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A Phase Cell Approach to Yang-Mills Theory

IV. The Choice of Variables*

Paul Federbush

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Abstract. Variables are chosen to describe the continuum Yang-Mills fields, a
discrete set of group valued variables. These are group elements associated to the
sequence of lattice field theory configurations realizing the continuum field. The
field is "laid down" inductively. At each inductive step one of three types of
"field excitations" makes its contribution to the total field. These are either
"pure modes", "averaging correction modes", or "chunks". The pure modes are
small field excitations, as studied in previous papers in this series [2, 3]. The
averaging correction modes are small excitations added to make sure the block
spin transformation is satisfied at each edge. The chunks, encompassing most of
our difficulties, are large field excitations. Topological obstructions in π3(G)
must be dealt with in defining a gauge choice for each chunk. The laying down
process is complex, but fiendishly clever, ensuring a principle of "gauge
invariant coupling". Each group valued variable is either the "amplitude" of a
pure mode or an "internal variable" in a chunk. The amplitude of an averaging
correction mode is a dependent variable, a function of the (independent)
variables used to describe the field. The (independent) variables herein defined
are those whose mutual interaction will later be inductively decoupled in
defining the phase cell cluster expansion (of course treating the variables of each
chunk as a unit).

0. Introduction

Loosely speaking one may separate the work of controlling a cluster expansion into
two tasks. The first, the "non-linear" aspect, is controlling the functional integrals
using positivίty properties of the action. The second, the "linear" aspect, is

* This work was supported in part by the National Science Foundation under Grant No. PHY-
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exhibiting the renormalization cancellations. Of course one cannot totally separate
these two aspects. In the phase cell cluster expansion, however, the separation is
rather complete. The renormalization cancellations in our theory are basically no
different from those in a super-renormalizable theory; there are only a finite
number of divergent structures to deal with. Our choice of variables has in mind
facilitating the treatment of both the linear and non-linear developments to follow
(in the remaining papers in this series).

Our treatment of the four dimensional Yang-Mills theory will utilize four basic
ingredients, the real ideas that make our cluster expansion work. (We are speaking
of ideas beyond the general idea of studying the lattice gauge theory via the
renormalization group, a program initiated by Balaban.)

1) The block spin transformation of Balaban in the small field region
[l,Eq. (1.8)].

2) The modified block spin transformation (agreeing with 1) in the small field
region) for general field configurations [4].

3) The choice of variables, as defined in the present paper. This involves
describing the three kinds of (field) excitations, and detailing their incorporation
into the total field.

4) The interpolation scheme for defining the "partial actions". This will be
developed in Paper VII in this series. It is our contention that with these ideas our
cluster expansion, though horrendously complicated, will be straightforward.

In defining the "field excitations" we incorporate as a physical principle the
idea that a field excitation of a given scale is defined in the background field of the
excitations at larger scales. There is a second dominating principle, that the
excitation couples to the larger scale excitations through the F field, rather than the
A field, of the large scale excitations. We further describe this latter principle (which
we will call gauge invariant coupling). In the case that the large scale excitations
provide a pure gauge transformation (the corresponding gdp = lά) there is no
coupling to the lower scale excitations. (One in fact must make simple translations
in the lower scale variables to exhibit this.) In general a term coupling an excitation
at length scale L, to an excitation at a smaller length scale /, has associated to it a
numerical factor (//L)2 in the interaction. This is crucial for renormalization
cancellations, to enable the perturbation theory aspects of the expansion to be
handled.

Loosely speaking, when one adds an excitation living near a point XQ to the field
(of larger scale excitations) already present, one first performs a gauge transfor-

mation of this background field to a radial axial gauge radiating out from XQ . One
then superimposes the new excitation by adding A fields. Thereafter the gauge
transformation is undone. The A fields are as small as possible near x0 for given F
fields, in the radial gauge. This definition of superposition yields final \gdp\ values
(essentially) independent of the gauge in which the background field appears (see
Sect. 7).

We herein enter a casual digression on the renormalization cancellations (not to
be explicitly treated until several papers down this series). In phase cell expansions -
such as used by the author or Magnen and Seneor - one never sees vacuum
diagrams. I will discuss briefly those "structures" that do require cancellation in a
phase cell procedure.
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In the figures we visualize terms arising by trying to decouple a variable at level
0, that introduces variables in the lattice of edge size ε. The figures represent
decoupled terms. The four figures distinguish situations involving 1st, 2nd, 3rd, 4th
order polynomials in the large scale variable (higher order powers are harmless).
Long experience shows these are the crucial terms to understand and handle, if a
procedure treats these successfully it will work. These structures are now briefly
analyzed in three models.

a) </>4 with wrong sign of /: Figures (a) and (c) will not appear if the theory is
invariant under φ-+ — φ. Terms in (b) have associated numerical factors ~ε2 and
need factors - ε4 for localization. (This is the quadratic divergence q2 ~ 1/ε2.) These
terms must be cancelled by renormalization counterterms - there are an infinite
number of them, so the cancellation must be non-perturbative. Magnen and Seneor
have accomplished this. For Yang-Mills there will be no necessary non-perturbative

cancellations! sth order terms in (d) have associated numerical factors ε4

and require ε4 for localization. If s > \ /a one has enough numerical factors to control
the sum over values of n9 the terms with s^ I /a must be cancelled. Thus in (d) there
are only a finite number of terms, logarithmically divergent, that must be cancelled !

b) 2 —d non-linear σ model : Terms in (a) and (c) will not appear. Terms in (d)

are harmless. Terms in (b) of order s have associated numerical factors ε2 - =ΓΓ

vn ε

and require ε2 for localization. The situation is as in (d) above.
c) 4—d Yang-Mills: Terms in (c) and (d) are harmless. Terms in (a) do not

appear by a gauge invariance type argument. Terms in (b) are exactly as terms in (d)
of the 04 situation. [Requiring ε4, having associated factors ε4(l/lnε~1)β s.]

It is important to emphasize these estimates are obtained using smallness factors
that arise from the gauge invariant coupling procedure. [If one allowed coupling to
A not .Fthen a numerical factor ofY/L instead of (//L)2 would arise, a disaster.] This
ends our digression on renormalization cancellations.

