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Abstract. We establish bounds uniform in the ultraviolet cutoff (i.e., in the
number of degrees of freedom) for a family of two-dimensional Wess-Zumino
models. These estimates are useful in proving existence of the models, as well as
in investigating their properties. For example, we require these estimates for
the analysis of the supercharge and of the Hamiltonian. These are the
fundamental a priori estimates for elliptic regularity in infinite dimensions.

I. Introduction

In this paper we establish the fundamental, elliptic a priori estimates required for
our analysis of two-dimensional Wess-Zumino models on a cylinder [1,2]. These
estimates are required for the construction of the models, as well as for the study of
their detailed properties. We study the N = 2 models in this paper as defined in
[1, 2]. We follow the notation introduced in [1, 2]. These models are defined on
the loop space of functions φ: Γ 1 ->C

The estimates here provide the first steps toward developing an analytic theory
of Dirac operators on infinite dimensional manifolds. The extensions of these
estimates to the N = 1 and other frameworks, as well as to more general target
spaces, are interesting questions under investigation.

We use the Feynman-Kac representations of [1, 2]. Our estimates generalize
the methods used in the construction of the Y2 and P(φ)2 field theory models [3, 4].
The work here reduced the analysis of the models we study to standard estimates
developed in Chap. 8 of [3]. Thus constructive field theory provides a suitable
framework for this set of problems in infinite dimensional analysis.

It is useful to estimate operator norms of the heat kernel exp(-βH) using
Schatten class norms || ||p defined by the lp summability of the characteristic
values. Thus if λi are the eigenvalues of (T*T)1/2, the Ip norm is
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The 12 or Hilbert-Schmidt norm is especially useful. The advantage of this estimate
is that it automatically takes into account the dependence on both fermionic and
bosonic states. A further advantage is the structure of the Feynman-Kac
representations for the Hilbert-Schmidt norms; they all involve Lx norms on path
space of functions of the basic form

det 3 (l-X)exp(-j/),

that have occurred already in many contexts. The fact that Ip operator norms
reduce to Lί function-space estimates is essential for the preservation of the
regularity properties which involve cancellations of local singularities. After such
cancellations we can (and do) use Lp estimates on path space.

It is convenient to rewrite certain functions of the bosonic field Φ as Wick-
ordered expressions, since on a 2-cylinder the Wick-ordered polynomials have well
understood regularity properties, see [3]. Let us mention here a general form of
Wick's theorem for complex fields. This identity can be regarded as a definition of
Wick monomials. This definition extends by linearity to polynomial functions of
Φ, and when convergent to limits of polynomials. The general algebraic structure is
summarized by the identity:

Wick's Theorem. For F a function of Φ and Φ*,

:F(Φ,Φ*):c = exp(-3Cδ)F(Φ,Φ*), (1)

where

The inverse to (1) is the transformation

F(Φ, Φ*) = Qxp(dCd) :F(Φ, Φ*): c . (3)

We note that corresponding identities also hold for real fields and have the
form

:F(Φ):c = exp(-iz l c )F(Φ) (4)

with inverse

F(Φ) = exp(|zl c):F(Φ): c,

where in this case

In the following we suppress the subscript C. In estimating Gaussian integrals with
respect to a measure dμc we perform Wick ordering with respect to the covariance
C.

A second basic property that we use is hypercontractivity of the Gaussian path
space measure dμc, where C is one of the covariance functions below. If R is a
polynomial in Φ of degree ^ n, then for p ̂  2, the following hypercontractivity
bound holds:
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Here, and elsewhere, Lp will denote path space norms. The case n = 1 reduces
estimates on moments of the measure dμc to Gaussian type estimates on the
second moment. More generally, for any polynomial R of degree n in Φ,

J | ^ | 2 ^ μ c ^ ( 2 p - l Γ | | ^ | | ^ . (6)

See Nelson [5] for a discussion of this bound. To establish the bound in our model,
we view the complex field Φ = Re Φ + i Im Φ as a two-component real field (Φ1? Φ2)
= (ReΦ,ImΦ) and appeal to the general theorem. The hypercontractivity
estimates could be replaced in our proofs by other explicit estimates on "Feynman
graphs."

II. Proof of the 7Vτ Estimate (Generalized Garding Inequality)

The goal of this section is to prove a uniform estimate on the Hilbert-Schmidt
norm of the heat kernel for Hτ(κ), with τ < 1 and with ζ sufficiently small. We fix τ
and ζ in these estimates.

Theorem ILL Let β > 0 , 0 ^ τ < l and letζ^O be sufficiently small. Then there exists
a constant C = C(τ, ζ,β)<co (and independent of K) such that for all K ̂  0,

(7)

It follows from (7) that -Hτ{κ)Sβ~ι logC, since the Hilbert-Schmidt norm
dominates the operator norm of the heat kernel. This establishes Theorem III.l of
[2].

We use Lemma VI.4 and Proposition VI.8 of [2] to write

i l j 2 / I(Φ). (8)

We first establish the existence of the Lp convergence of the integrand as κ-> oo.
Let

3i:lβ = IA\%Φ) + TvKΐXβ(Φ) + iTrKft,(Φ)2] . (9)

Proposition II.2. (i) Let β>0, 0 ^ τ < l , and l^p<oo. Then the limit

exists in Lp{dμCτlβ).
(ii) The limiting action has the form

β

+ δk J (<92P(Φ)* + 32P(Φ))dx+ \ ak J :\dk+1P(Φ)\2:dx
T2 k=ί T2

+ "χ J dk+1P(Φ(x))*Mk(x-y)dk+1P(Φ(y))dxdy, (10)
k=X T2

where ock are constants independent of χ, where Mk are functions independent of χ,
and where MkeL1 +ε(T2) for some ε>0. Here ock, δk9 and Mk depend on τ, /, and β.
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Proof. We establish here that J S ^ \ β has a representation of the form (10), and that
the bounds on the corresponding cutoff coefficients δ£\ ock

κ\ and Mk

κ) are uniform
in K and convergent as κ-»oo. Note that Wick polynomials of the form (10) are
Lp(dμCτ ι β) for l^/?<oo, as follows by standard constructive field theory
estimates, see Chap. 8 of [3]. The L^ convergence as κ;->oo then follows by the
convergence of χκ, of ak

κ) and of Mk

κ\ The proposition therefore follows by
establishing such bounds on δ, α, and M.

