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Abstract. It is shown that a certain boundary value problem for the steady two-
dimensional Broadwell model on a rectangle has a solution. The boundary
conditions specify the ingoing particle densities on each side of the rectangle.

1. Introduction

Very little is known about boundary value problems for the Boltzmann equation,
even for steady flows. The linearized equation has been much studied [1, 2, 4-9,
13], and there are some results for nonlinear flows near to equilibrium, but that is
all we know of, in general. Recently, in an attempt to make further progress on the
problem, we began to study boundary value problems for discrete velocity models
of the Boltzmann equation. In [11], we showed that, in one dimension, the
boundary value problem associated with discrete velocity problems in a slab has
solutions quite generally, although we were unable to prove any kind of
uniqueness for the solutions we found. In [12], we extended the results of [11] to
discrete velocity flows in a half-line. We obtained the result, expected because of
the physical analogy, that the solution at infinity is a Maxwellian.

Naturally, one-dimensional steady problems are problems involving ordinary
differential equations. In two dimensions, for discrete velocity flows in a domain,
virtually nothing is known. In this paper, we present a non-trivial example of the
solution of a boundary value problem associated with a natural 4-velocity model
in a rectangle. This is the first example we know of such a result.

The model is easily described. We solve the following problem in the rectangle
R = [0,ά]x[0,b]:

^+flf2=f3f\ f1(0,y) = φ1(y), (1.1)
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-^+fψ=PP, P(a,y) = φ2(y), (1.2)

δf3+PP=PP, P(x,0) = φ3(x), (1.3)
dy

dp
+PP=PP, p{x,b) = φ4{x). (1.4)

The underlying time-dependent model associated with (1.1-4) is well known as the
(two-dimensional) Broadwell model [13,15]. This is one of the simplest models for
which the global existence problem for the Cauchy problem is unsolved for large
data 1 (see [16]). In spite of this, the solution of the boundary value problem (1.1-4)
that we present here is, like the results of [11] and [12], completely global, in no
way depending on the lengths of the intervals (0, a) and (0, b), or the size of the data
φ1, φ2, φ3, or φ4.

A piece of notation before we start. We denote the continuous functions on a
set S by C°(S); the continuous, non-negative functions on S are denoted by C°+(S).
The non-negative functions with one continuous derivative on S are denoted by
Cl^S). We denote the maximum norm in C°(S) by || ||.

2. A Boundary Value Problem for Some Ordinary Differential Equations

We begin this section by studying the following boundary value problem involving
only ordinary differential operators:

δL-+f^p = h i , / 1 ( 0 ) = φ 1 , (2.1)
ox

where the functions h, as well as the boundary data φ are given.
We prove

Lemma 2.1. Let φ\φ2eΈLi, (h\h2)e{C°+[0,a]}2:=C°+l0,a']x C°+l0,a2. Then,
the problem (2.1)-(2.2) has a unique solution f=(f\f2)e{Cί

+[O,a~]}2.

Proof. To solve (2.1)—(2.2), we use the method of Kaniel and Shinbrot [17], which is
well suited to problems of this type. We begin by defining four sequences, {/*}, {uι

n},
{I2}, and {u2}, as follows. Take /J = O = /Q, and let u$ and ul be the solutions of

—

1 Although the corresponding one-dimensional Cauchy problem has been solved [3]
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Next, with Z*_1? M*_l5 Z 2_ 1 ? and u\_γ given, we define Z*, u\, Z2, and w2 as the
solutions of the initial value problems

iΛ _L/ 2 I,1 —h1

dx

(2.3)

and

2 71 2 _
U ~ L U

/2__L2 (2.4)