If one fixes the excitations, variables, down to some scale, then the lower scale
excitations can be visualized as excitations of the Yang-Mills field about the
configuration that minimizes the action subject to the constraint of having the
larger scale excitations fixed in some configuration. With our definition of the
excitations, the expansion is not about the exact minimum configuration, but is
about a point close enough to the minimum for purposes of the expansion.

The "small field modes" of [2, 3] are the starting point for defining our two types
of mode excitations. These make their contribution to the total field in a manner
chosen to meet the gauge invariant coupling principle. The total field configuration is
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laid down inductively one excitation at a time. The first excitation specifies group
elements for all bonds at all scales; the second excitation modifies all these
assignments, etc. The assignments do not automatically satisfy the averaging
requirement (that the assignments at one scale determine by the block spin
transformation the assignments at the next larger scale) and averaging corrections
are also made inductively (by laying down averaging correction modes). In the end
the field configuration assigns a group element to a bond at a given scale, that
depends on the variables, excitations, of that scale and all larger scales in a very
complicated manner.

In [4] a parameter, 0, is introduced defining the division between small and large
plaquette field. We introduce a C00 partition of unity of [0, oo),

where
x>a ,

fΌ 2}
l '

We introduce into the functional integration measure j d^ a product

) (° 3)
P

Selecting a χs or a χL for each plaquette we get a S — L configuration, c. We write

\d^= £ \d^c . (0.4)
ce%

Ή is the set of all such configurations. The sum in (0.4) is analogous to a Peierls
expansion (as appears in treatments of Debye screening). The S — L configuration in
which all plaquettes are S-plaquettes (there are no L-plaquettes) is called the pure
small field configuration. In this situation there are a collection of edges, $ p, defined
below, to each of which a pure mode is associated. There are a collection of edges,
$ A , defined below, to each of which an averaging correction mode is associated. The
total field is built up of these mode contributions.

In a general S — L configuration, some of the pure modes associated to edges
ςίclose" to L-plaquettes, are not used in constructing the total field. Their
contribution is replaced by contributions of chunks. Each chunk, in some loose
sense, provides the field contribution of some of the displaced pure modes, in a
situation where these displaced modes may have large amplitudes. The total field is
inductively built up of chunk contributions, the remaining pure mode contri-
butions, and all the averaging correction mode contributions.

Each mode and each chunk considered in isolation yields assignments to all
bonds at all levels, its "isolated" field. For pure modes, and chunks, these isolated
assignments satisfy averaging (are consistent with the block spin transformations),
and thus arise from a continuum field, their isolated continuum field contribution.
(Remember the duality between continuum fields and compatible assignments to
the lattice fields [2, 5].) An averaging correction mode's isolated field does not
satisfy averaging, at a single edge (and does satisfy averaging at all other edges). It
still has an associated continuum field contribution to which the lattice fields
converge.
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The total field is assembled by laying down the (isolated field) contributions of
modes and chunks inductively. We use % to denote the isolated field of excitation i.
In the induction procedure, if the field before excitation i is laid down is ̂ Vi , then
the resulting field after (€i is laid down is denoted by

^xJVi . (0.5)

When the first n excitations have been laid down the field is

- (0-6)

The "twisted products" defining the laying down process will be defined later.
The isolated fields of modes will be easily extracted from the analysis in [2, 3],

yielding all necessary estimates. The brunt of our efforts in this paper will be to
define and estimate the isolated fields of chunks, an effort continuing into the next
paper in this series. The touchiest task is the definition of a gauge for the isolated
chunk field. Construction of a gauge involves us with topological obstructions, in
π3(G) [we have assumed π 1 ( G ) = 0, and n2(G) = 0 for free], obstructions that would
not appear in three dimensions. Our choice of a gauge is one that has possible
isolated point singilarities.

We recall that gauge fields have long been called an "essentially non-linear field
theory". Our complicated expression for the Yang-Mills field, a "twisted product"
of contributions from modes (and chunks), may be viewed as the non-linear
counterpart of the expansion φ(χ) = ̂  akuk(x) for a scalar field. In the pure small
field configuration, if G were commutative, these expansions would be quite the
same. The scalar field is linearly related to its discrete set of real number valued
variables, αk the Yang-Mills field is a complicated, non-linear, function of its
discrete set of group valued variables (herein defined). We suggest that for those
whose technique is to integrate out variables level by level, such as Balaban,
Benfatto, Gallavotti et al., Gawedzki and Kupiainen, the formalism of the present
paper may provide a good choice of variables to integrate out - in particular a good
gauge.

In the body of the paper we will often use the abbreviations P-modes and A-
modes to denote pure modes and averaging correction modes.

1. Preliminaries, Notation, and Definitions

We work in four dimensions. There are three parameters in our model, g0, the
coupling (at level 0), TV, (the block spin transformation is for blocks of size TV4), a,
the measure of plaquette variable smallness. Our lattice is bounded, one may take a
single cube as the lattice at level 0. (See the discussion at the end of this section.) We
work with a Lie group, G.

The levels or scale sizes are labelled by a parameter r, r = 0,1, 2,. . . . The edge size
at scale r is I/TV. If r2 > r1 we say level r2 is lower scale (level), or finer scale (level), or
smaller scale (level) than r1. For each scale r there is a lattice, ^£}'. We associate to !£γ

the coupling constant gr,

+ l) . (1.1)
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The set ofplaquettes of^r we denote as £Pr, the set of edges of ̂ r as $ r, the vertices
of ϊ£r as Ί^r. The vertices of JSf r are grouped into blocks of size TV4, the set of blocks
in <£ r is called .̂ Γ. Each block b in 3Sr has a basepoίnt v in f r. We write y = b* and
b = v*. If any vertex z/ is in ft we write, t /e f t . If ft is in J"', then ft* is identified with a
vertex in i^r~l. This gives a / — I identification between elements of $r and i^γ~^.
We will choose Λf odd, and pick the base point of each block to be its central vertex.