Using Wick's theorem, where we Wick order Afy with respect to the
(τ-dependent) covariance CXtUβ,

A\κ)

β(Φ)= J (:mΦ dP{Φκ)* + mΦ* dP(Φκ) + \dP(Φκ)\2:)dx

J (md2P(Φκ)* + md2P(Φκ))dx
2T2

+ Σh(<%U°)ΐ ί •\dk+1P(Φκ)\2:dx, (11)
k=ιkl τ2

where C% β(x) = (χκ * Cτ? lt β) (x), and where C\% β(x) = χκ * Cτ? u β * χκ(x). The second
and third terms on the right-hand side of (11) are singular in the limit κ=co,
because Cτ*]fβ(0) and C^)j/8(0) are O(log/c), for K large.

The singularities of the second term on the right-hand side of (11) and
Tx(K{*}β(Φ)) cancel. The remainder is the second term on the right-hand side of
(10). The coefficient δk can be given in closed form as

where δf] is just the difference $Ύτ{S{κ\0)-Siκ\0)) of the regularized Green's
function for 0 between boundary conditions which are periodic and antiperiodic in
time. The δk is exponentially small in the length / of the circle T 1 . Note that for
boundary conditions which are periodic in time (rather than the antiperiodic
conditions here) the cancellation between the second term in (11) and Tτ(Kτ*\tβ(Φ))
would be exact, i.e., δ[κ) = δk = 0. These boundary conditions enter estimates on the
super (graded) trace. The same exact cancellation occurs for free boundary
conditions in the time (i.e., for the vacuum functional, rather than the trace state).

The main fact about the cancellations is that

has the form of the last terms in (10). In other words, the cancellation of^TτK2 in
the sum (12) can be controlled. The cancellation of the logarithmic divergences
takes place in such a fashion that the finite remainder terms are independent of the
cutoff function χ.

An explicit computation shows that the singularities of \ΎτKx

κ}tβ(Φ)2 are
contained in:

1 n~2 1

(13)
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where

(14)

The difference between (13) and %Tτ{K(*lβ)
2 has the form of the last term in (10).

Next we write P(Φκ(y)) = P(Φκ(x)) + {P(Φκ(y))-P(Φκ(x))}. We extract the
singular part of (13),

\ "l i ί ί <%Uxfσ%Λx)dx\ J :\δk+2P(Φκ(x))\2:dx, (15)

the remainder having the limit of the required form. In fact the remainder has the
form

i Y A ί {C(?Xβ{x-ytσ*Xβ{x-y)-D*lβδ(x-y)}
I k=0 Λ ! 7-2x7-2

:dk + 2P{Φκ(xψ dk+2P(Φκ(y)):dxdy, (16)

where

D(«lβ= ί C«iβ(xfσ«lβ(x)dx.
T2

Let H{κ\p) denote the Fourier transform of C{*}β(x — y)kσ^uβ(x — y). The Fourier
transform of the expression in (16) in brackets is H(K\p) — H(K)(0). The function
H{κ\p) diverges as a power of log K as κ;-> oo. It follows that the subtracted integral
is convergent, uniformly in K. The limit

exists and is independent of χ. Furthermore Hτen(p) is a bounded function of/?, and
hence its Fourier transform M(x — y) is the kernel of a bounded operator. The
singularity of this kernel on the diagonal is improved by the subtraction. It is
O(r ~2+ε) for some ε > 0, rather than O(r ~ 2(logr)k). Hence M(x — y) is L1 + ε for some
ε > 0 and (16) has the form required by the lemma.

Let us return now to the singular expression in the bosonic action (15) which
cancels the final term in (11). We assert that for some ε>0, and for each
k=l,2, ...,n— 1 there exists a constant ak independent of the cutoff χ such that as
κ;—•oo,

\\ C^φf-ι σ^lβ(x)dx + C^lβ(0)k = akkl + O(κ~ε). (17)

Given this bound, the sum of (16) and the final term in (11) has the κ->oo limit

k=l T2

as claimed in (10).
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We illustrate the proof of (17) by a calculation which shows the important
features of the cancellation: the reasons that the first term has a coefficient fc/2, and
the cutoff independence of the limit. We explain the case ζ = 0 and use continuum
propagators in order to clarify the algebraic aspects of the cancellation and the
regularity of the /c-> oo limit. We do not discuss the term proportional to m2 (which
gives rise to an absolutely convergent integral) nor the term involving Xκ(Pι +<h)
— χ(Pi) which can be bounded by O(κ~1+ε)). We then have

Therefore

^ j Oκ\xf ~ι σ(κ\x) dx

= {2n)-2k\Π{p)

fc-1

kpϊ~kpk Σ Pj
^ +1

- Σ Pj) +™
l /

(18)

where ck is the constant arising from the suppressed m2 term and is independent of
χ. Also

Using the symmetries of the integral we find that (18) is equal to

Σ^

Since the above integral converges absolutely, the claim follows. This completes
the proof of the proposition.