A straightforward induction shows that

Thus, the sequences {Ẑ } and {ŵ } are monotone and bounded, as are the sequences
{11} and {ul}. All four are therefore convergent for each x e [0, a]. Let {ξ} converge
to Zι, {wjj} to u\ i= 1,2. Integrating (2.3) and (2.4), we can send n to infinity in the
result to find that

u\x)+]l\ξ)u\ξ)dξ = φι +]
0 0

0 0

u2(x) + ί I\ξ)u2(ξ)dξ = Ψ

2+] h2(ξ)dξ,
X X

I\x)+}u\ξ)l2{ξ)dξ = φ2+}h2(ξ)dξ.
X X

The functions Z1, Z2, w1, w2 are bounded, and these formulas show that they are
absolutely continuous in x, and they satisfy

dx'

d (2.5)

dx'

die l2-uΨ=-h2,
(2.6)
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Thus, subtracting (2.5b) from (2.5a), and (2.6b) from (2.6a), we find

{1

and

(2.Ϊ

Thus,

Sϊnce(uί-lι)(0) = 0, then,

{u1-l1)(x) = {u2-l2){x)-(u2~l2){0).

Setting x = a and using the fact that (u2 — I2) (a) = 0, we find

(uί-l1)(a)=-(u2-l2)(0),

which is impossible unless both sides are zero. Thus, we have

5 2 /2-1

Jχ(U ~

I (U — /

'~Ix

with both sides being zero when x = 0 OΪ x = a. Equation (2.7) now gives

Since uι — lι=0 when x = 0, this means that u1 = l1. Similarly, we find u2 = l2.
Writing f1 for the common value of I1 and w1, and f2 for I2 and u2, we find from
(2.5) that ( / \ / 2 ) is a solution of (2.1) and (2.2). Since (f\f2) satisfy

f \ x ) + ]f2(ξ)f1(ξ)dξ = φ1+]
o o

p{x)+ ]f2(ξ)f\ξ)dξ = ψ2+ ]h2(ξ)dξ,

they are absolutely continuous, and these equations can be differentiated to
produce (2.1) and (2.2). This shows that Eq. (2.1)—(2.2), integrated with respect to x,
have non-negative solutions / 1 , / 2 G L O O ( 0 , a ) . However, integration of (2.1) (2.2)
gives a representation of/1 and f2 as integrals; thus, fι and f2 are absolutely
continuous. This fact used in (2.1)—(2.2) again shows that (/ 1 ,/ 2 )e{C 1 +[0, α]}2.
This completes the proof of existence.

As for uniqueness, notice that any solution of (2.1)-(2.2) in {C°+ [0, a]}2 satisfies
0 = Zo(x)^/ί(x)^«o(x), i = l , 2 . An induction then shows that f^x)^f\x)^n{x\
1 = l,2, ft = 0,1, Since the sequences {lι

n} and {uι

n} converge to the solution
constructed above, it follows that any solution is equal to the constructed
solution. •
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We now show that the solution of (2.1-2) delivered by Lemma 2.1 depends
continuously on the data. For this, let (/\ f2) satisfy (2.1-2), and let (F\ F2) be the
solution of the same problem with different data, namely

<2 = H\ F1{0) = Φ\ (2.9)

72 = H2, F2(a) = Φ2. (2.10)

dx

_dF^_

dx

We prove

Lemma 2.2. Let (f\f2) denote the solution of (2.1)-(2.2), (F\F2) the solution of
(2.9)-(2.10). Take ε>0. Then, there exists a δ>0 such that

if

l l ^ - ^ l l + l l ^ - ^ l l + ^ - ^ l + I Φ 2 - ^ 2 ! ^ . (2.11)

ε can be chosen to depend only on δ, a, and the quantity

Proof. Let

We note first that the functions f1, / 2 , F1, F2 are all uniformly bounded, below by
0 and above by the corresponding function uι

0 (see the proof of Lemma 2.1), which
depends only on c and a. Define g1 =Fι —f1, g2 = F2—f2. g1 and g2 satisfy

*~ •+F2g1+fίg2 = η1

9 g\0) = ψ1

9 (2.12)
dx

- ^ + F 2 g 1 + / 1 g 2 = /?

