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Abstract. The new approach to string scattering proposed by the authors is
generalized to include multi-loop contributions. As an example, the planar
one-loop contribution, including its integration measure, to the open bosonic
string S-matrix is computed. The external state dependence for any multi-loop
contribution is computed and found to be determined by one group theoretic
function which is derived.

1. Introduction

In a recent paper [1], hereafter referred to as /, a new approach to string theory was
given. This method relies on the observation that the remarkable simplicity of
string scattering amplitudes is a consequence of duality, overlap conditions and
unitarity.

The principal character in this approach is the vertex which depends on the
moduli, the actual scattering amplitude being obtained by integrating over the
moduli with a suitable measure. By moduli we mean the external moduli, i.e.,
Koba-Nielsen co-ordinates [2] and the parameters associated with loops. As we
shall see these arise in connection with the duality properties of the vertex. In a
Feynman graph type of approach [3], which the method discussed here is not, the
latter parameters arise from the usual parametric form of the propagator used in
string theory [4]. While in the sum over Riemann surface approach [5], they arise
as the Teichmύller parameters [6, 7].

The duality property well known in string theory states that one can permute
the legs of an amplitude and the result is the same provided that one maintains
their cyclic order [8] at least for the case of the open string. In the approach
advocated here, the vertex can have its dependence on the external moduli cycled
by the application of appropriate conformal transformations on all its legs. There
also exists, for each loop, a cyclic transformation which leaves the vertex inert and
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corresponds to going around the given loop. In fact, the moduli of the vertex are
really the parameters of the cycling transformations which characterize the vertex.
A general conformal transformation when applied to the vertex will change the
values of the moduli on which the vertex depends. Indeed the behaviour under the
cycling transformations allows one to compute the specific conformal transforma-
tion which changes the moduli in a given way. Such a change can only be achieved
by a conformal transformation that contains constant terms or poles. This is
analogous to the procedure of boosts in the theory of induced representations, the
role of the little group being played by the transformations which leave the moduli
alone.

A convenient representation of the vertex is in an oscillator basis. In this case,
the conformal transformation is implemented by the Ln's, and one that changes the
moduli is a transformation which involves Ln, n^O, as well as Ln, n>0.

It is the knowledge of this moduli changing transformation and the enforce-
ment of unitarity that allows for a deduction of the measure with which the vertex
is integrated to yield the actual scattering amplitude. Demanding unitarity implies
that if physical external states are applied to the actual scattering vertex and only
one of which is spurious (L_n\Ω>n^ 1) then the result is zero. For physical states
Ln,n>l vanish and Lo = 1. Consequently, using an infinitesimal moduli changing
transformation one finds, after integration by parts, a relation between the
derivative of the measure with respect to the moduli and a known function of the
moduli. This computation of the measure was explicitly demonstrated for the case
of the open bosonic trees in I and the planar one-loop tadpole in [9] hereafter
called II. The reader will have realized that, as the approach is on-shell, no ghosts
can be used and indeed none are required to find the correct result.

An example of the overlap condition is provided by a relation which expresses
the momentum density on one leg in terms of its action on the other legs. The
cycling transformations, since they rotate the legs, place severe constraints on the
form of such identities and essentially determine them once their generic form is
known. Corresponding to the cycling transformations for a given loop, one can
find relations between, say, the momentum density on the same line but at different
points on the string. As the operators which occur in the overlap identities involve
both creation and annihilation operators, these identities lead to a very
straightforward derivation of the external dependence, i.e., oscillator and momen-
tum, of the vertex.

Overlap considerations outside string field theory have not been extensively
used before. In string field theory, the interaction is an overlap δ function, and as a
result, one finds overlap identities relating operators on different legs. In fact, these
identities provide the quickest way to derive the oscillator form of the string field
theory vertex. As is well known, one can map any open string light-cone diagram
into a region of the upper half plane by an analytic conformal mapping. By
applying this mapping to the light-cone overlap identities, one arrives at identities
for vertices defined on the upper half-plane. Since the upper half-plane is only
preserved by SL(2,R\ it is this group which plays the most important role.
Consequently, from the light-cone point of view, one sees that there always exist
string overlaps of the type required in this paper. From the old dual model
approach, this is also obvious, as both building blocks of a dual diagram, namely
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the Caneschi-Schwimmer-Veneziano vertex and the propagator satisfy overlap
identities involving SL(2,R) transformations. Hence the new results which we
derive in this paper can only agree with those that more standard oscillator algebra
would provide, if it could be carried through. Factorization could also be proved
directly within the framework of this paper, by examining the cycling transforma-
tions which arise when two lines are glued together and showing that these are
indeed the cycling transformations associated to the new graph (up to gauge
transformations on the external lines). Of course, it is our hope that the method
advocated here will provide not only a faster calculational tool, but also a firmer
conceptual base from which to understand string theory.

In Sect. 2 we give the general strategy for computing multi-loop contributions.
Section 3 proves the Qμ overlap condition for the open bosonic trees and
accumulates some of the techniques necessary for the multi-loop case. The one-
loop planar contribution to the S-matrix for the open bosonic string is derived in
Sect. 4 and the external dependence of the multi-loop is given in Sect. 5.

2. General Multi-Loop Strategy [1]

In I the assumptions required to find the string S-matrix were given within the
context of the open bosonic trees. It was apparent, however, that such a strategy
was also applicable to loop contributions to the S-matrix, and we now give the
generalizations required for loop contributions. The central object in our
consideration is a vertex V which depends on parameters zb ί=l,...,JV,
corresponding to the N external strings and sets of parameters vr9 r=l,...,M,
corresponding to the M loops. The number of parameters depends on the type of
strings being considered. For the open and closed bosonic strings, for example, the
zi are real and complex, respectively, and each vr denotes three real and three
complex parameters respectively for each loop.