We set

Kτ^β(Φ)(x,y) = Sτ^β(x-y)Λ + d2P(Φ(y)) + l^β(x-y)A_d2P(Φ(yψ (19)

We use the Sobolev space jTα(T2) = Jfα(T2)φJfα(T2), where Jfα is the Sobolev
space of order α over T2. We always regard K = Kτ Λ β(Φ) as a map ^ i / 2 - ^ i / 2 (If
K is considered as a map K: JΓ0->Jf0, and n ̂  2, then there is no p < oo for which
K e 7̂ .) For instance, if we let K + denote the adj oint of K on Jf0, then J (K+K)2 dμc

has a singularity on the diagonal of order (log\x — y\)n~ι. On the other hand, as an
operator on JΓ1/2,

and

is trace class.
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Lemma II.3. As an operator on JΓ1/25 KτΛβ(Φ) e / 3 for almost all Φ, with respect to
dμCτ χ β. Moreover,

\\\K^β(Φ)-~K«Xβ(Φ)V,dμCτlβ-*O, as K^CO, (20)

for all 1 ί£p<<x>.

Proof. For ε>0,

|| K || I = Tr((K*K)3'2) = Tr({K*K)1/2 Cf2

β(C^/2K*K))

To prove that Kel3 for almost all Φ it is sufficient to show that for some ε>0,

We separate the contributions from the two terms on the right-hand side of (19).
The contribution to J\ from the first term is bounded by

J3 = 2 f Cl^%x-y)Ίv(^β(y-x))^β(y-x)dxdy,

T2xT2

where

&rjtP(y-x)= ί Λ + S*Uίjμ-y)(-A+m2)V2Sτtltβ(u-x)du9

T2

^l2ι!β(y-x)= \82P(Φ{y))* δP(Φ(x))dμCτJΦ).

Since C ; %
2 + c (x)^0(l)W" 1 + 2 ε, \9τιlJx)\ZO(ί)\x\-\ and

for | x | < l , it follows that the integral J3 exists. The contribution from the
second term in (19) is dealt with similarly.

The contribution to J 2 from the first term in (19) is bounded by

J 4 = 8 J
( Γ 2 ) 4

V x i> X2> X3> x^)dxι... dx4,

where

Jffiβ(xu ..., x4) = ί ̂ PiΦix,)) d2P(Φ(x2ψ d2P(Φ(x3)) d2P(Φ(x4ψ dμCτlβ{Φ).

Since the singularities of 3^τ\V,β a r e logarithmic where points coincide, it follows
that the integrand in J 4 is integrable and J 4 exists.

To prove (20) we notice that by means of Holder's inequality or the
hypercontractivity bound we reduce it to p = 3. The proof follows by estimates
similar to the ones above with Kτtlfβ replaced by Kτhβ — K^lβ.

We conclude from the previous two lemmas that

F τ ? ^(Φ) = e x p ( - < ί , / ? ( Φ ) ) d e t 3 ( / - K τ , ^ ( Φ ) ) (21)

is a random variable.
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The integrability oϊFτJiβ depends crucially on properties of K = Kτlβ(Φ) and
of the determinant in (21). We set sί = SίτXβ and define (following [4])

L=(I-K*)(I-K)-I= -K-K* + K*K, (22)

and

W=stf + i\\K\\i-Tv(K2K*)-iReTrL3. (23)

Proposition II.4. The function W is real and

^ 1 / 2 e - ^ . (24)

Proof. We derive the above identity for regularized K, after which we may pass to
the K = oo limit. To study the question we write S = (D + m) C, where

V

is the Euclidean Dirac operator. With y5 = iy^yE = ί ,,

It is convenient, as an intermediate step, to regularize C, replacing C by C(κ'\ With
these definitions, and d2P = u + iv with w and v real functions of Φ,

With this representation, it is clear that TrK = 2mTr(Cu) is real. Here we have
evaluated the trace over the spinor indices, using Ύryμ = Ύvy5=0. A straightfor-
ward computation, using Tr(yμ75) = 0, etc., yields reality of Tr(K2) after taking the
trace over the spinor indices. Therefore

= det3 (/ + L) exp( - \ Tr(K*XX*K) + 2 Re Tr (K2K*)).

Hence W is real. Now (24) follows as an algebraic identity.

Proposition Π.5. (i) FτlβεLp{dμCτ ι β), for all 1 ̂ p < oo.
(ii) Let l ^ p < o o be given, and let κ^κo(p). Then there exists a constant C

independent of K such that

Proof. Let L+ and L_ be the positive and negative parts of the self-adjoint
operator L = L+—L_. Using (22), we infer 0 ^ L _ ̂ / . Also, we define

}1 / 2. (25)

Note that

det4(/ + L) = det4(/ + L + ) d e t 4 ( / - L _ ) (26)

and
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It follows that

J (2 7)
Hence, the proof of the proposition reduces to establishing:

Proposition II.6. For 1 rgp< oo, and R defined in (25),

ReLp(dμCτJ. (28)

Proof. To prove (28) first note that R > 0 almost everywhere. Thus

(29)

is a random variable. Let v{κ) be given by (29) with Φ replaced by Φκ. By standard
arguments (see e.g., [5, 3]) the proof of (28) follows if two bounds hold for all K < oo.
The first bound is

1). (30)

The second bound asserts that on the space L2(dμCτ ι β) there exists ε > 0 such that

\\υ-v^\\L2^O(κ-ε). (31)

Using the hypercontractivity bound (6), the estimate (31) yields associated Lp

estimates on v — v{κ\
To verify (30) we notice that

log det4(/ 4- ίί?) ^ iTr(LΎ)2 - |Tr(L ( ϊ ?) 3 ,

and this is bounded above by

iTr(L ( K ) ) 2 -iTr(L ( l c ) ) 3 .