2, g^O)^^ 2, (2.13)
dx

where nι=llι-hγ, η2 = H2-h2, ψι = Φ1-φ\ ψ2 = Φ2-φ2. Subtracting (2.12)
from (2.13) and integrating the result shows that there is a constant c1 such that

] , (2.14)
0

say. Solving (2.14) for g2 and substituting into (2.12), we see that (2.12-13) is
equivalent to the problem

:=η. (2.15)

where g'(0) = φ 1 and cγ must be chosen such that g1(α) = c 1 — ψ2 + η(a). F r o m
(2.15), we obtain
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g1(a) = ψ1^ +fWx)-c1/
1(x)]«- dx.

0

The condition g1(ά) = c1— ιp2 + η(a) results in the equation

f// i _ F 2 )[ a

l + j

J
o

Since fί(x)^0, we read off immediately that

\a)\ + \\η(x)\e*
0

if (2.11) is satisfied. Here, c2 is a constant depending only on c and a. From (2.14), it
follows that

where c3 is another constant depending only on c and a. Since g1 satisfies

the lemma follows. Π

Definition 23. For ρ > 0, let B° denote the ball of radius ρ in C°{R), +B° the set of all
non-negative elements of B®:

Let C01(R) be the set of all functions continuous in x and differentiable in y,
normed by

Λ| ||Λ||

|| • II denoting the norm in C°(R), as before. Similarly, we define C10{R) as the set of
functions differentiable in x and continuous in y, with the norm

We denote the balls of radius ρ in Coι{R) and C10(K) by B°ρ

ι and Bρ

10, respectively.
+ JBJ1 and +JB*° denote the non-negative functions in B°ρ

ι and B]°.
In Eqs. (2.1) and (2.2), we now allow the functions h as well as the boundary

data φ to depend on y, and we prove

Lemma 2.4 Let (φ\ φ2)e {C°+[0,6]}2, (/z1, /z2)e [C°+(Λ)]2. Γ/zβπ, £^s. (2.1-2) have a
unique solution ( / 1 , / 2 ) e [ C c [ ( # ) ] 2 . With the boundary data {φ\φ2) fixed, let Sρ

denote the set of all solutions of (2.1-2) with (h\h2)e +BρK Then, the closure of Sρ is
a compact subset of [C+(R)]2.
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Proof. Applying Lemma 2.1 with y e [0, b'] fixed, we find that (f1, f2) exists for each
y, and that {f\ ,y\ f2{-,y))e{C\[0,d\}2. The continuity of the pair C/1,/2)
follows from Lemma 2.2 and the assumed continuity of the data.

For the compactness, we show that the set Sρ is equicontinuous. By Lemma 2.1,
f1 and f2 are bounded. Equations (2.1) and (2.2) give, then, that the derivatives
df1/dx and df2/dx are bounded. Lemma 2.2 shows that the moduli of continuity of
f1 and f2 in the y-direction depend on the moduli of continuity of φι, φ 2, h1, and
h2 in the y-direction. φ1 and φ2 are fixed, by hypothesis, while the moduli of
continuity of h1 and h2 are controlled by their membership in B®1. Thus, the
functions f1 and f2 vary over equicontinuous subsets of C°+{R) as h1 and h2 vary
over +Bg1. This completes the proof of the lemma. •

One has merely to make the lexicographic change of replacing x by y and the
indices 1 and 2 by 3 and 4 to prove

Lemma 2.5. Let (φ\ φ4)e {C°[0,a]}2, (/z3,/24)e[C°(#)]2. Then, the equations

| ^ + / 3 / 4 = Λ3, f\0) = φ\ (2.16)
dy

have a unique solution (/3, / 4 ) e [C+(i^)]2. With the boundary data (φ3, φ4) fixed, let
S'ρ denote the set of all solutions of (2.16-17) vWf/z (/ι3, /ι4) e + βρ1 °. T/ie^z, ί/ze c/θ5t/re o/
S ^ i s a c o m p a c t s u b s e t of [ C 2

3. The Operator T and Some of its Properties

We now proceed to consider (1.1)—(1.4). For this, we assume once and for all that
(φ1, φ2, φ3, φ4) is fixed, satisfying the hypotheses of Lemmas 2.4 and 2.5. We
establish a mapping from the cone [C+(JR)] 4 into itself, as follows. Let
(g\g2,g\g4)elC°+(R)Y. Solve the equations

f j+/ 1 / 2 =*V, f1(^y)=φ1(yh (3 i)