The most useful representation of the vertex for current purposes is in the
oscillator basis, namely it will be of the generic form

The on-shell scattering amplitude is obtained by integrating the above vertex over
the parameters, i.e.,

W=indziγ\dvJ(zi,vr)V(zi,vr), (2.2)
i r

where the method also determines the function /.
The on-shell scattering amplitude follows from the assumptions.
Al) There exist cycling transformations associated with cycling the external

legs and going around each loop. The cycling of the external legs is achieved by

V(zu...,zmvr) Π (TMiy
1 = V(z2,...,zmzι,υr). (2.3)

k=l

The T's obey the equation

^ . . . 7 ^ = 1, (2.4)

and Tj is obtained from Tj_x by cycling its dependence on the z's.
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For each loop, the vertex satisfies a relation of the form

V(zp vr)Py = V{zp vr)9 n = 1,..., M. (2.5)

The Pf differ, for a given n, from line to line and this is labelled by the upper index.
As we shall see, the vn are in fact parameters of the conformal transformation Pι

n.
A 2) The vertex obeys overlap identities. The one corresponding to cycling the

external legs has the generic form

V(Zi,υr)\ Σ A^R^T^,... T^z))} =0, (2.6)

subject to one condition on the A?s which is of the form

N A (7\

-iTΫzT ^ ^

The yj are determined once the conformal weight of R is known.
For each loop we have an overlap identity of the form

V(Zi> Vr) ί Σ BinR ((PnT (Z)) i = 0 > ( 2 8 )

l m i

where the Bm are also subject to one condition

Σ-^y=0. (2.9)

A3) The theory is unitary.

Following the same arguments as in I one finds that
f (z) = S (T T z) f =1 f = (2 10)

and

p(i)(7\ _ C . (7\ ft 1 1 )
OWl v / — (Pι ) t n \ ) ? v /

where

Care must be taken to include only so many non-zero ^4's or B's that lead to
convergent expressions in z for some region of z. In practice this means that only
two of them are non-zero. For the conformal operator

Qμ(z)=- Σ 1 < z - " + αglnz+- δ

/ Γ , (2.13)
n= - oo n OCCQ

which has conformal dimension zero, the above overlaps are

V{Q^(z)-Q^(Tj...Ti + ί(z))} = 0; ί^i<j^N, (2.14)

and

} = 0 Vn,/c. (2.15)
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00

The corresponding identities for Pμ(z) = Σ 0Lnz~n a r e easily found by
n = — oo

computing the above S"s for d = 1. This result is in agreement with differentiating
the above identities with respect to z d/dz. The identities for Qμ(z) and Pμ(z), unlike
for L(z)= ΣLnz~n, do not involve normal ordering and so no constants occur in

n

the identities. However, L(z) is not, due to the central change, exactly an object of
weight 2, and we must add in constants whose values will be found below. As for
the tree case, one can find integrated identities. These have a particularly elegant
form and will be discussed later in this section.

Let us now consider the form of the cycling transformations in more detail. In
fact, the loop cycling transformations are simplest to discuss since they are just
arbitrary members of SL(2,R) for the open bosonic string. These may be
parametrized by three real parameters for each loop which can be chosen to be
their two fixed points a[ and βι

n and their multiplier ωι

n.
The external state cycling transformations, T's are also elements of SL(2, R) for

the open bosonic string, and we will take them to be given by

Tj=Z~Y~ΊΓ^—v ( 2 J 6 )

z ( l u j
where Uj_ίt j is the Chan variable between linesj and j — 1 computed by considering
not only the external points Zj but also all their images under the action of the loop
cycling transformations. Since the T's depend only on the cross-ratios of the z's,
the resulting expression will be SL(2, R) invariant.

It is instructive to rewrite Eq. (2.16) in the form

Tj = (Vjy1(Vj~1), (2.17)

where

\zj-i zj zj+i/

One then realizes that

TJ-.- .TJ+^ίF-O" 1 ^, (2.19)

and in particular if we define

then (2.20)

We were guided to the above cycling transformations by examining the Lovelace
[10] and Olive [11] vertex for open bosonic string scattering.

In fact the P's and T's are not all independent. Applying P\ to V and using
Eqs. (2.3) and (2.5) or equivalently using the Qμ overlaps of Eqs. (2.14) and (2.15),
we find that

Iterating this equation gives

Pn

j = (Tj...Ti+1)Pn

i{Tj...Ti + 1Γ
1. (2.21)
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Consequently, given Pn\ i.e.; the nth loop cycling transformation on leg i, we can
find it on all legs once the T's are specified. The most convenient way to express this
fact is to take P n

ι = (F ι )~ 1 P~ι{V% where Pn is arbitrary, and then we find

pnj = (yjyipn-±yj y/. (2.22)

The parameters required to label Pn can be taken to be the vn. Written in this way
we can see the interpretation of Pn. Let us write PnV

j = Vj+N+1 in the sense that the
points Zj are moved by the transformation Pn to their images zj+N+1. As a result,
the formula for Pj is of the same form as Eq. (2.19) except that it is between the
original points and their immediate images. The resulting transformation Pn

j is the
same even if we compute it by considering image points and points related to these
by Pn, as the transformations 7} only involve cross ratios.

Let us now count the number of parameters that occur in V. There are N real
zt 's and three M real parameters in the Pn's. However, the overall result is SL(2, R)
invariant, and so we may make three choices. An SL{2,R) transformation,
however, induces a similarity transformation on Pn (i.e., Pn-+SPnS~ι\ which
transforms the fixed points ocn-+Socn, βn->Sβn, but leaves the multiplier ωn inert (see
Appendix A). It is customary to choose zx = 1 and to choose the fixed points of one
of the loops, say 0 and oo. Consequently, we find that V depends on N + 3M — 3
real parameters. The case N = 0, M = 1 is special in the sense that we have two fixed
points which we may choose and one multiplier (one parameter) which cannot be
chosen. The fact that the number changes by three if we change M by one is in
accord with the trivial observation that changing M means adding three
propagators in the dual model graph and so in its parametric form adding three
extra parameters.

The above discussion generalizes to the closed bosonic string and superstring
by replacing SL(2, R) by SL(2, C) for the closed bosonic string and by prefacing
these groups with the word graded for the superstring. For the closed string, one
finds N + 3M — 3 complex parameters in V. The case JV = 0, M = 1 is again special
and one can only choose both the fixed points but not the multiplier, giving in all
one complex parameter. This of course agrees with the propagator count and also
the number of inequivalent complex structures on a Riemann surface.