Thus

v(κ) ̂  ^(K) + 1 Tr(X ( K )K ( K ))2 - Re Tr((K {κψ (K(κ))*)

- i Tr (L(κ))2 = srf{κ) - i Ύv(Kiκ) + (Kiκψ)2, (32)

where J / ( K ) is given by (10) with Φ replaced by Φκ. We use the inequality

|J/(*)*M(x-y)g(y)\dxdy^\\\M(x)\dx {J\f(x)\2dx + J|g(x)|2dx) (33)

to bound the nonlocal, cutoff expressions in terms of local ones. In particular we
estimate the <9fc + 2 P(ΦJ* Mdk + 2P(ΦK) terms in (10) by a multiple of |<9P(Φfc)|

2. Then
standard estimates, see e.g. [3], yield

1 ) . (34)

A direct computation shows that Tr((K + i£*)2) is bounded uniformly in the cutoff
K. This may be surprising, as K φ 72, but it is a consequence of a cancellation of
singularities. This cancellation is not related to supersymmetry as it also holds in
more general models; the property was discovered in the Yukawa model by Seller,
see Appendix A of [4]. We give here a simple argument in the case ζ = 0. The claim
then follows for ζ + 0, as the leading asymptotics for the Green's functions Sτ in the
vicinity of the diagonal are independent of τ.
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To study the question we use the representation of D, S, and K used in the proof
of Proposition Π.4. Namely,

K = Su + ίSy5v = DCu + iDγ5Cv + regular.

Here the "regular" terms come from m in S = (D + m) C. This decomposition yields
K = Ksing + X r e g, where Kτeg has a logarithmic singularity on the diagonal (for
ζ = 0). Any term in (K + K*)2 has a trace which is bounded as κ,κ'-+oo.

Now we compute

since the cross terms give

iTτ(DCuDy5Cv

by cyclicity of the trace and {D,y5} = 0. Likewise, using D * = — D, we have

Tr(K s

2

i n g )=-Tr(K s i n g K s * i n g ) .

Thus

Tr((K s i n g + Xs*ing)
2) = 0 (35)

and

is bounded. We now take the κ'^>co limit, which gives a uniform bound in K.
Thus

\Tr(Kiκ) + K<*)*)2| ^ C(\ \Φκ(x)\2{n ~ 2) dx + 1), (36)

which inserted in (32), (34) yields (30) as desired.
This proves (30).

To prove (31) we use the inequality

\logdeU(I + A + )-logdeU(I + B + )\^\\A-B\U Σ Cj\\A\\ί \\B\\l^ (37)
j = o

valid for self-adjoint A^Bel^ (see [4]). Using (36) with A = L,B = L{κ) we find that

+ |Tr (K2K* - (K{κ))2 (K{κ))*)\ + 1 |Tr (L3 - (
3

4 _ II T _ T(κ)\\ V Γ II Γ i μ II r ( κ ) | | 3 — j

J = 0

and the bound (31) follows by standard Feynman graph estimates (see Chap. 8 of
[3]). This completes the proof of Proposition II.5 (i). The proof of (ii) is similar. The
restriction on K is explained in Sect. VI.2 of [2].

The arguments of this section also apply to the case where we replaced the pair
of covariances (CτUβ,SτJίβ) by (Clβ,SUβ) or (CbSι). Denoting the corresponding
heat kernel densities by Fι β(Φ) and F^Φ) we obtain the following:

Proposition II.7. (i) FlβeLp(dμCι β), for l^
(ii) FteLpidμc), for \^
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Remark. The path integral representation of the index (11.19) of [2] is an
immediate consequence of (i), the corresponding integrability and convergence of
Ffy and (11.18) of [2].

III. Convergence of the Heat Kernel

In this section we prove the following

Theorem III.1. Let β>0. Then

\\exp(-βH(κ))-exp(-βH(κ'))\\2 = o(l), (39)

as κ'-*κ or K, K'—>OO.

This establishes norm continuity and convergence of the heat kernels
exp( — βH(κ)) as functions of K, and hence yields the proof of Theorem III.2 of [2],
since | |Γ | | ̂  | | T | | 2 for Tel2. To prove (39) we notice that

+ exp( - 2βH(κ')) - 2 exp( - βH(κ)) exp( - βH(κ'))),

which can be represented as

Ξh2β\(det(I-K\%(Φ))exp(-A£2β(Φ))

+ det(/ - KfUΦ)) exp( - Af2β(Φ))

- 2 det (7 - K^ 2γ{Φ)) exp( - A\*>2f(Φ)) dμCl2β(Φ). (40)

Here

Kt2

κ

β\Φ) {x, y) = K\%(Φ) (x, y) χl0,β](y0) + K\%(Φ) (x, y) χίβ, 2β](y0), (41)

where χ[aJ)] is the characteristic function of [α, b\ and

A\Yo\Φ) = J \mΦdP{Φκ)* + mΦ* dP(Φκ) + |<3P(ΦK)|2] dx
[0,β]xT1

+ J [mΦδP(ΦκO* + mΦ*δP(ΦκO + |δP(ΦκO|2]dx. (42)
[β,2β]xTi

Let

and let

F$(Φ) = det (/ - £$(Φ)) exp( - A\%Φ)) = det3 (/ - K\%Φ)) exp( - 3{

Similarly, we write

FtifiΦ) = det(/ - K\yβ\Φ)) exp( - A<{$

= det 3 (/ - KfaΐXΦ)) exp ( - ^

The convergence statement (39) for κ,κ'-+oo is an immediate consequence of (40), a
2ε argument, and the following
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LemmaIII.2. (i) \\Ft 2β-F\κ)

2β\\Lι = o{ί)9 as κ-+ao.
(ϋ) \\Fι,2β-FΪΛKβHL^o{\\ as ιc,κ'->oo.

