X and such that the “pair potentials” (& - 0,
do not vanish on X. Hence, (¢*,07) extends to a holomorphic function in X by
virtue of the monodromy theorem and Hartog’s theorem, cf. (C1-4).

Next, we invoke Theorem A2 to infer that there exists a polydisc ¥ around
(4o, 0,), whose closure belongs to X =®(X), and a number TeR such that the
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matrix
E(t)=L(u, p, — 230, §) exp[tpdiag(exp[ 0, ], ...,exp[f0y])] (C10)

has simple spectrum for any (¢, f) e Y and t > T. Indeed, if we denote the matrices in
(C10) corresponding to (4,, 0,) by M, and DO, then it is clear that choosing ¥ small
enough ensures that the corresponding palrs (M, D) belong to %), cf. (A35-36)
and (A 6). Moreover, it follows that on YnQ we have

Qj(t):@j—iAj(®+feXp[ﬂ9j] +u [ +o40], (C11)
exp[ 0,01 =(exp[BO]+p~'¢{0) [1 +o/0)] ™)
sh?z —12
x[](1-————- , (C12)
K+

20— ai0)

cf. the proof of Theorem 3.4 and (3.30). Now ¢(t) and ¢(t) are expressed in terms of
series that converge uniformly, and the terms of the series are clearly holomorphic
in Y, cf. the proof of Theorem A2. Hence, ¢ J(t) and ¢t) are holomorphic in Y for
any t 2 T. Also, the function 1 +¢t) in (C11) is non-zero on Y, since E(t) is regular
on Y. Thus, for any t>T the functlon g4(t) has a holomorphic extension to Y.
Moreover, we may view ¢(t) as a holomorphic function of (g,0)e Y= &Y, since
(4,0) is holomorphic in Y CX.

At first sight the same assertion for 0(t) may seem to follow from (C12), but in
fact it is not clear from the above that choosing t e[ T, o) ensures that the terms
[...]~ '/ at the right-hand side do not diverge on ¥ and that the first term does not
vanish on Y. However, we shall now prove that these snags can be avoided by
eventually increasing T. To this end we first note that (C11) and the estimates (A7),
(A33) imply

Re(q () —aq)I=Ct, V(@.0)e¥, Vi=T. (C13)

Thus we can achieve that the radicands in (C12) are non-zero on Y by picking T
large enough. Also, eventually increasing T once more, we can ensure that the first
term at the right-hand side of (C12) is non-zero on Y for any ¢ > T. [Indeed, this is
clear from the estimates (A33-34).] Thus, 6,(t) has a holomorphic extension to ¥,
and hence may be regarded as a holomorphic function in Y, for ¢ large enough.

We are now in the position to conclude that (g, ) has a holomorphic extension
to Y for ¢ large enough, cf. (C7-8). Moreover, due to the bounds (A33-34) the
convergence of this holomorphic function to the holomorphic function (¢ *,0%) as
t — oo is uniform on Y. But then all derivatives of (§, @) converge to those of (g *, 0™),
so that (C9) holds for (g*,0%), too. [
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