The behaviour of the vertex under the SL(2, R) transformations given above
allows us also to find the effects of general conformal transformations which
change the parameters zr and υr. This is reminiscent of the method of induced
representations. Let us consider a general change in all the parameters which is
implemented by a conformal transformation,

V{zbv^V{zbv^\\Jί\ (2.23)
ί = l

The vertex V{z,ύr) must satisfy the appropriate cycling equations for t= T(z,vr)
and P = P(z,vr) in Eqs. (2.3) and (2.5). Consequently we find that

7 j + 1 - 1 j ί r i + 1 ? ; + 1 = Λ ί r i Vΐ (2.24)

and

(Pj) ~' JίΨj = Jil Vi, n. (2.25)
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If we take Mι to be an infinitesimal conformal transformation, i.e.,

Jίi{z) = z + £,fi{z), (2.26)

then the above equations become

Pn\z) + c/f(z) ̂  = Pn\z) + εtiPjz) (2.27)

and

i + 1 i ^ i + 1 i + 1 i + 1

at lowest order. It is clear from the above equation and in accord with previous
arguments that given fk(z) on the fcth leg which must satisfy (2.27) then all the other
fi's are determined by (2.28). The remaining Eqs. (2.27) for i = k are automatically
satisfied. For the infinitesimal case, Eq. (2.23) becomes

= V(zbvr) Σ U-8fk(z)^±+εCM\. (2.29)
k = l [ Z Z )

There also exist conformal transformations which do not change the moduli.
These are given in Eqs. (2.27) and (2.28) by setting T= f and P = P.

The above equations are used to compute the measure that occurs in Eq. (2.2).
This comes about because the /f(z) which shifts z{ or vr has a pole or constant on one
leg and is an analytic function which vanishes at z = 0 on all the other legs.
Translated in Lπ's this means on one leg that we have uf_2L_2 + a_ 1 L_ 1

00

+ Σ anLw while on the other legs we have only Lnn^0. Unitarity, however, tells
n = 0

us that one spurious state acting on the physical vertex F^does not couple on-shell
if all states are physical, and hence the terms α_ 2L_ 2 + α_ XL_ ι should vanish. This
relates a derivative of the vertex, and by integration by parts the measure, with
respect to the parameters (i.e. moduli) to a known function of the parameters. This
was used to find the measure for trees in I and a tadpole one-loop diagram in II. We
shall use this method in Sect. 4, for an arbitrary one-loop diagram. It is important
to realize that no mention of ghosts is required.

We now obtain the external state dependence of the vertex. On a given leg, say
leg j , we have loop cycling transformations Pn

J n = 1,..., M. These we take to form a
Schottky group (see Appendix B).

The points Zj j=\, ...,N for the external particles lie in the fundamental
domain of the Schottky group. Let us consider the quantity

v $ ^ ^ ) P μ t / ) ( ^ ) = 0, (2.30)

where ξj = O corresponds to the points z } and the function φj is to be discussed.
We may deform this contour around z7- so that it goes around the edge of the

fundamental region, i.e., around the 2M isometric circles and also around the other
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points zi i Φj. The validity of this contour distortion relies on the fact that φj(ξj)
only has poles at ξj = 0, that is, it can be written in the form

As for the case of the trees [1, 12, 13], one must use the Pμ overlap identities to
retain an expression which is still convergent as one moves across the complex
plane. However, Eq.(2.14) shows that this change of Pf{ξj) to Pμ

u+1\Tj+ίξj)
involves the factor Sτ + γ(ξ^) which is precisely the factor required to change the
integration variable from ξj to ξj+1. Consequently, we find that

= v\

+
M

Σ
1

dt
-f-

ΐ = l ξi =

C'n ζj
(2.32)

We now examine the conditions under which the last term vanishes. We recall that
Pn

j maps Cn to C'n and so if we change a variable, these two terms will cancel
provided

wy=^y. (2.33)
We therefore adopt this condition.

However, when performing the above contour integrals, we must beware of
any multi-valued behaviour of φj. Let us suppose that φj is not single-valued but
when going around a circle Cπ, and so C'n, it changes by a constant, c. We can
implement this by taking a cut between the circles Cn and Cn. The integration
contour shown in Fig. 1 is the one that actually results from the contour
deformation which lies around Cn and C'n. We may write this contribution as

ί -¥ Φ%) pμij%) + ί -¥ </>%•) pμU%)
ij c ζj

j) = c V{QμU)(A) - QμU\B)}

= 0. (2.34)

Fig.l
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However, A and B may be chosen so that they are related by the action of Pn

j and
then by Eq. (2.14) we obtain zero. We can summarize the result as:

α ξXo ξk

provided φj satisfies Eq. (2.33) and changes by a constant when its argument is
taken around any isometric circle.

To demand that φj be single-valued would require it to be an automorphic
function not only with respect to the group generated by the multi-loop cycling
transformations, Pn

j, but also by a rotation about the centres of the isometric
circles, and, in general, such functions with the desired pole structure do not exist.

Such a φj will be found in Sect. 4, for one-loop and in Sect. 5 for multi-loops.
Recalling Eq. (2.20), we find that Eq. (2.35) becomes

sf-U) oo N C oo 1

~+ Σ Kimaϊ>\fm+ Σ Σ ~r
yn m=ι k = \ U=i j/n

00 00

+ Σ Σ Em
m—1p=1

^ ^ ( 0 ) ] Λ α S ( k ) + Σ Ej
yn m = i

= 0. (2.36)

The vertex is then found to be

+ {aψ\ (F1) -

• F t r e e , (2.37)

where

E~ j _ ]/τηf J
n m

By F t r e e , we mean the expression which occurs for the corresponding tree graph,
once one replaces the tree external line cycling transformation by those
appropriate for the loop. This factorization comes about since the third and fifth
terms of Eq. (2.36) are of the same type as occurs for the tree graph which is
discussed in Sect. 3. We have yet to determine Jί1^ which requires the Qμ overlap.
This is done in Sect. 4 for one loop and Sect. 5 for the multi-loop case, where the
reader will also find more details of the above derivation for planar graphs.