- | ^ - + / 2 / 2 = g 3 g 4 , f2{a,y) = φ2(y), (3.2)

f̂  +fψ = gV, /3(*, 0) = φ\x), (3.3)

- < ^ + / 3 / 4 = g1g2, / V ^ ) = <P4W- (3-4)

dy
We prove

Lemma 3.1. Lei (g 1,g 2,g 3,g 4)e[C<i(i?)] 4. TTien, £<js. (3.1)-(3.4) Ziαi e a solution



694 C. Cercignani, R. Illner, and M. Shinbrot

Proof. Equations (3.1)—(3.2) are subject to Lemma 2.4, Eqs. (3.3)—(3.4) to Lem-
ma 2.5. The result follows immediately. •

Definition 3.2. As the proof of Lemma 3.1 shows, the pair of Eqs. (3.1)—(3.2) can be
solved independently of the pair (3.3)—(3.4). Thus, solving (3.1)—(3.2) defines a
mapping of the pair (g3,g4) into the solution pair C/*1,/2). We write ( / \ / 2 )
= Tx(g3, g4); the subscript x is used to indicate that Tx is smoothing with respect to
the variable x (since the image of [C+(.R)]2 under Tx is contained in [C+°CR)]2) In a
similar way, and for similar reasons, we write (/3, / 4 ) = XJ,(g\ g2) if (/3, / 4 ) is the
solution of (3.3)-(3.4). Finally, we write T{g\ g2, g3, g4) = (/\ / 2 , / 3 , / 4 ) for the full
solution of (3.1)—(3.4). Any solution of (1.1)—(1.4) is a fixed point of T.

We begin our study of the operator T with

Lemma 3.3. The operator T2 is compact.

Proof We have, in the obvious notation,

Accordingly,

T2g = (TxTy{g\g2\ TyTx(g\g4)). (3.5)

We show that TxTy is compact on [C°(#)] 2 . Ty maps [C%(R)~]2 into [C°+

1(R)~]2.
Accordingly, if (g\g2) varies over a bounded subset of [C + (,R)]2, all the images
Ty(g\ g2) He in a ball [ + B°1']2

9 for some ρ > 0. Lemma 2.4 therefore shows that 7;7;
is compact. A similar argument, using Lemma 2.5, shows that TyTx is compact also,
and the result follows from this. •

Next, we prove

Lemma 3.3. The operator T2 has a fixed point in [ C + (JR)]4.

Proof. According to the theorem of Schaefer2 [18,19], we have to show that any
solution oϊf=λT2f with 0 < λ < 1 is bounded. Suppose / = λT2f Then, (3.5) gives

(f\f2) = λTxTy(f\f2) (3.6)

and

We show first that f1 is bounded. Let

(g 3,g 4)=

Then, according to (3.6),

2 Schaefer's theorem refers to a mapping of an entire Banach space into itself. However, the proof
depends on a retraction of the operator under consideration. As a consequence, it is easy to extend
the proof to apply to a mapping on a cone, like [C°+(R)]2
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The definitions of Tx and Ty give

—— =λg3g4— — f1/2, fι(0,y) = λφ1(y), (3.7)

ox λ

~ = \flf2- λg3g\f2(a,y) = λΨ

2(y), (3.8)

δg3 , , w

4-=fψ-gY, g3(x,0) = φ3(x), (3.9)
^ - = g 3 g + _ / l / 2 g4(X >i,)=φ4( χ ) - (3.10)

Therefore,

gθ, (3.11)

since 0 < l < l , while the functions/ and g are all non-negative. Integrating (3.11)
over R and using the divergence theorem, we find