Proof. We give a detailed proof of (i). The proof of (ii) is similar, and we do not
present it. The basic strategy of our bound is to study a well-behaved interpolation
between Fl2β and F\κ)

2β. Set K(s) = sKt β(Φ) + {ί -s)K\κ)

β(Φ), ^(s) = s^t β(Φ)
+ (1 -s)3{%Φ\ and F(s) = det3(J-K(s))exp(-j?(sft Then using

^\ogdet3(I-K(s))=-Ύr(K'(s)K(s)2(I-K(s)y1),
as

we have

= - J 3'{s) F(s) ds - J Tr (£'(s) K(s)2 (/ - K(s)) ~ r) F(s) ds
0 0

=Λ+/2.

First we estimate J1/^ dμ. By means of methods explained in Sect. II, we can prove
that

sup | |F(s) | | L p ^ sup \\R(s)\\Lp^C (43)
OSsgl OSsgl

uniformly in K, where the meaning of R(s) is clear. Since ^5"(s) = s#u β(Φ) — J S ' / ^ Φ ) , it
follows from (43) that

We infer from Proposition II.2, that this is o(l) as κ->oo. To prove that
= o(l) as K^OO we notice that

Now we use || T\\ = || T * T | | 1 / 2 and (22) to obtain

||(7 - K(s)) ~' det3 (/ - K(s))|| exp( -

with self-explanatory notation. This can be bounded by

C{det4(/ + L(s)+)}1/2 e x p ( - W(s)) = CR(s),

and thus

x sup {S\\R(s)\\ldμcιt(Φ)}llA sup | |£(s)| |L 4 = o(l),

as a consequence of Lemma II.3 and (43). This completes the proof of the lemma
and the theorem.
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IV. Continuity of the Heat Kernel

In this subsection we prove strong continuity at β = 0 of the semigroup

T(β)= limεxpi-βH(κ)).
κ-+ oo

This the content of Theorem III.3 of [2]. Since T(β) is a semigroup, it is sufficient to
establish weak continuity. Furthermore, since H(K) = Q{κ)2 ^ 0, it follows that
T(β) SI and it is sufficient to show

lim<Ω,(Γ(j8)-J)Ω'> = 0, (44)

for Ω, Ω! vectors in a dense subspace of ffl. In fact, it is sufficient to choose Ω of the
form generated by a polynomial in fields applied to the Fock ground state, since
linear combinations of such vectors are dense in jf.

We use Kt(Φ) defined in Sect. II for the τ-independent case ζ = 0, and with the
index β suppressed (no periodicity in time). Let Ft(Φ) be the corresponding heat
kernel density. We study a series of estimates whose aim is to reduce (44) to simple
Feynman graph estimates and Proposition Π.6. We express inner products of the
form <Ω, T(β)Ω'} as a bosonic function-space integral

<β, Γ(jB)β'> = JF,(Φ, f, g, h) dμCι(Φ), (45)

where

Fι(ΦXg,h) = Fι(Φ)( A gj, A (I-HΦT'Sth) Π **(/)), (46)

and where # denotes possible complex conjugation. The identity (45) follows from
the finite cutoff Feynman-Kac formula (Proposition VI.8 of [2]), Lemma II.7 and
the following:

Proposition IV.l. Let fj e Jf_ X(R x T1), gj9 hj e Jf_ 1 / 2 (R x T1). Γten /or α//

FZ(Φ,f,g,h)eLp(<?Wx ^Γ1),dμCι). (47)

Remark. We already know that F^ΦjεLp, l ^ p < o o , as a consequence of
Proposition II.8 (iί). However, we cannot use Holder's inequality. The (/ —X)" 1

factors in (46), which arise from the fermion integration, are not Lp(dμCι) by
themselves. These factors must be combined with det3(7 — Kt) to produce an Lp,
Fredholm minor, as in the proof of Lemma III.2. In order to simplify notation in
the remainder of the paper, we sometimes write det3 or det4 separately from
factors of (I —Ky1 or (/ — L ) " 1 or other related operators which compose the
corresponding minor. We do not believe this should cause confusion to the reader.

Proof. Since Φ(fj)eLp(dμCι) for all 1 ̂ p< oo, we can use Holder's inequality to
reduce the proposition to the case

g,h) = FiΦ)(kgp Ail-UΦ))'1 sΔ eLp. (48)
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For K e Ip, the mapping z -> det^ (/ — zK) /\k( J — zK) ~ι is an entire, operator-valued

function of z. In our case K e / 3 (^i/ 2 ) 5 so (48) is well defined for gp hj e Jfι/2> Using

(25) we have

(49)

We now use the identity for operator norms,

and we compute the adjoint of K on Jfι/2. Using the Schwarz inequality on Jf1/2,

for g,hejf1/2, and \\C\l2h\\Xm= \\h\\jrin, we have

\(C\'2g, TSιh)*Jg ||g||^1/2 IITS,A||^.^ύ \\g\Wil2

Note that Cz and Sι commute, so

and therefore

|(Cj1/2g, TSιh):rι 2 | ̂  IITΊIxi 2 llglljfi 2 ll^lljίΊ 2* (50)

For T we choose (I-K)~\ and we write | | T | | ^ i / 2 as ( | | T * T | | ^ 1 / 2 ) 1 / 2

= ||(7 + L)~ x || j/f/2. Applying the bound (50) on the wedge product space Λ f c ^i/2> w e

bound (49) by

1/2 k

1 1 l l δ j l l ^ _ i / 2 l l A l j l l ^ - 1 / 2

The final bound is a consequence of the following inequality, Lemma 4.2 of [6]:

HΛ*(/- T1)"x det p (J- T)|| ^expίfc V τ | , (52)

valid for T e / p with 0 ^ T^L
We now study the difference between the operator defining the right side of (46)

and the identity, namely

Y = Fι/\k(I-K)~1-I, (53)

where F^F^Φ). This operator acts on the space /\kJΓ1/2 (for fixed Φ). Write

y = y 1 + y2? where

Yλ=(F ι-^)l (54)

and

Y2 = Fι(f\k(I-KΓ1-I). (55)
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For 0 ̂  s ̂  1 we set

Rfc) = exp( - W(s)) {det4(7 + L(s) + )} 1 / 2 , (56)

where

L(s) = - sK - sK*.+ s2K*K, (57)

and

(58)

We now give separate estimates on Y1 and Y2.