Equation (2.37) is a very general result, holding for the open bosonic string
scatterings, for arbitrary number and type of physical external states. It will hold
for all planar and non-planar graphs and one may expect its generic form to
generalize to all string theories.
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3. The Qμ Overlap for Tree Graphs

In I the scattering vertex for on-shell bosonic trees [10, 11] was derived from the
overlap conditions. It will be instructive in what follows for loops to give an explicit
proof of the Qμ overlap. The structure of such an overlap implies that the vertex is
of the form of an exponential, namely in the notation of Appendix A it is of the
form

7 = < 1 0 | . . . < J V 0 | e x p -

(3.1)

We found [1] that the integrated Pμ identity immediately gave that

1Vj (3.2)

and

\MίJ) = \Γ(VίΓ1Vj(0)). (3.3)

We note that

Jgij = r(Jiij) ~ι Γ = Jίji. (3.4)

The Qμ overlap reads

V{Qμ{\z)-Q^\{Vjyι V\z))} = 09 ViJ. (3.5)

This equation is most easily analyzed by first considering the terms which do not
contain the zero modes and originate from the action of the non-zero modes in Qμ,

Vi- X (ak\Γ{VY1Vi\z)

1

) + (aj\Γ(Vjy1Viz){. (3.6)

Using Eq. (A.4) in the second term we find that these terms give

V{(aj\Γ(Vjyι Fffl-fαΊΓfFf1 Vj(0))}. (3.7)

The above terms are accounted for by the derivative with respect to momentum
(αg) in Qμ acting on the a%aμ

n terms in the vertex.
All the remaining terms from Eq. (3.5) are

V\-
l<k<N

-k*ι

1 <fc<JV

IΦ7

\ (3.8)
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where we can take Rkk = 0. Using Appendix A, one can carry out the following
manipulation:

l^k^N
kΦiorj

ak

o{(z\Γ(VT1Vk(0))-(z\Γ(Vi)-1VjΓ(0))
1 ^k^N
k Φ ί or j

+ (Γ(VjΓ1 V'φW)-1 V'(0))}. (3.9)

Consequently, the Qμ overlap now results in the expression,

V\-{z\Γ{Vrι H0)K + 4 4 J

+((vJrι v\z)\r(vjyι

k Φ ί or j

after using momentum conservation. To evaluate this expression one can write

One immediately finds that the z dependent terms drop and taking

= -lnΓ d'j I (3.12)

the expression reduces to zero. The αgαg piece agrees with that given in [4]. When
performing the above calculation, one encounters Rjί for j> ί which is defined by
being set equal to Rιj. For future use, we now summarize the result which is the
Olive-Lovelace vertex [10,11],

F = < 1 0 | . . . < N 0 | e x p -

+ (ai\Γ(Virι

(3.13)

The (F')'s are given in Eq. (2.18) and are discussed more fully in I for the tree case.
Clearly, the integrated Qμ overlap identity will determine the aι

oa
j

o piece. This
equation, however, contains lnz's which are integrated and one must take into
account the contributions of their cuts. A preliminary investigation indicates that,
taking into account momentum conservation, this method would work.
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4. One-Loop Planar Graphs

4.1. Cycling Transformations

We begin by computing the cycling transformation from the charges and their
images as shown in Fig. 2. The points 1 to N correspond to the external lines and so
zi = χi_ι . . .x 1 =jc / _ 1 . The remaining image charges are found by applying the
SL(2, R) transformation which may be taken to be simply multiplication by ω, that
is P(z) = ωz in the notation of Eq. (2.22). As explained in Sect. 2, the cycling
transformation is given by

Z~ί . (4.1)Tj=

where w7 - u is the Chan variable between the j — 1 t h a n d / h legs, namely

A straightforward computation shows that

where Vj is given in Eq. (2.18). One finds that

(4.2)

(4.3)

where

(4.4)

The case ί = l is given in the above formula by setting

1

The cycling transformation corresponding to the loop as seen from the kth line
is given by

Pn* = (Vk + N + 1Γ1Vk = (VkΓ1p-1Vk. (4.7)

One finds that

" v / [_z(\-ω) + ak(xk_ι-ω)-} y k'~

Again, the k=\ case is found by making the substitutions in Eq. (4.6).

N + 2 N + 1 3 2 1 0 -1

1 1 1 1 1
ω x Ί . . . x N . i

Fig. 2
i X N - I X T X N - 2

ω ω
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Although it would be perfectly correct to take the transformations above as the
cycling transformations, it is more convenient to carry out a gauge transformation
on them as discussed in II. We carry out on the kth leg the transformation
(α fc)

L°~Ll~1, and this results in changing

Vk^VkA^9 (4.9)

where

The effect of the transformation is most easily found by using the 2 x 2 matrix
multiplication rule for these transformations. There are two gauge transforma-
tions that yield a loop cycling transformation without a z in its denominator and
of the two we choose

«*=^ (4.11)

The resulting gauge transformed cycling transformations, using the same
symbols as before, are

P\z) = ωz+(~-C^ (4.12)

and

7}...7]+ 1(z)= — - 1 ~ f - / - i . » - ^ + z | x ' " " 1 | _ j _ (4.13)

or

The overlap identities for Qμ are given by substitution in Eqs. (2.14) and (2.15).
It is instructive to consider the product of the T's. Here there is a choice

depending on how one defines T1? one can choose either

Tί=Aί(V1)-1VNA^1 or Tί=Aί(V1y1V0A^1. (4.15)

In the first case, the product of the T's is obviously one while in the latter case

Since PN leaves the vertex inert it is irrelevant which choice one takes and we adopt
the former possibility. In what follows, we will often write VjAji as Vj.

4.2. The Measure

We now implement the strategy set out in Sect. 2. Let us first consider a general
variation of the xf's, and so ω which is given by ω = xN = xN... xi. Equation (2.27)
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which guarantees the correct loop cycling properties for the new vertex reads

/•/ x c 1 * ( 1 — ω ) _sωjk(z) = zoω— oω + -, oxk

4£rJ (4J7)

If we vary only xN by

δxN=—-, δω = ε and δxk = O, \^k<N, (4.18)
co

we find that

, fc=l,2,...,JV-l, (4.19)

—ω

Equation (2.28) which ensures the correct cycling of the external legs for a
general change xk->xk reads in this case,

(z-l)(l-xt)Ί Γ (\-xk) ( 1 --xJ Ί

- ^ + i ) J

(4.21)

Making the particular changes of Eq. (4.18) this equation becomes

Πz-ίUί-Xn.jl | ( z- l ) ( l -x j v _ 1 )x j v = / j v _ 1 (z)( l -x j v _ 1 )

L Xjv-iίl-xjv) J (ί-xN)2xN-x ω (ί-xN)xN-ί

and

R z ^ C l x ^ Ί _ (z1) J_ = /^(lx.y)

^ x^ l-x j J x^l-xjω x^ l-x j

The last equation can be derived from the one above it, due to the fact that the
product of the T's is 1.