We are given a universal tree, ΓUN, on Z4 that is maximal (passing through every
vertex) and "radial" as defined in [4]. We may later make further requirements on
our universal tree. If v is a vertex in Y^r, we let tv be the radial tree at v, a translate and
scaling of ΓUN, that brings the origin in Z4 to v and scales by a factor l/Nr. If ft is in
.^r, we let tb be the radial tree at ft*, restricted to ft. The block transformations in the
small field region (the Balaban average, the average before modification as in [4] in
the presence of large fields) are defined using the set of tb. If t^ and v2 are in i^r we
write tVίV2 for the portion of tVί connecting ι\ and v2 (this is a unique path from v1 to
v2). Generalizing tVίV2 we now define the path t(v± , v2 , v^ , . . . , vn)9 where vγ is in i^r

and vn is in f^ + "~2. v.^ 2^i^n — 1, will be basepoints (i.e. ι\ = bf for some bt in
.^r + ί ~ 1 ) and are thus elements of both ̂ r + i-1 and f^-π-2 τhen t^ ? . . . 5 ̂  wjn

be the path that is made up of tυvV2, t V 2 V 3 , . . . , ^ n _ l f ; n (In tVιtVι + ί one views ̂  and vi + 1

as in y^'"1.)
A fie Id configuration, or a Yang-Mills field, ^, is an assignment to each oriented

edge of each lattice of an element of G, say g(e) to edge e. Ife' is e with the opposite
orientation we must have g(e') = g ~ 1 ( e ) 9 we also write e' = —e. The crucial
additional compatibility property that ̂  must satisfy is that for e e $ r, g(e) must be
the appropriate block spin transformation (as defined in [4]) of the assignments
g(e^}, ei<=$r + i. Block spin transformations, for us, are specifications of g(eΛ) for
eaE$r in terms of g(eβ) for eβE$r + i. We naturally denote ^r as the field
configuration at scale r, the assignments g(ea) for e^$Y. The block spin
transformation may then be viewed as a mapping

BSr:^
r->J^r"1 . (1.2)

Mathematically the field ̂  is a point in the inverse limit of the system {^r, BSJ,
and thus may be written also as J^°°. J^00 may be viewed as the field configuration
on the imaginary finest lattice J^700. One may choose to work with a finest lattice,
^MIN, but we find this alternative less attractive.

In this paper we will not need the form of the functional measure J d^7 , but for
future purposes and present motivation we include a brief discussion. Basically
j d&* is Y[ J dμe(g(e)), where e runs over the set of oriented edges in S100 (<ίMIN for the

e

faint-hearted) and each dμe is normalized Haar measure on G. (We let each edge
occur in the product with only one orientation.) This formal expression is converted
to a more meaningful form by writing

-Av(e)) , (1.3)

where the products over e are as above but over edges in all $r, 0^r< oo. The δ
functions force g(e) to be the value Av(e) assigned to it by the block spin
transformation. [If e is in <ίr, then Av(e) depends on the g(eΛ), eΛeS'r + 1 . ] One
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commonly uses the δ functions to eliminate the integrals over certain bond variables
(g(e)}, giving rise to pesty Jacobians. We note that if the δ function δ(g(e) — Av(e))
is used to eliminate a variable, and e e <$r, then the Jacobian depends only on J^r + 1,
(on bond variables down to the r +1 level). So eliminating δ functions in this way,
the right side of (1.3) is a product of integrals, each depending on the variables down
to a finite level. J d^c, in (0.4), is this \ d2F, multiplied by a product of χs's and &'s,
one χs for each S-plaquette and one χL for each L-plaquette in c.

We now introduce some nomenclature to describe some simple geometric
configurations in the lattices.

V2

In the figure we see a bond (edge) e in Sr joining v\ and v2 in i^r. vl and v2 are also
in i^r + * as basepoints, v1=bf, v2=b$, of blocks b^ and 62 i

n ^r + 1 We write
e = b± b2 or e = vλ v2. There are TV3 edges that join b^ and b2 (ea and ec are two of them
in the figure). We call these channel edges, and their union $r + l is written $r

c

+l.
Edges inside blocks (such as eb in the figure) are called block edges, their union $B

+1.
Note <$B\j$c = $r, Sr

Br\$c = tt. In each channel we select a distinguished channel
edge, and call it an averaging edge (say ea in the figure), the union of these S"A+I. We
call the edges in each block b that lie in tb the identity edges, their union
<?ί + 1. We set <?έM = <?{i-^ί> and δr

c^ = Sr

c-δr

A. The edges in ^BM are block
edges, and those in <fCM are channel mode edges. We note the disjoint union

= $ A u ^B (1.4)

The notation above is motivated as follows. The integral over the group elements
associated to the ea(g(ea)) for eae^A will be eliminated by the use of the
corresponding "averaging" delta functions in (1.3). In the figure above the integral
over g(ea) would be eliminated by the use of the ^-function δ(g(e)—Av(e)). The
integrals over the group elements associated to edges in $I will be eliminated, using
gauge invariance (these group elements would be set equal to the identity in G, in the
Balaban axial gauge). There will be a pure mode associated to each edge in
<ίBM u <fCM = (fp (except for those that are absorbed into some chunk).

Each mode has associated to it, one edge and a vertex (in some i^r), its home edge
ana pinning vertex. Its pinning vertex is the "tail end" of its home edge. The level of a
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mode is the level of its home edge. Each chunk has associated to it a pinning vertex,
the effective level of a chunk is the level of its pinning vertex. The level of a chunk is
the highest level on which it makes non-trivial assignments. The two levels are set
equal for modes. The home edge of a mode is the edge we have previously said is
associated to a mode in a 1 — 1 manner. Pure modes have home edges in <§P , and split
into channel and block modes by the decomposition of $P. ^4-modes have home
edges in £Λ, a 1 — 1 correspondence. The amplitude of a mode is the group element
(or Lie Algebra element) associated to its home edge by its isolated field.

For each given S — L configuration there will be later specified a collection of
disjoint subsets of the edges. Each such subset is the set of edges on which a chunk
lives. We will say such edges "belong to the chunk" or are "in the chunk". In
constructing the field only pure modes whose home edges do not belong to any
chunk are kept.