Lemma IV.3. With the above definitions,

) (59)

Here || || denotes the operator norm on Λ*^i/2

Proof. We use an interpolation argument. Let se[0,1] and consider
det3(/ — sK)exp( — sjtf). We follow the proof of (27) to obtain the bound

|de t 3 (/-5K) |exp(-5^) = [det4(/ + L(5))] 1 / 2 ^~^ ( s ) ^^(5), (60)

where Rt(s) is defined (56). For each s, we remark below that Rt(s) is Lp(dμCι) for
p<oo. Thus it is natural to write

γι=Fι-\= ] — {dQt3(I
0 ds

1

Jdet3(/
0

The bound on Jι is

μj^Kiί^fs)^, (61)
0

which is the first term in (59).

Let us now turn to J 2 . By Holder's inequality on the Schatten spaces Ip,

|Tr(X 3 (/-^)- 1 det 3 (/- 5 X)) |^ | |X | | 3

3 | | (/- 5 X)- 1 det 3 (7-5X)| | ? (62)

and therefore using (60) and (26),

(63)
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where in the last line we have used (52) with k= 1, p = 4. The lemma follows from
(61) and (63).

Lemma IV.4. The following estimate holds on Λ fc^i/2 ;

\\Y2\\Sek2% Σ I|K||? (64)
m = 1

Proof. We write

2=?l Σ D ' A ... ADk, (6ί)JΣ
ε Φ O

ε j e { O , l }

where D = (I-KyiK. Using (27),

\^Rι Σ ||{det4(/-L_)}1/2/)eiΛ...ΛDβ

ε Φ O

I-L-)yi2hmD\\3. (66)

Note that D*D = K*(I + L)'1 K^K*(I - L_)~ι K. We then have

m = l

) ' 1

Λ ^ 3 m . (67)

The estimates (66) and (67) yield (64).

Lemma IV.5. There exist η>0 and C< oo such that for β small, the following two
bounds holds

l\\KAΦ)\\UμCίZCβ', (68)

and

(69)

Proof. We use the Schwarz inequality to relate the I3 norm to I2 and I4 norms.
Since K φ I2, we transfer a small power of C from the 74 to the I2 norm. For ε > 0,

After integration over dμCι we then obtain by another Schwarz inequality

J ||UΦ)\\I dμc,S {1 ΊτiQUΦ)* UΦ))άμc}^

x {JTr(CΓε(^(Φ)* K,(Φ))2)^C l}
1 / 2. (70)

We claim that there exists η > 0 such that both factors on the right-hand side of (70)
are O(βη) as j8->0. In fact,

J C ;

1 / 2 + ε(x-^C (

1 / 2(x-y)β 2(x-j;)ί/x^, (71)

([0,/?]x Ti)2

where

B2(x - y) = I θ2P(Φ(x))* d2P(Φ(y)) dμCι (72)
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has only logarithmicc singularities at x = y. Since

Gz

1/2 + β ( x - ^ ) ^ O ( | x Γ 1 + 2 e ) ^ O ( | x 0 r 1 / 2 + Ί x i r 1 / 2 + e ) , (73)

for | x | < l , it follows that (71) is O(βn) as β-+0.
To bound

we write it as a sum of terms of the form

J J^(x)l?4(x)rf4x, (74)
( [ 0 , / η x Γ 1 ) 4

where

where Xj e [0, /?] x T 1 for j= 1,2,3,4, and where £4(x) has logarithmic singularities
at points of coincidence. Using Holder's inequality we bound (74) by

C {J \&(x)\ pd4x} 1/p{$ |B4(x)|V4x} ^ , (75)

where we choose 1 < p < 3/(2 + ε), and correspondingly q = p/(p — 1) e (3/(1 — ε), oo).
The integral W\\p

Lp can be bounded as follows. We set f(x) = \(C}t2)(x)\p and
g{x) = \(Ci/2~ε)(x)\p. By Holder's inequality,

Using Young's inequality

and so

L 4 / 3 — \\\^l )K ) \ \ L 4 \ \ { L Ί ) \ ) \ \ L
IP < l l f l l l l σ l l \\(Γl\( Λ \ \ p W ί Γ / \ ί \\\P

\ \ L P = 11/ \ \ L 4 / 3 \ \ S \ \ L 4 / 3 — \\\^l )K ) \ \ L 4 P / 3 \ \ { L Ί ) \ ) \ \ L 4 p / 3 '

Using (73) we find that

Thus for p< 3/(2 + ε)

for β small. (The constants depend on /.)
The second factor | | ^ 4 | | L in (74) is the integral of a product of integral kernels

C^Xi — xv) with logarithmic singularities on the diagonal. Extracting the volume
dependent factor we obtain thus

where N is some fixed number (which grows with the degree n of the
superpotential), and since we fix q, we infer that for η>0 sufficiently small,

for β small.
These estimates establish (68). The proof of (69) is similar.
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Lemma IV.6. Let β be sufficiently small. There is a constant C independent of β such
that

sup §Rt(s)rdμCι^C. (77)

The proof of this lemma is similar to the proof of Proposition Π.6. The
uniformity in β follows easily from the fact that the Feynman graphs generated by
the terms in (37) are O(βη). This can be established by the method used in the proof
of Lemma IV.5.