The conformal transformations which leave the vertex inert are found by
setting δω and δxk to zero in Eq. (4.17) and xk = xk in Eq. (4.21). One solution is
given by

( ^ ) (4.25)
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which implies the equation

( i [ ^ ] ) ° (426

To find the conformal transformation Jl which induces the change in the
moduli of Eq. (4.18), we must solve the above equations for fk. Let us define

fk = etkh(tk), fc=l,...,ΛΓ-l, (4.27)

where

Substituting into Eqs. (4.19) and (4.20), we find that

~ +jk(t + lnω) = /fc(ί), k = 1,..., N, (4.30)

and demanding j to be a single valued function of z implies that

jk(t + 2πi)=jk(t). (4.31)

As a result, one such solution is

h = - Σ c?] Γ(ί - s?]) + ̂ k , (4.32)
ω i

where

ζ(t) = ζ(t)-—t,Yck

i = l,η = ζ{iπ), (4.33)
πi ί

sf) and d(k) are arbitrary and ζ is the Weierstrass C-function [14] with periods 2iπ
and lnω.

We now substitute Eqs. (4.27) and (4.28) into Eqs. (4.22) and (4.23). One finds
that

Xk\λ ~Xk+l

< t 3 4 )

Consequently, given ^(ί) we know all the other y'/s. Let us take

; 1 ( ί ) = ^ Γ ( ί - l n ( - ( l - x 1 ) ) ) s (4.35)
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then

( \ { ^ ^ ] \ k=\,...,N-\, (4.36)
Xk-k-1

ω \ L XN
(4.37)

Substituting these results in Eq. (2.29), we find

* N ^ _ τ / f Γ L(-]2 3 Iίi\ , - o , - o , 2 ω ^
ω dxN (|_(1—xx)

2ω 2ω (1 — xx) 2ω ω ( δω

] N 1 Γ rw

/c = 2 ω L (1-Xfe)

+ Γ(lnxfc_1)L(S) + ~XN .Lφ +(terms involving Ln;n^ 1)1.(4.38)

Here we have used the fact that

/ r) 1 \

(4.39)
ζ { ) ( ^ f ( ) ) 9

πi \ dω 12/

where

f(ω)= Π (l-ω") (4.40)
n = 1

The constant can be found by putting the vacuum state at zero momentum on the
right-hand side:

This is just the coefficient of the ^ ( 1 ) α ^ ( 1 ) term in the exponential which is found in
the next section. The result is

^ l n / ( ω ) + ^ l n ω . (4.42)
dω 2ω

We observe that any solution for / must involve a non-analytic function. This
is to be expected as we are changing the moduli.

We now compute the conformal transformation that changes the x's but leaves
ω = xn inert, that is we consider

^ = _ ^ ± i = f i . (4.43)
x xxk xk+l

Substituting in Eq. (4.17) we find that

(4.44)
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Substituting in Eq. (4.21), we find the relation between fi+ i and ft. It is simple to
show that a solution of this constraint and Eq. (4.44) is given by

ί-xj ( l-x t )
2 '

We have neglected the homogeneous solution as this just corresponds to a
conformal transformation that does not change the moduli. Consequently, we find
that

^ " \ ^ !£L*llΛ. ,446,
l-xk (ί-xk+ί)

We can now deduce the measure which occurs in the physical vertex

W=ί fldxJ(Xi)V(xd. (4.47)
i = 1

We have chosen to treat xn rather than ω as a fundamental variable. To put the
vertex on-shell we apply

p= γi pk7 where Pk= § —z^-v. (4.48)
fe=l z = 0 Z

Using Eq. (4.46) we find that

N

P

k + 1 )
1 —χk

Integrating by parts one finds that

(4.49)

X t ^ ~ X f c + 1 g ^ i l n ^ = Ϊ ^ Γ ~ Ί - % " (4'50)

Using Eq. (4.38), on the other hand, we find that

J i=\ [ω

1 1 N f _ _ T(k)

ΐ Σ k ( \ ) ζ ' ( \ )
Zω cok = 2

l̂nω+ 7 ^ ) } . (4.51)
2ω dω ω(\x)J)
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To evaluate this expression, we consider

N _ Tjk)

" ί Π d x J V — ^ ζ i r f

= -ί Π ̂ /( l-x^nΠln^-J + Γαnx,-!)}. (4.52)
i = l

As a result the terms summed from k = 2 to N vanish. The term with L(i\ is
processed by first using Eq. (4.26) and then using the argument in Eq. (4.52) but
with ζ replaced by 1. The net result is to replace L_ί/\ — xι by ( — 1). Putting all this
together and integrating by parts one finds that

/ ( / ) ^ [ / ( ) ( ω Γ 2 ] . (4.53)
ω oxn cω

It is straightforward to show that the unique solution to the first-order differential
equations (4.50) and (4.53) is

f=ίω2fD-2(ω)(\nω)D'2T1 ft jr^~γ ( 4 5 4 )

This concludes the demonstration of the measure. We note that taking iV=l we
gain agreement with the result found in II.

43. The External Dependence

We now apply the discussion of Sect. 2 to find the dependence of the vertex on the
oscillators and momenta of the external lines. A suitable representation of the
fundamental region of Pj is the region between the circles in Fig. 3. The reader is
encouraged to carry out the derivation of Eq. (2.25) for this one-loop case. The
function φj with the required properties is given by

(4.55)
y=ί

where [15]

and

lnx lnω
(4.56)

ΔUl ΔTll

Under x-+ωx one can show, using standard properties [14] of θ functions, that

>c, ω) = — xp(x, ω). (4.57)
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Fig. 3

Although under v->v + l, θγ is inert, the exponential prefactor changes and
consequently we find that

(4.58)

where

These are the required properties. This function also has the desired pole structure
as it can be written as

l V , z~n ( d\n

φJ(z)= + - —
n \ dy/

„!
y=ί

— I V F J 7m

Π m = 0
(4.59)

The second term is analytic due to the fact that 0t(v, τ) has only one zero, at v = 0, in
its fundamental domain. We observe that

>
In

" y

Ψ

-x "

fx\
-\yj x=l

v = 1

(4.60)