For the action on the rth lattice, £?r, we take —^ SQ, where
9r

) - (1-5)

See (3.2), (3.3), and (3.4) of [4]. The total action is given as

dr-1

where

5 0 = - S o ° + Σ ( 5 5 - S Γ 1 ) (1.9)
9θ 1 Ur

SR is viewed as the renormalization counter terms. S0 may be viewed as the
unrenormalized action. Loosely speaking we will later take the "quadratic part" of
SQ to be a "free action".

Finite Volume Effects, A Technical Digression. Since we do not know how to handle
infra-red problems in gauge theories, we must work with a finite size system. One
possibility is to use periodic boundary conditions, a periodic lattice. We prefer not
to follow this course. It is rather artificial, and introduces geometric differences
from the infinite volume situation. If we merely use a bounded lattice (free
boundary conditions), then the propagators will feel long range effects near the
boundary of the region. (We have not considered other possibilities, such as
Dirichlet boundary conditions, but these would also not meet the next objection.)
We would like the (isolated) modes, in the small field region, to have their infinite
volume form, as in [2,3].

We would prefer to follow a route that is much like the imposition of boundary
conditions in the work of Brydges and Federbush on Debye screening. There is an
infinite volume lattice (at all levels). Outside a fixed volume, Vi , all plaquettes are S-
plaquettes. Outside a larger volume, V2 , all pure mode amplitudes are zero. Outside
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a larger volume F3 averaging corrections are not performed. (This last step is more
aesthetic to omit. There will then be an infinite number of averaging corrections at
each level, but this is harmless.) The action will receive contributions only from
plaquettes inside volume F3. In fact notationally we write most of the paper in the
notation of a finite lattice situation. (We do not address the fact that sometimes our
trees leave the finite lattice, an easy to correct problem. We do require tb to lie in b.
The treatment of the boundary we really have in mind (involving volumes Vl9 V2,
and F3 as above) is easily translated to a pure finite volume notation, and vice versa.
The proofs will follow the F l 5 F2, K3 treatment of the boundary.

2. The Isolated Pure Mode

In this section we define the isolated field due to a single pure mode, other degrees of
freedom (modes or chunks) are assumed unexcited. Thus we are in a S — L
configuration with only S-plaquettes at all levels.

We first consider a channel mode of level r. We call the mode m, and the
associated edge in S>

CM by e(m). e(m) is the home edge of m. In the figure, showing

e(m)

the channel containing e(m\ let ea be the averaging edge. ea is the home aver aging
edge of m, and we write it as e(m), v will be the pinning (vertex) of m. We write this as
v(m). We pick like preferred orientations for all edges parallel to a given direction
over the whole of all the lattices. (Say the plus x-direction for edges parallel to
an x-axis.)

We now start to define the field configuration of the mode m. We write g(m, e) for
the group element assigned to the edge e by the isolated mode m. We also write

g(m,e)=eA (2.1)

A(m, e\ an element of the Lie algebra of G, will be small. If eisinS1 r withr' <r, then
A(m,e) = Q. lie is in <f r, but eή=e(m), βφ<?(ra), then A(m,e) = Q. On the home and
home averaging edges we have

or equivalently
A(m,e(m))= -A(m,e(m))

(2.2)

(2.3)

(for orientations as in the figure!) The value of $(ra, β(m)) [or equivalently of
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A(m,e(m))] will be integrated over in the functional integral. g(m,e(mj) and
A(m, e(m)) will both be called the amplitude of the mode m. We temporarily defer
describing the field for levels below r. We make the observation that the assignments
we have so far made are consistent with the averaging procedure. The averaging in a
situation where all group elements commute and are small is exactly the usual
averaging of Lie algebra elements (associated to the paths involved in the averaging
procedure).

We now turn to a block mode m at level r. In the figure, as in the last case, e(m) in
$BM is the home edge of m, υ the pinning vertex v — υ(πi). IfV and e" in the figure are
both in $A, and parallel to e(m) as indicated, then e' and e" are the two home

e(m)

averaging edges of m, (e1 and e2) We now turn to defining the field configuration for
this mode. Fore in <ίr/, with r '<r, A(m,e) = 0. lie is in <f r, but e=^e(m), eφe^ra),
<?φe2(ra), then A(m,e) = Q. On the home and home averaging edges we have

e(m))
(2.4)

where k± and k2 are numerical factors depending only on the position ofe(m) in the
block. kι and k2 are chosen so that the assignments so far are consistent with the
averaging procedure (we are in a small field region). A(m, e(m)) and g(m, e(mj) are
both the amplitudes.

We now have the A field assignments at the r level for both kinds of pure modes,
zero except for the values in (2.3) and (2.4). [2, 3] present a continuum A field of this
mode consistent with these assignments, as well as assignments to each edge. (The
continuum field does not minimize the "quadratic" terms in SO, the "free action",
but rather this "free action" in the "approximation" that all the #/s are equal. This
is technically easier.)

Note. For our modes in this section all the ,4's are proportional to the same Lie
algebra element and thus we may treat them as (commuting) numerical quantities.
The calculations for these quantities is the same as in [2, 3].

3. The Isolated ^4-Mode

Let m be an ^4-mode of level r, so its home edge e(m) is in SA. Its amplitude is
A(m,e(m)) [or g(m,e(rn))]. We obtain from [2, 3] a continuum field of the mode
consistent with assignments on level r of A(m, e(m)) to e(m) and of zero to other
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edges in $r. [2, 3] also yields assignments to all edges. But, for all edges e in S>r\ r' < r,
we set A(m,e) = 0. This yields assignments that violate averaging at a single edge. As
with /7-modes all assignments and the continuum field are multiples of a single Lie
Algebra element.

4. Ordering of Excitations

Since our Yang-Mills field will be constructed by an inductive process of laying
down excitations one at a time, it is necessary to decide on the order in which this
takes place. We select an ordering on excitations, the Universal Excitation Ordering.
We will write E1 < E2 if excitation E1 occurs before excitation E2 in this ordering.
The ordering will have the following properties:

01) If excitation E1 is lower effective level than excitation E2 then E2<E1.
(Recall lower level corresponds to higher r value, shorter length scale.)

02) If E! and E2 have the same effective level, and E^ is a/>-mode and E2 is not,
then Eί<E2.