These estimates now lead to the proof of continuity of T(β) at β = 0. Returning
to the definitions (45) and (50)-(52), we need only estimate

(78)

and to show it tends to zero with β. Write Y= Yι + Y2, and let us first estimate the
contribution from Y1. Apply the Schwarz inequality to the dμCι integral of (56)
squared in order to split the R factors from the remaining terms involving K and
j / . These terms can now be estimated by O(βη\ η' > 0, as follows. We study

${\sέ\ + e\\K\\l}4dμCι. (79)

Each term in (79) can be estimated using Lemma IV. 5 and is bounded by O(βη) as
/}-•(). A similar estimate holds for Lp norms of s$. Thus

dμCι S O(β*') ] (ί Hsfdμcyi*ds ύ O(β*'), (80)]
o

with the last inequality a consequence of Lemma IV.6.
In a similar fashion, we bound the Y2 contribution by

k

4 m = 1

By Holder's inequality (applied to the m = 1 term) and the hypercontractivity
bound (5) (applied to the terms with m ̂  2) we can reduce the above sum to a form
which can be estimated by means of (68). This yields

The continuity of T(β) then follows since (78) vanishes as /?-•(). This completes the
proof of (44).

V. Convergence of Q(κ) as a Form

In this section we establish norm convergence of Q(κ) regularized by the heat
kernel. The following theorem yields Theorem IIL4 of [2]. The complete definition
of Q(κ) is given in (11.11) of [2]. We let

where ~ denotes the operator closure.
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Theorem V.I. (i) Let β>0 and K,K'<CC. Then

Range (exp( - βH(κ))) C Domain (δQ).

(ii) As K,JC'-XX) and as \κ — κ'\-+0,

\\exp(-βH(κ'))δQexp(-βH(κ))\\2

2 = o(l). (82)

The remainder of this section is devoted to the proof of this theorem. We
establish convergence in Theorem V.I as κ9κ'-+co. The proof of continuity as
κ'-*κ is similar, and we do not present details.

Let us introduce

φ) =-1- (dP(φκ(x)) - dP(φκ.(x))), (83)

where xeT1. Then δQ has the representation on the domain ^ 0 of vectors in Fock
space with C00 wave functions and a finite number of particles:

= J ίΨi(x)Φ) + ΨiWΦ)* + Ψi(x)Φ)* + Ψi(xMx)¥*, (84)

Proof of Theorem V.ί. (i) Since κ,κ'<co, the difference operator δQ is a
polynomial in a finite number of bosonic and fermionic degrees of freedom. These
are the degrees of freedom of the Hubert space J f < discussed in [2, following
(VI. 8)]. The Hamiltonian H(κ) has the representation7/(κ;) = H-®I + I®HQ, and
it follows that δQ acts on Jf^, namely δQ = δQ-®I. In [7] it is shown that
Range (exp ( — /?//-)) is contained in the Schwartz subspace of Jf7. Hence these
vectors lie in the domain of δQ.

(ii) By part (i), the operator (5Qexp( — βH(κ)) is defined. We estimate the
Hilbert-Schmidt norm of exp(-βH(κ'))δQexp(-βH(κ)) uniformly in κ,κ'. Re-
placing β by β/2, we can write

|| exp( - βH{κ')β)δQ exp( - βH(κ)/2) \\ \

= Tr (exp( - βH(κ)/2)δQ exp( - βH{κ'))δQ exp( - βH(κ)/2))

= Tr J exp( - βHiφpάxMx) exp( - βH{κ'))ψ2{y)φ)*dxdy

+ 7 similar terms = Σ h>
i = i

where we have used the fact that only expectations with an equal number oft/; and
ψ factors are non-zero. Thus only eight of the sixteen pairs of factors from
expanding the product ^gexp( — βH(κ'))δQ according to (84) will contribute. We
give the details of how to bound Iγ above, the corresponding estimates on the other
seven similar terms being similar.

We use the functional integral representation for / 1 to obtain

h = 2,. 2β ί ((' - %ΐiβ\Φ)) - %. 2/»)i 2(*> V) det3(/ - KfifXΦ))

x txV{-^2f{Φ))W(x)W{yγdμCl2lί(Φ)dxιdyί, (86)

where the notation follows Sect. III. For convenience, here we let x = (β,x1) and

y = (0,yι). Also, W(x)= - l-{dP(Φκ{x))-dP{Φκ,(x))) is the Euclidean counterpart
to (83). 2
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We now prove that 7\ converges to zero as κ,κ'->oo. We use the smoothing
operator

-* ;* (d2ld\ 2yεl2

9 (87)

and set C = Clt2β. Let || | |L denote the Lp norm on path space with respect to dμc.

Lemma V.2. For any ε>0,

σ=\\μ-'W\\l2 = o(ί), (88)

as K, τc'->oo.

Proof. Since the only singularities in || W||L 2

 a r e logarithmic, smoothing by μ~ε

removes them. The convergence of σ to zero as K, K'-+CO then follows by standard
constructive field theory estimates. Explicitly, let

H(x)=fW(x)*W(O)dμc. (89)

Then if μ~ε has kernel μ~ε(u, v), for u,veTι,

Thus for 0<(p — ί) sufficiently small, μ~ε(u,0)eLp(T1). Since the integral is
translation invariant,

\\μ-εW\\2

L2S$f(u)f(v)H(O,u-υ)dudv.

Using Holder's inequality, with p'1+q~1 = l, p as above yields

l lμ-^ll i^l l/l l^α^o^)^) 1 ^^ 1 ! 1 ^, (90)
where \T1\ denotes the space volume. The function H(0, u) is a sum of terms of the
form

O(l)Ciκ\upC{κκΊ(u)k2

with kγ + k2 = n — 1, where k2 ^ 1, and where

Here C(κ)eLq for all q<oo, with | |C ( I C ) | |L ^1)^(4) , independent of K. Also, given
q<oo, for K'^K, there exists δ>0 such that

It follows that (88) can be bounded by O(κ~% and the proof of the lemma is
complete.