It is instructive to express Ejm in terms of a matrix which contains the group
operations Pn

J. One finds that

lnω 'n \ m
(4.61)

where

'•= Σ (PJf- (4.62)
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This is established along the same lines as in [16] where one uses the result

)2"] « (l-ω"x)(l-ω"/x)

and evaluates

Ί-x \-y

1-x,
= ln y-x

Ψ
1-x (I-)')

( 4 6 3 )

(4.64)

Using the right-hand side of Eq. (4.61), one notices that

m! dx
- — ) \nΩ{x9y)\x=y=1

(4.65)

(4.66)

and Ejm is unaffected.
Equipped with the required φ's we may evaluate the oscillator form of the

vertex as was done in Sect. 2 to arrive at Eq. (2.37). In this derivation, use was made
of the equation

is in agreement with Eq. (4.60). Clearly we may shift

lnΩ(x, y)^lnΩ(x9 y) + f(x) + f(y),

ι(Vi) = ΓlEJ(VJ)~ Vj (4.67)

which is straightforwardly proved by taking the form of E given in Eq. (4.61) and
realizing that

Vk = (Vj)"1 Vk0)k (4.68)

as a consequence of Eq. (2.21). The expression for F t r e e is given by Eq. (3.13) up to
substitution of the F's of Eq. (4.14).

We now use the overlap

V{Q\z)- Qj((Vjyx V\z))} = 0, ViJ, (4.69)

to find the a%a% piece. If we consider the F t r e e to contain the usual a%a% piece, then
the above equation becomes

k=l

00 (4.70)

where #̂ofco i s taken to be zero. We process the second term in a similar way to that
given in Eq. (3.9), and the above equation becomes

N

fc=l

=°
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To evaluate this expression we use the form of Ej of Eq. (4.60) and recognize that
we have a Taylor expansion in two variables apart from the zeroth terms which
must be added and subtracted by hand. Using in addition momentum conser-
vation we find that

fc=l I
fcΦ iorj

x i -i-ί,k.

Λ + {a'o + ai) lnx, _ ui, (4.71)

and so we conclude that

( ^ ) (4.72)
xj-ί,i

In the above, we have used the equations

for j>i,

( 4 7 3 )

for j<i.

The contribution of this type coming from F t r e e is

exp Σ α X l n , ( 1 ~ ^ - 1 - ί ) (4.74)

Combining these results and collecting the zero mode pieces we find the planar
one-loop vertex is given by

7=<10|...<N0|exp-{

+ (aί\Eί\(Vi)-1VJ(O))ai}+ £ {(

+ (a11 Γ( V1) ~1 V\0)) ai + a^Γi Vj) ~1 F;(0) | aj)}!

Π ίψ(xj-ι,i)Y 'Pl, (4.75)

where Eι is given in Eq. (4.61) and (F')" 1 Vj is in Eq. (4.72). This agrees with the
previously announced result of II. The actual planar amplitude is given by

ί Π TV, (4.76)
i = 1

where /is given in Eq. (4.54). For the previously known tachyonic case, we recover
the correct answer. The external momentum dependence [17] and the measure is
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N

in accord with the results of [18, 19]. Taking [] ξiμ^μ-\I >, with p^ξ^O, as our
i = 1

external state, we find the scattering of N photons which is discussed in [20].
In Appendix C, some non-planar one-loop graphs are calculated.

5. Further Multi-Loop Considerations

Let us continue the derivation of the external state dependence of an arbitrary loop
graph given in Sect. 2. We must first find a function φj such that

φj(Pn

jz) = φ>'(z); φj(Λiz) = φ\z) + c, (5.1)

where c is a constant.
In Appendix B, we encountered the function φ(z, z) which is inert under the An

cycles (An is a rotation by 2π about the centre of Cn) but transforms according to
Eq. (B.6) under Pn\ which are to be identified with Rn. One can imagine taking the
derivatives of φ(z, z') with respect to z' at z' = 0. This function would be inert under
Pj were it not for the vn(z') term. We have, however, at our disposal the object vn(z)
which transforms according to Eqs. (B.5) and (B.3), and thus we can construct the
object

- i Σ {vj

r{z')-vi{z)){τ'ιγr{υi{z')-υi{z))
r,s=ί

= lnzJ'(z,z') (5-2)

We note that this object transforms as

\nχ\Pjz, z') - In Hz, z') = l n ^ z + d{), (5.3)

In χ\Ajz, z') - \nχ\z, z') = 2π\τ ~\n- 2πi(v{(z) -v{{z')) (τ ~\\ (5.4)

and as a result if we define

(^j\z,z')\z/ = 0, (5.5)

we have a function that transforms according to Eq. (5.1).
It will be clear that the final answer is independent of the value of the constant c

under an An cycle. Up to this ambiguity, φj is unique as the difference of two of
them is AN and BN periodic and analytic in the fundamental domain.

This function also has the desired pole structure for

n H z ' z ' ) L ' = o ( 5 6 )

and χι(z, z') is an analytic function of z and z'. This follows from the fact that Tγ

j(z)
lies within the circle corresponding to the leftmost factor occurring in Tγ

j; as a
result, a factor like (Ty

j(z) — zf) can never vanish if z and z' belong to the
fundamental region. As a result, In {(z — z')/φJ(z\ z)} is the analytic function of z and
z\ The same argument applies to vr(z) since ar and βr lie in Cr and C'r and £ r
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explicitly excludes a Tj~ι with a leftmost factor that is Tj. As a result

We observe that the replacement

\nχ\z, z')^\nχ\z, z') + f(z') + /(z) (5.8)

does not affect £ w

7

m n,m + 0. It does change £ n o and £ 0 0 , but from momentum
conservation this drops out of Eq. (2.30); the index zero, here, meaning no
derivative at all.

Using Eq. (A. 12), we find that

(5.9)

Similarly, one finds that

y
yΦJ

(5.10)

where g is a function of z or z' alone.
The period matrix can also be expressed in terms of the fixed points:

iK^OvCI/^-l^ + ̂ lnω.}. (5.11)

It is straightforward to show that if we define the infinite dimensional matrix

~~ y §yr rτH\βj)—la-7)))
r,s\γ ) n

- M K W ' Γ 1 } , (5.12)

where

^j=ΣTy

j

9 (5.13)
y

then

(zI£J1z') = Inχ(z,z') + {a function of z or z' alone}, (5.14)

which establishes that

(5.15)

The loop-cycling transformations for different lines are related by Eq. (2.21), and
hence

(5.16)
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The period matrix, being a cross-ratio, is independent of j as the lack of such an
index anticipated.