03) If E1 and E2 have the same effective level, and E1 is an A-mode and E2 is
not, then E2<E1. (The ^4-modes are last laid down at a given level, ensuring
averaging holds; this determines each A-mode's amplitude at the time it is added to
the field.)

04) The ordering of chunks, of the same effective level, is determined
depending on their pinnings, and edges belonging to them. The ordering of modes is
by their home edges. (Ordering of excitations is determined by their "geometric"
content.)

We have ordered the set of all possible excitations (we have a total ordering). In
any given S— L configuration only some of the chunks appear, and some of the/>-
modes may be absent. This subset will be ordered (by the subset ordering) and is the
order in which this subset of excitations is laid down in the field construction.

5. Prelude to Section 6

We are given a fixed S — L configuration. We will later specify for this configuration
its collection of associated (disjoint) chunks. The field will be constructed from these
chunks, all ,4-modes, and those />-modes whose home edges are not in any of these
chunks. These are ordered, as a subset of all excitations, by the Universal Excitation
Ordering. We denote this ordered sequence as

E19E29... . (5.1)

We have already discussed the isolated field of mode excitations. The isolated fields
of chunks will be later specified. We denote the isolated fields of the excitations in
(5.1) by

#ι,#2> - (5-2)
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For excitation Et we introduce notation for some of its associated quantities :
Isolated field assignment to edge e

e) or g(Ei9e) ,

Isolated Continuum field

Λ(£ί,*) -
Home edge (of a mode)

e(Ei) ,
Home Averaging edge

e(Ei) for channel mode ,

e1(Eί}, e2(Eί) for block mode ,

Pinning vertex
v(Et) .

We may later introduce obvious shorthands, such as

A(i,e) for A(Ei9e) .

For each level, r, we will need a partition of unity with functions labelled by
vertices in i^r. We first discuss a partition of unity on R4 with functions labelled by
points αeZ4.

. (5.3)
α e Z

The φΛ are C°° with the properties
1) {φΛ(x)} is translation invariant. That is, φΛ(x) = φ(x—a) for some function

2) </>(x) is invariant under the discrete symmetries of the lattice Z4 (with origin
fixed). (This requirement is not necessary.)

3) 0(0) = 1,
4) 0(jc) = 0 if \x\>2.
In J^0 each vertex (in f^°) corresponds to one of the φΛ. By scaling the partition

of unity, we get a partition of unity, for each r, with elements associated to the
vertices in i^\ [One is replacing φ(x) by φ(Nrx).] If VE i^r we write φυ(x) as the
appropriate function in the scale r partition of unity.

6. Gauge Invariant Coupling - Laying Down an Excitation

This section introduces the most important and the cleverest idea in this paper. It is
the incorporation of the field of an isolated excitation into the total field. Recall that
the total field is developed inductively, introducing the effects of pure modes,
chunks, and averaging correction modes, in sequence, one at a time. In this section
we assume that the total field has been developed to some stage, and then we
introduce the additional contribution of a single excitation. The field as it has
developed to this point has contributions from excitations at larger (or equal)
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effective scale than the excitation we are about to introduce. (Recall the principle
mentioned in the introduction of excitations being developed in a "background field
of larger scale excitations.") All our definitions will imply a simple addition of the A
fields of the different excitations to linear order in the ^4's.

To be specific, we have laid down the first n — \ excitations, and are about to
describe the incorporation of En into the field, i.e. we know J%-ι,

^ - ι = # π - ι X < ί f Λ - 2 X . . . x # ι , (6.1)

and we wish to define

^ = ̂ χj%_ι . (6-2)

We have previously introduced the (abbreviated) notation of g(i,e) for the
assignment of (€{ (or Et) to edge e.

G(n — \,e) is the bond variable (assignment) at edge e due to the first n — \
excitations, and g(n, e) is the assignment of the isolated field of En to edge e. We are
about to come up with a better form of their combined field assignment for e than
g(n,e)G(n — l,e) - one incorporating the idea of gauge invariant coupling. The
assignment we will get will be G(n,e). We let r be the effective level of En, and
separately treat the three cases, with eeSr\ of r '< r , r' = r, r'>r.

r' <r. In this case we simply set

\9e) . (6.3)

r' = r. This case exposes the essential features of the gauge invariant coupling
procedure, without the technical difficulties of the next case. Were we simply to set
G(n, e) = g(n,e)G(n — l, e) say, then even if J^-i were a pure gauge field (that is,
even if G(n — 1 , dp) = Id for all/? in ̂ r, in a clear notation for a plaquette assignment)
one would not necessarily have \G(n, dp}\ = \g(n, dp)\ for all/? in ̂ r. This we desire.
We are still going to set

G(n,e)= G(n-\,e) (6.4)

for all e for which g(n, e) = Id. (This will always be true.) We will use tv(n ) [as defined
before, the scaling and translation of the universal tree, ΓUN, to scale r and "origin"
v(ri)]. Let e be an edge in Sr whose tail end is v(ri) (one of eight such). We then set

G(«, e) = g(n, e) G(n -\,e) (6.5)

and illustrate this with a trivial figure.

g(n,e)-G(n-\,e)

υ(n) e

Note that the orientation of the edge and the order of #'s in the product will be
crucial. Now let e e ffn be an arbitrary edge. We let e = υavb\nά consider the portion
of tv(n) between v(n) and va, tv(n)Va. This is illustrated in the figure with
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v(n)

e1 , e2 . - . es the path tυ(n}Va note the orientations we are using. Using the figure we
now define

- 1, <?2) . . . G(n-l,es) (6.6)

and in terms of u(e)9 set

= u'1(e)g(n9e)u(e)G(n-l9e) . (6.7)

We leave to the reader to check that with this definition we have achieved our
purpose of making pure gauge background fields not contribute to plaquette
variables. The coupling is to the "F" field not the "A " field of the background. The
excitation En is "grounded" at v(n), its pinning, "pure gauges gauged away from this
point along ίϋ(n)".

r' > r. One is tempted from the r = r' situation to again make use of a tree centered at
the pinning vertex of the excitation and to make exactly analogous definitions of the
G(n, e) field on the lower scale edges. This agrees with the gauge invariant coupling
principle, but it has other technical difficulties. In the case that G(n—l,e)is not a
pure gauge field, the G(n, e) field so generated would not be sufficiently regular as
the scales get finer and finer. The paths through the tree for points arbitrarily close
may be rather different, leading to too large plaquette variables. A solution to this
technical difficulty, that has all the ingredients of the r = r' case, is to "average" the
G(n, e) over different choices of trees in a suitable way. Such averaging is just like the
sort of slightly unpleasant technical device one must use all through this cluster
expansion - the block spin transformation averaging. In both cases one would
rather not average if one could avoid it. On the other hand one can get to like these
solutions of technical problems.