We study explicitly the integrand G(x, y) in the integral (86) over x l 5 yλ, namely

G(x,y) = ΞS((I-KΓ1S)l2(x,y)det3(I-K)e^W(x)W(yrdμc. (91)

Here we suppress l,β9κ,κ',~, etc. We isolate the singularity of G(x,y) in the
diagonal, and we show that G(x, y) is integrable over xuyι as long as βφO. In fact,
we show that if β = 0, then ^G(x,y)dyι is singular.

The isolation of the singular part of G(x, y) can be seen from perturbation
theory. In other words, we expand

K)-1KS, (92)
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and insert this into (91). The first two terms in (92) yield contributions to G(x,y)
which are singular on the diagonal, but which are integrable in x1 — y1 as long as
β φ 0. The final term in (92) yields a contribution to G(x, y) which exists on the
diagonal, and hence which is integrable also for β = 0. Thus the first terms in (92)
yield the precise singularity as β-+0 of |[<5Qexp( — βH(κ))\\2 for /c, TC'-KX), as
opposed to \\Qxp( — βH(κ'))δξ)exp( — βH(κ))\\2, which is bounded as β^>0, uni-
formly in K, K1.

Let Jk denote the contribution of the feth term in (92) to / 1 ? multiplied by Ξ~1.
Since 1 ̂ Ξ^\ +O(e~β\ it is sufficient to bound Jk. First, we study Ju

Λ = l ( i d e t 3 ( / - K K ^ - £ / 2 P y ) ^ . (93)

We bound Jx using Holder's inequality,

I Λ I ^ Ί \\μεS(β, )llL1(ri)ll^/2W|lL4lldet3(/-iC)e-j/||L2. (94)

We bound this product as follows. The singularity of (μεS)(x) on the diagonal is
| χ | -(i +ε)? which is not Lx. However, for β + 0, (μεS)(β, ) is pointwise bounded and
continuous, hence L^T1). Secondly, using hypercontractivity (5), and Lemma V.2,

Finally, by Lemma IΙI.l(ii) the last factor in (94) is 0(1) as κ,κ'-+co. Combining
these estimates we obtain

(95)

provided β>0.
Next we study J2. The integral J2 is a sum of terms similar to (93) but with the

factor (μεS)(x — y) in the integrand replaced by a factor of the form

υ + {x,y)=ϊ (με/2S)(x - z)Λ + d2P(Φ(z))(μ^2S)(z - y)dz

or ι;_ with A _ d2P(Φ(z))* replacing A + d2P(Φ(z)). We suppress the regularization
functions in υ + , as they complicate the notation and do not change the uniform
character of our estimates. As in the bound (94) we then have by Holder's
inequality

where

By hypercontractivity, we can bound the L4 norms by a constant times the L2

norm of v+ and v_. Thus

Ml ̂  const (1+ I ( J |log|2-z'||"-'Iz-xΓ1 -'\z-y\~1-'

-'-εd2zd2zyi2 dx.dyλ. (96)

This integral over d2zd2z' is bounded if x φ y (i.e. for β > 0). Hence |||t;||| ^ const and
as in the bound of J>γ we conclude from (96) that for β > 0,

\J2\^o(\), as κ,κ'^>ao. (97)



574 A. Jaffe and A. Lesniewski

Finally, we bound J3. In this case the condition β>0 is unnecessary. We
suppress convolutions with the regularization functions and write

x{μ'εW)(x){μ~εW){y)*dμ(^Φ))dx1dyί + 3 similar terms, (98)

where in this term
g(u; x, Φ) = (μεS)(x-u)Λ + d2P(Φ(u)), (99)

and

h(z; y9 Φ) = Λ + d2P(Φ(z))(μεS)(z-y). (100)

In the other terms A _ d2PΦ(z)* may replace A + d2P. Using the technique explained
in Sect. IV to bound the Fredholm minor, we obtain the bound on part of the
integrand in (98),

|exp(-^)Sg(u; x, Φ)άQt3(I-K)((I-KΓ1S)(u,z)h(z; y, Φ)dudz\

x,Φ)\\^J\h(';y,Φ)\\^ι/2. (101)

We use (101) to bound J3. Using Holder's inequality and the hypercontractivity
estimate we obtain

{ ^ 1 / 2 } (102)

which, because of Lemma V.2, is o(l) as K, K'-KX), provided that

Let us prove the first of the inequalities (103) (the proof of the second one is
identical). The left-hand side of (103) can be bounded by

0(1) j C1/4(κ - u')Cll\u - u")\A + T{- u')* T{ - u")Λ + \Jf{uf - u")dudu'du", (104)

where T = μεS has kernel T(u — υ) and

jf(u' - u") = J d2P(Φ(uψd2P(Φ(u"))dμc{Φ).

The smoothing kernels C 1 / 4 arise from the Jf _ 1 / 2 norm. Apply Holder's inequality
to (104), and use the fact that J4?(u' — u") has only logarithmic singularities on the
diagonal; hence Jf eLp for all p<oo. Thus (104) is bounded by

O(ί){l{Cι/*{u + uWιl*{u + uψ\T(uTT^ (105)

with 0<q — l chosen sufficiently small and p~1+q~ί = l. Let k(u) = \T(u)\q and
) = \Cί/4(u)\q. Then (105) is bounded by a constant times

where α ~x + a' ~ -1 = 3/2. Here we use Young's inequality. Note that the singularity
of f is bounded by

(\ \3q/2 1 3q
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and that of k is bounded by

d+ε)q Λ

Thus choosing ε > 0 small, q close to 1, we take α, α' such that α ~ 1 + α' ~* = 3/2. This

is possible as

g ( + ) ί = 5 S(g

4 2 4 4

can be chosen close to 5/4 and hence less than 3/2.

It follows that \J3\ ^ o(l), and this completes the bound on (91) and the proof of

Theorem V.I.
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