It is easily shown from Eq. (5.12) that

(Ej( Vj) ~ 1 Vk) = E\ Vk)'ι Vj. (5.17)

This completes all the additional steps required in order to establish Eq. (2.35).
To find the aι

oa
j

o piece we consider the Qμ overlap:

0= V{Q^(z)-Q^\{VJyι V\z))}. (5.18)

This proceeds as for the planar one-loop case. We consider V to contain F t r e e of
Eq. (3.13) with the appropriate Vbs and this takes care of the a% In terms in Qμ. We
are left with

(5.19)

Using similar manipulations to those in Eq. (3.9) we find that

0=V Σ U{((Vj)-lVk(0)\&\(Vt)-1 V\0))-J!%o + Mo} • (5.20)

Equation (5.7) allows us to rewrite the parts of this equation which do not contain
vr

9s as

(vJrιvk(Q)
\% 0)J ΦWT' V\0\ 0)

U- (5.21)

We note, however, that the first term in brackets can be written as

_ {τy\vrvχ
2 y (TΛ VJ) ~ι V\0) -

7*1

' '

since the terms in the first line are a cross-ratio and T/ obeys Eq. (5.16). Applying a
similar argument to the vr piece we find that

irj/0 = inχWTι V\0), 0). (5.23)
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We summarize the result. The M-loop string scattering vertex for N external
arbitrary excited states is given by

Γ N

F=<10|...<JV0|exp- Σ { i^ l^FO^FV)
Lθ7=i

+ a[)((VjΓιVi(O)\V\aJ)}

+ Σ ύailnχtVT'ViOlOU-V^, (5.24)

where

χJ is given in Eq. (5.2). We observe that the entire external state dependence is
controlled by one function χ. The a^a^ piece is in generic agreement with [6, 21]
and the two-loop case treated in [22] for the closed string.

To find the result for a particular diagram one must deduce the cycling
transformations according to the discussion of Sect. 2. For the planar case we may
use the SL(2, R) invariance to fix the point z1 = 1 and choose the two fixed points of
the one-loop cycling transformation to be 0 and oo. Hence the 7} are as for the one-
loop case which are given in Eq. (4.14), the Px

j are as in Eq. (4.12), and the Pn,n^l
are arbitrary. The external state dependence for a tadpole diagram agrees after use
of Eq. (5.12) with [23]. It only remains to compute the measure for the multi-loop
case. This will be done elsewhere; however, we can already see its major features.
One of the most important terms comes from the constant Cκ of Eq. (2.29), which
is proportional to Ef1.

6. Conclusions

We have derived, following the new approach given in I, the one-loop planar
contribution including the integration measure for the scattering of N arbitrarily
excited string states. We have also found the external state dependence for any
contribution in terms of one group theoretic function.

The method of I can also be applied to superstrings, and the resulting
computation beginning with the tree diagrams will be reported elsewhere [24].

Although the method does not require ghost fields even for the computation of
the measure, all the techniques used here could be extended to include them as
indeed has already been carried out for some vertices [13, 25]. In this case the
measure should emerge as a result of demanding that Q rather than Ln vanish on
external legs when all states are physical.

The ease with which one can compute each perturbative effect leads one to
hope that one can sum perturbation theory. Another approach to this would be to
identify the associated "cycling transformations" for the summed result and
deduce it directly. In gauge covariant string field theory [26], as in any Lagrangian
field theory, there is a concrete procedure to compute non-perturbative effects. It
would therefore be of interest to be able to translate back and forth between these
methods and hopefully learn how non-perturbative methods look in the new
approach.
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At first sight, the need to add several contributions, i.e., planar non-planar, etc.,
to find the <S-matrix for the open bosonic string may seem an undesirable feature.
However, these various contributions have vertices which are analytic continu-
ations of each other and so can be written as one term only. With a better
understanding of the cycling transformations, this would probably occur natu-
rally. It still remains to be investigated what are the most general classes of allowed
cycling transformations. The loop cycling transformations are arbitrary. The
external cycling transformations must themselves cycle into each other, their
product multiply to one, lead to an SL(2, R) result, i.e., be functions of cross-ratios,
and lead to factorizable amplitudes. Further, we can alter them by an external
gauge transformation involving Lo — 1 and Lί. It would seem likely that the ones
we in fact use can always be obtained from an arbitrary SL(25 R) transformation
when subject to the above constraints.

The method studied in this series of papers would seem to provide a quick
calculational tool. It also has the advantage that it carries what would seem to be
the minimum amount of baggage required to satisfactorily define string theory. To
illustrate this point we note that in both gauge covariant string theory and the
Polyakov approach, one is forced, almost at the outset, at the classical level to set
D = 26. However, one knows that in fact there is no unitarity problem with tree
graphs, and the problem first occurs at the one-loop level where one encounters
cuts and not poles, when one factorizes if D = 26. This leads one to hope that the
new method can be generalized to define new string theories such as Liouville
string theories. One could also consider changing some of the group theory, such
as changing SL(2, R) by other subgroups of the conformal group, in particular
SL(2, Z) may be of interest for number theory considerations. It is interesting to
observe that the method does not involve any use of a space-time metric. Clearly, it
is not involved in the cycling transformations or in demanding unitarity; and
although, the overlap identities involve μ indices they are not contracted. Of
course, when one adopts the oscillator basis representation of the vertex in
Minkowski space, the metric appears, but this is only a representation. In fact, the
appearance of the Minkowski metric can be traced to its occurrence in the
commutation relation of two oscillators.

The above speculation relates to a further point. Perhaps one of the most
remarkable and little understood results is the vertex operator construction [27]
of Lie groups. This feature is easy to see from the point of view of oscillator vertices,
but is far from apparent from the point of view of overlap δ functions. This suggests
that string theory may be best formulated in an algebraic manner. At least to these
authors, one of the more attractive features of string theory is that it is beginning to
look, especially within the approach studied here, that one can find a theory of
physics in which a space-time manifold is not one of its prerequisites, but is,
hopefully, a macroscopic effect.