We use now the notation from Sect. 1 t(vί,v29. . . 9vs) for a path as therein
described. We use Γ to label this path, a sequence of edges of different sizes, living in
different lattices. But just as the sequence of edges eι,e2,. . . , es in the last figure gave
rise to a product of group elements, a u(e)9 so Γ gives rise to a product of group
elements, and this product we call u(Γ). We associate to Γ = t(vί9v29. . . 9vs) the
weighting

w(Γ) = φV2(e)φV3(e) . . . φvs^(e} , (6.8)

where we here view v2£i^r, v3ei^r + 1,. . . ,vs-ί ei^r + s~3 in deciding the scales of
the φ's. e is the center of e. Note that

Σw(Γ) = l , (6.9)
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where we fix υ± and vs in the sum. We now generalize the averaging procedure of
Sect. 1 [4]. Refer to this section now.

At this point we follow a slightly different procedure for modes and for chunks.

Procedure for Modes. We define GΓ(n, e) by

u~ί(Γ)g(n,e)u(Γ)G(n-Ί,e) , (6.10)

and find G(n,e) by minimizing

e)) . (6.11)
r

Procedure for Chunks. We define ΰ by minimizing

Σw(Γ)d2(ΰ,u(Γ)) . (6.12)
Γ

We then set

G(n,e) = ΰ'lg(n,e)ύG(n-\,e) . (6.13)

ΰ depends on n and e, and may be denoted as ΰ(n, e).
In both cases we will operate in a situation where the indicated minima are

unique.

Note. One carries out the construction of laying down group assignments to an edge
e with e in its preferred orientation, (e in the two figures of this section). Afterwards
one sets g(—e) = g~1(e).

7. Gauge Invariant Coupling - An Epiphany

We write ^^ for a gauge transformation ^ of 3F . We desire the result of a gauge
transformation on an inductively constructed field. We let hv(&) be the group
element assigned to vertex v by ̂  . (A gauge transformation is exactly an assignment
for all vertices of an element of G. When v may be identified as a vertex in several
ir' ', the assignment to it in all its occurrences must be identical. This is a
compatibility under gauge transformations that we have enforced by the gauge
invariance of our block spin transformations.) If (6i is the isolated field of an
excitation, we will write Ήf for the isolated field that is obtained by transforming
each edge assignment g(i,e) to the assignment gg(i,e)g~l (for a fixed 0eG). We
abbreviate <e^™w by <$l(9\ We obtain the basic result

Gauge Twist Relation 1.

(<gx&)* = Ct(*}x&* , (7.1)

from which may be obtained by induction

Gauge Twist Relation 2.

(<gnx ... x^ίf = ̂ }x ... x # ί < * > x l * . (7.2)

1 is the "trivial" field all of whose edge assignments are the identity.
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We note #f may be obtained from Cί? for a mode, by merely changing its
amplitude g(i, e(i)) to gg(i, e(ι))g~l. We will construct chunk fields defining their
internal variables so that #f may be obtained by merely changing each internal
variable from ga to ggΛg~l.

One cannot deny an inner harmony evident in the Gauge Twist Relations (7.1)
and (7.2).

8. The Geometric Content of the Chunks

We assume a fixed 5 — L configuration, and in this section specify the geometric
content of the associated set of chunks. Preliminary to specifying chunks, we
develop intermediate objects, hunks.

Let/? be an L-plaquette in some;/. We let .M(p) be the set of edges, in $\ r—Ncr

rg.v^r + 1, Ncr to be specified later, determined as the minimal set satisfying:
1) At each level (r—Ncr^s^r + l) it is a union of blocks and channels.
2) At each such level it contains all edges within distance (Ncr + Cίc)N~s of p.

(Clc to be later specified.)
We say Ji(p^) and -Jtf(p2} "overlap" if they share an edge. This provides an idea

of connectivity on the \M(p)\ (where/? runs over all L-plaquettes). The hunks are
the connected components of this set. Thus each hunk is some union of elements
Jί(pi), the Pi L-plaquettes.

Each chunk will be a union of hunks, the chunks will be disjoint, and their union
will be the union of hunks. Thus specifying the chunks is equivalent to determining a
partition of the set of hunks. This partition is selected as a finest partition (not
necessarily unique?) for which the following property holds.

Well-Separation of Chunks. Let E be a chunk of diameter d(E). We let SU(E\ the
umbrella edges of E, be the union of edges of length ^C2cd(E), and at distance
^C2cd(E) from E. (C2c will be later specified.) Then if E' is any chunk with
d(E')^.d(E), the edges of E' do not intersect the edges in $U(E).

This property (for C2c <; 1) will guarantee that in the process of laying down the
isolated field of £, the paths Γ appearing in (6.9) with positive weight do not pass
through the edges of any other chunk whose field is already laid down.

Note that in distance, as above (determining the diameter of E, the distance
between E and an edge) all objects are viewed living in R4. We will always mean that
by distance. Thus d(e^,e2] is well defined even if r(eί)^r(e2).

The level r(E) of a chunk E is the level of its highest level edges. The effective
level re(E) of a chunk is the largest r' such that

N~r'^d(E) (8.1)

with d(E) the diameter of the chunk. [We do not let re(E) be negative, if (8.1) selects
a negative number we set re = 0.] v(E\ the pinning vertex, is in i^Ye, and chosen at
distance <N~re from E.