I (Γ-P)dy- I (f1~f2)dy+ f ( g

3 -g 4 )^- ί (g3-
x—a x=0 y — b y = 0

Using the boundary conditions on f1, f2, g3, and g4, we find

ί fιdy+ j / 2 dy+ ί g"dx+ j g4^x
x = α JC = O y = b y = 0

^ j λφί(y)dy+ J 2φ2(3/)Jj;+ J φ3rfx+ J ώc
x=0 x=α y=0 y=b

(3.12)

again using the fact that 0 < λ < 1. Here, s denotes arclength on dR, and φ: 5 ^ ^ ^ +
is φ1 on the left side of R, φ2 on the right, φ 3 on the bottom and φ 4 on the top.
Equation (3.12) gives L1 bounds on the functions f1, f2, g3, g4 on the part of the
boundary of R opposite to that of the data.

The inequality (3.12) follows from mass conservation. We now return to
(3.7)—(3.10) and use momentum conservation in the form

(3.13)

Equation (3.13) shows that f1 +f2 is a function of y alone and g3 + g4 is a function
of x alone. Now, choose xe[0,α] arbitrarily and choose an interval /C[0, b].
Integrating (3.13a) over [0,x] x /, we find

(3.14)

=$l<Pl(y)+f2(0,y)¥y
I

^2 j φds, (3.15)
eR
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by (3.12). Let Γ be any positive constant. Since the left side of (3.14) is independent
of x, it follows that we can partition the interval [0,fr] by w + 1 points
0 = yo<yί< ,.,yn = b, also independent of x, in such a way that

~ψ, (3.16)

and n ̂  2Γ J φds + 1.

The same argument shows that the interval [0, a] can be partitioned by m + 1
points 0 = xo<xί< ... <xm = a such that for any

where m^2Γ J φds+1.

We now use these estimates to obtain pointwise bounds on fι. From (3.7), we
have

o

Next, we use (3.9) to estimate g3, and insert the result in this last inequality. We find

f\x, y) ύ V(3>) + λ J g4(σ, y)φ\σ)dσ
o

+ λ] ]g\σ,y)(pf2)(σ,τ)dτdσ. (3.18)

0 0

Let

K(x) =

We show that K(x) is bounded by a constant depending only on the data. In the
rest of the proof, we reserve the letter c to denote such a constant; c may have
different values in different formulas.

As λ<l, we have λφ1(y), λφ3^c. By (3.17), then,

Also, (3.14) shows that

λ]g4(σ,y)φ3(σ)dσ^c.
o

]f2(σ,τ)dτ^c for all σ.
o

We apply the definition of K and these estimates to the right side of (3.18) to find

(3.19)

Now, take Γ equal to this last constant c, and choose the partition in (3.17)
corresponding to this value of Γ. We see then that

if O^xgx,,
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and from (3.19), we conclude that

K

that is,

This is a bound for f1 on the rectangle [0, x j x [0, b]. Repeating the argument in
the rectangle [^i,x2]

 x [0, b], we find

( ) ^ , f o r 1 ^ ^ 2 ,

and, inductively, we prove

K(x)^2mΓ for O^x^α.

Since m depends only on Γ and Γ depends only on the data, the estimate on f1 is
complete. / 2 , g3, and g4 are estimated in a similar way. Schaefer's theorem thus
implies the result. •

4. The Main Result

A solution of the problem (1.1)—(1.4) is a fixed point of T. We show in this section
that such a fixed point exists.

Theorem 4.1. Let (φ\φ2)e{C°+[0,b]}2, (φ3,φ4)e{C°+[0,α]}2. Then, the problem
(1.1)-(1.4) has a solution f=(f\Λ/3,/4)e[C°+(£)]4.

Proof. Let h = (h1,h2,h3,h4') be the fixed point of T2 guaranteed by Lemma 3.3.
Then, we have

(h\h2)=TxTy(h\h2).

Set

(g\g*)=Ty(h\h2).

Then,

(h\h2)=Tx(g\g4).

Since T(f\f2J3J4) = (Tx(f3J4\ Ty{f\f2)\ as we saw in Lemma 3.1, the
function / = (hι, h2, g3, g4) is a fixed point of T and a solution of the problem. •
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