Appendix A

Here we summarize for the convenience of the reader some of the group theory
conventions described in the early literature [4] and heavily used in this paper.
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Consider a transformation of the form:

If the parameters are real it belongs to SL(2, R) and if complex to SL(2, C). We can
define the infinite-dimensional matrix associated with this transformation by:

ΓTίzϊΓ °° zm | Π 0 ) T
^V^= Σ Tm-= + ̂ -ψ-. (A.2)

l/n m=i |/m j/n

If we define the infinite component column vector

(A.3)
l/2 ]fn

then Eq. (A.2) can be written:

| 7 z ) = 7 » + |Γ(0)), (A.4)

where the obvious matrix multiplication is assumed. The transformation Γ is
defined by *

Γ(z)=-. (A.5)

It will be more convenient when discussing vertices to use oscillators αJJ, α£ + ,
n ̂  1 which commute to 1 rather than n. That is

, . (A.6)

In this notation

The shorthand

(aι\T\aj) (A.8)

is taken to mean

00 00

Σ Σ atJnm<- (A.9)
0 = 1 m = 1

It can be shown that

where T is the infinite matrix

T=ΓT~ίΓ. (A.ll)

A useful identity is given by

(z1\z2)=-\n(l-z1z2). (A.12)
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As is well known the same Sl/(1,1) transformation on all the points zuz2,z3,z4_
leaves invariant the quantity called the cross ratio,

(7 7-7 7 ) ~ (Z1~Z^ ( Z 2 ~ Z 4 )

(zuz2,z3,z4)- 7 y (A.I 3)
x — z4) \z2 z3)

A transformation of the form of Eq. (A.I) can have two, one, or only in the case
of the identity, an infinite number of fixed points. In the case of two fixed points, it
can be written in the form [27]

T(z)-a _ (z-oc)
ω ( A 1 4 )

The fixed points α and β and the multiplier ω can be used to label the
transformation. As an example of the use of the invariance of the cross ratio we
show that T' = STS~1 has the same multiplier as T. Clearly the fixed points of V
are S(oc) and S(β). Then we see that

(T'(z)-s(*))(z-s(β)) = /=(T(s-1(z))-α)(5-1(z)-j8)==

(T'(z)-s(β))(z-s(a)) ω (T(s-1(z))-β)(s-ί(z)-ot) ω

The isometric circle associated with T(z) of Eq. (A.I) is given by

\ = ad — be,

and this is the unique place where infinitesimal lengths are preserved by the action
of T(z).

Appendix B

Consider 2M circles Cn and Cn which are external to each other and let Rn be the
SL(2, C) transformation that takes Cn to C'n in such a way that the region exterior to
Cn is taken into the interior of Cn (see Fig. 4). The group generated by the Rn is
called a Schottky group, Gs [28, 29]. In fact the circles Cn and Cn are nothing but
the isometric circles of Rn and R~ι respectively. It is straightforward to show that
since the 7J,'s have multipliers ω such that |ω| Φ1, the two fixed points of Rn are such
that one lies in each of the circles Cn and C'n. The fundamental region for such a
group is the region exterior to all the 2M circles. For the case of closed strings the
2M circles lie anywhere in the complex plane, but for the open string the R^s
belong to SL(2, R), so the circles lie with their diameters on the real axis. A further
discussion of such groups can be found in [21,28, and 29]. The relation of Schottky
groups to Riemann surfaces is to simply identify the circles Cn and Cn. This point is
discussed in [6]. We now introduce some functions which are characterized by Rn

and which will be used to construct the multi-loop function φK
The first Abelian differentials are given by
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Fig. 4

where Σ" means sum over all element of Gs except those that have a factor Rn or
y

R~1 to the left. Another function of interest is given by

y Φ J

where φ(z,z') is essentially the prime form [30].
It is straightforward to show (see for example [21]) that

where

y (^n-Tγβm)(βn-Tγam)

(B.3)

(B.4)

and £" ' m means a sum over all elements of Gs excluding those that have a Rm or
y

R~ι on the right and a Rn and R~ί factor on the left.
As τnm is a cross-ratio it is a symmetric matrix and is called the period matrix.

We also note that
, (B.5)

where Λm corresponds to a rotation by 2π about the centre of the isometric circle

Finally, one can show that [29, 21]

and

φ(Rnz, z') - φ(z, z') = - υn{z) + vn(z') ~^ + ~- In fez + dn), (B.6)

(B.7)

We have adopted a pedestrian approach to the above group theoretic
functions, as it allows a simple derivation of the identities we require. The reader
who has a taste for a more sophisticated language should have no difficulty in
translating the above discussion.
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Appendix C

In this appendix we consider the cycling transformations and measures of two
non-planar one loop graphs, beginning with the non-orientable tadpole graph. We
choose zx = 1 and P to have fixed points 0 and oo the multiplier is — ω, 0 ̂  ω rg 1.
The z's are shown in Fig. 5 a.

One finds (Λ , i\ ίΛ χ 2\
P f - W i ' 2 r 1 r 1 M - z ( 1 ~ ω + ω ) ~ ( 1 + ω ) ίCU

zω
— ω+ j

1 + ω 2

Carrying out a gauge transformation with α = (l H-ω2)"1, we obtain

(C.2)( ) ( ) τ

1 —ω

Following the discussion in Sect. 2 we find that the measure is

f J J ί Lf ( c 3 )
J ω1 (1 -ω2) [/(-ω)]D ' 2 (lnωf2' l J

The external state dependence is given by (5.24) and is in accord with refs. [16 and
23].

Consider now the non-planar, but orientable self-energy. With zx = 0 and P
with fixed points at 0 and oo and multiplier ω, 0 5Ξ ω ̂  1, the z's are found in Fig. 5 b.

One finds that 2

^ \ z ) = ( V 1 y 1 ω - ι V 1 ( z ) = „ , ! , (C.4)
and zω-(l+ω)

Carrying out the gauge transformation α = (1 + ω)~ι on both legs one and two, one
finds that the above cycling transformations become

(C.6)

z)' ( C 7 )

where
x^x" 1. (C.8)

The measure comes out to be

/ = [ω2fD ~ 2{ω) [In ω ] D / 2 (1 - ώj] " 1 . (C.9)

The external state dependence is given by (5.24) and it agrees with [16, 23].
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