9. The Isolated Chunk Field

In this section we present the construction of the isolated chunk field of a chunk E.
In fact, our construction involves two subroutines that are detailed in later sections.
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Using these, the field is developed by an inductive process. (Recall that the isolated
field of a pure mode is developed as determined by a single group element, its
amplitude. The assignments of the isolated pure mode were nontrivial to arrive at
[2, 3] it is not surprising that the field of a chunk, developed as determined by many
group elements, its internal variables, is highly non-trivial to construct.) The chunk
has level r(E), its isolated field assignment to edge e will be g(E, e), which we will
abbreviate by g(e).

The assignments we find will be restricted by the following criterion determined
by the S — L configuration in which the chunk appears. For/7 an S-plaquette we will
require [gdp( < ca, for p an /,-plaquette inside the chunk we will require [gdp\ > f (the
gdp, isolated field values).

The two subroutines we use are Field Interpolation (developed in Sect. 10) and
Gauge Interpolation (developed in Sect. 11). The g(e) are determined level by level
(from higher level down). Assignments are developed by a sequence of approxima-
tions. We will find a sequence of assignments to e, g(e,r\ r^r(e) such that

9(e) = g(es(e)) if ez&l . (9.1)

We introduce g δ ( ' , - ) such that

-\) . (9.2)

Global Gauge Requirement, If the internal variables of a chunk are modified by
sending g^hgh"1, for some fixed Λ, then the isolated field assignment to any edge e
likewise is changed g(e)~^hg(e)h~ί. (This is automatic for eεE — $A—£I.)

Let { g t } be the (ordered) set of (independent) internal variables, determining our
chunk. We view the action of G on this set {g t }

h — {hg th~ ~1} . We may determine the
isolated chunk field for one point in each orbit of this action, and use the Global
Gauge Requirement to determine the isolated chunk field for any set of variables.
We implicitly follow this route to unobtrusively ensure the Global Gauge
Requirement (we need not mention this in the course of our construction).

We proceed to the detailing of the chunk isolated field construction, specifying
g(e) and g(e,r).

r(e)<r(E). Here we set

g(e) = ld if r(e)<r(E) . (9.3)

r(e) = r(E). We now set

g(e) = ld if ez<$\(E} , (9.4)

g ( e ) = ld if r(e) = r(E) , eφE , eφ£A . (9.5)

We mean e G E to mean e is in the set of edges of the geometric chunk (as given in
Sect. 8). lie is in E, of level r(E\ and not in <f/ or $A it is assigned an internal variable
of the chunk (freely specified subject to plaquette variable restrictions mentioned
above). Assignments to edges in $A are determined to satisfy averaging. We finally
set

g(e,r) = ld , for r^r(E) . (9.6)
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The Induction Step. We assume g(e) known for r(e) ^r, and g(e, r') known for r'^r.
We desire to find g(e) for r(e) = r + 1, andg(e, r + 1). As above we need not consider
βe^+1 and e e (E - Sl - δA), r(e) = r + \.

Gauge Interpolation will determine g(e,r + \) [and thus g(e), ee$ϊ + 1 ] , and
dependent on those assignments, Field Interpolation will specify g ( e ) for

10. Field Interpolation

We assume known g(e) for eε$r, and ee(S>r + 1nE — ̂ ), and for ee$ϊ + l. These
latter assignments will be given in Sect. 11. We desire to determine g ( e ) for all
e e S r + ί [actually we need only determine assignments ΐoreε($r + ί—g'A—£>

I—E)].
We let i^c be the set of vertices in i^γ outside E. We will later want a C00 partition of
unity associated to these vertices, {φ'v(x)}> such that

Φί(x) = Q for d(x,v)>4N'r . (10.1)
We require

Σ &(*) = !

outside Er}^r (here viewing this as a solid set in R4).
For each vei^c

r we will find an assignment gv(e') to each edge e' in Sar + l out-
side E. We now pick an edge assignment g(e') that is a suitable average of these:

g(e') = Avg"(e') , (10.2)
V

defined by minimizing

X φ'v(e'}d2(g(e'\ g°(e'}) , (10.3)
i;

where e is the center of edge e '. The assignments g(e') determined above may
not satisfy averaging. But we use these values for edges e' in ^r + 1 — <^+1, the
assignments to edges in $Ά+ΐ chosen to guarantee consistency with averaging.

We turn to the task of specifying the gv(er). Let tv be the tree in J^r centered at v,
as previously defined. We switch to a gauge where the assignments to the bonds oftv

are trivial ( = Id). For any lattice vertex, v', we set u(υ') = u(tvv>), the M'S as in Sect. 6
(with a slight change in notation). The assignment in the new gauge, h(e), for
e = vavb

>in ̂ r is

(υb) . (10.4)
We write

° , (10.5)

where the {Lα} are a basis for the Lie Algebra, and the Aa(e) are "small". We will
only use h(e) for e "close" to v. We will explicitly want

-' . (10.6)
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We fix α and look at the assignments to the edges of <£r (in terms of A 's). We first
split A" into a sum

Both AQ and A$ are in the radial axial gauge about v, equal zero on edges in tv. AQ
yields plaquette values constant on all parallel plaquettes. In each of the six
plaquette orientations there is a plaquette, one of whose vertices is v, such that A*
and AQ assign the same plaquette values to it. (Aξ is a constant curvature field
matching A α at v, and Al is a fluctuation from this constant field. The smoother A*
is, the smaller is Al.) We now set

if

(10.7)
if

We use [2,3] to determine a distribution on the edges of ^r + 1, determined as
minimizing the continuum actions subject to the constraint of satisfying (10.7). We
will use only the corresponding plaquette assignments on JS?Γ + 1, deriving edge
assignments as follows.

Using the tree tύ, where v is v as viewed in i^r+1, we can find unique A*(e'),
eΈ$r + 1, such that Aa(e') = Q if e' is in tϋ, and the plaquette assignments are as
above. We define

hv(e') = eϊA°(eΊL* . (10.8)

(Note that while we work with α fixed above, one is working in an abelian situation
(artificially).)

We now define { g v ( e ' ) } . gv(e') is a gauge transformation of hv(e'). There are
ψ(v')εG, for υ' in i^r + 1, such that if e' = vavb\ then

gv(e')=^l(υa)hv(e')ψ(υb) . (10.9)

The ι/f's are chosen so that { g v ( e ' ) } have the desired values on $j + 1. If v in J£r + l is a
base point and so identified with v in ϊ£r , we require ψ(v) = u(v). [Note the g v ( e r )
may not satisfy averaging.]

Edge Smoothing. The assignments g(e), ee$r + l as generated so far may have
undesirably large plaquette values in plaquettes at the edge of the chunk (satisfying
\gdp\^ca only for an TV-dependent c). We modify the assignments g(e), for edges
outside the chunk but within the distance \ Clcίr of level r + 1 edges of the chunk,
and for edges in En6or

A

+ί, so that \gdp\ ^ca for all ^-plaquettes (inside and outside
the chunk) and averaging is satisfied. Such modification is not unique, but we make
an arbitrary selection of such a smoothing. We will show in paper F, for suitable c,
such smoothing is always possible for chunk fields that arise in our expansion.
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11. Gauge Interpolation - A Herculean Task

Field interpolation needed to be defined only in regions where the field (plaquette
variables) were small. In such a region one worked in a gauge where edge
assignments were locally small. In this local nearly abelian situation, the
interpolation was chosen as (approximately) minimizing the (abelian) continuum
action (locally). This sketchy description of the construction of the last section was
given to show that there was a guiding principle that made this construction rather
natural when one got under its superficial complexity. Granted our guiding
principle did not at all uniquely determine details of the procedure.

Gauge interpolation seems much more complex and arbitrary. It must be
defined where the gauge fields (edge assignments) are large as well as small. And we
do not have as natural a guiding principle as above. We try to make the interpolated
(gauge) fields as smooth as possible; we allow singularities to develop only at a
discrete set of points (determined by topologically impossible-to-smooth configura-
tions). The approximate field assignments g(e, r) introduced in Sect. 9 have as one
purpose the determination of these point singularities.

We begin making a few convenient definitions. We have in the past often
identified vertices in different i^r that occupy the same point in R4. The height of a
vertex v (in any i^r') is the highest level, r, for which vei^r (under our identi-
fications). We now define an r-plane. A plane is an r-plane if it contains some;? e &γ

(p and the plane viewed as lying in R4\ A geometric object, in R4, is of depth r if it
intersects some r-plane, and no r'-plane with r' < r. A geometric object is off-r if it
intersects no r-plane, and on-r if it does. Thus an object is of depth r if it is on-r but
off-r7 for r'<r.

A gauge, φ (x), on a set 0 c R4 is defined as a mapping φ : x -»G, x e -0. If φ1 and φ2

are two such gauges defined on 0, we set dβ(φ1, φ2), the distance between φ1 and φ2,
to be

dg(φ1,φ2) = Infsupd(uφl(xlφ2(x)) . (11.1)
ue G xe ύ

During the course of the developments of this section, there will be a number of
geometric constructions whose details (or proofs) are left to Appendix A. Whether
viewed as technical details, or as the most interesting aspects of the present chore, it
makes sense to separate them from the body of this section.

We now return to the induction step of Sect. 9. We assume g ( e , r ' ) known
for r ' rgr and g(e) for r(β)^r; we wish to find g(e,r + l). For each hypercube H1

in ̂ r we will construct a gauge φi(x) living on Ht. We will use the φi(x) to deter-
mine g(e, t + 1). In this construction we will feel free to use φΛ(x) associated to HΛ in
<£r\ r '<r, that were constructed earlier in the inductive process! We consider

hypercubes of level (r(E) — 1) to have had the identity field φ(x) = Id all x, as gauge.
We call a hypercube large field, if any of the plaquettes in its boundary (24 in

number) are large field. We choose the gauge assigned to such a hypercube to be the
restriction of the gauge assigned (at the last inductive step) to the hypercube of one
larger scale containing it.

Now let HI be any hypercube of level r (and not large field). Consider the
(partial) lattice consisting of the vertices and edges of Hi (in number 24 and 25

respectively). We select an arbitrary maximal tree in this lattice. We assign a gauge
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to the vertices of H^ φi(x), with the property that if e = vavb\ for e in the maximal
tree, then

(11.2)

This condition determines the φi(x) (on the vertices) uniquely up to a change
φi(x)—>gφi(x) for some fixed g. We have now determined φi(x) assigned to the
hypercube H^ as restricted to the vertices of Ht. We must extend the definition
throughout the (hyper-)volume of HI .

The extension of φi(x) is inductively, from the vertices, to the edges, then to the
surfaces, then to the volumes, and finally to the hypervolume. In each step (but the
last) "matching" to the gauges of the neighboring hypercubes of /// is important.
The extensions are performed simultaneously for all Ht (level r, not large field).
Thus we extend each φt(x) from vertices to edges at the same time, each φi(x) from
edges to surfaces at the same time, etc.

Assume the depth of HI is rd(/)^r. Let φf(x) be the restriction of φΛ(x) to Hh

where HΛ is the level ( r d ( ι ) — \) hypercube containing Ht. We will write

Φi(x) = φi(x)φf(x) , (11.3)

and thus actually we need only extend φl(x) from the vertices to all of Ht. (In
favorable circumstances the φί(x) will be nearly constant on the vertices, and easier
to interpolate smoothly than the φt(x). We are building in a hierachy of
smoothings.)

Let e be an edge in $r. It will belong to a number of hypercubes (eight in
number). We will only be concerned with hypercubes that are not large field - our
matching requirements will never concern large field hypercubes. Let Hl be one of
these hypercubes containing e of lowest depth (largest rd). We let e = υavb\ and
consider φί(va) and φί(vb).

Geometric Construction 1 . We find an extension ofφi(x), eφί(x), to a mapping from
<?->G (a gauge on e) such that

a) eφί(va) and eφί(vb) assume given values.

where

We note that if φ[ (va) and φ{(vb) are close enough, then they may be joined by a
geodesic, and c picked equal 1 . We now extend the gauges to e of the other
hypercubes containing e. Let H2 be one of these.

Geometric Construction 2. We extend φ2(x) from a mapping on va and vb to a
mapping from e-*G, such that

a) d (<φ1,<φ2)Zcdβ(φ1,φ2) , (11.5)

b) Δ1(
eφ2)^c(Δ1(

eφ1) + dβ(^^ + Δί(φ2)} , (11.6)
\ Lr J

where eφ and Δ1 are as above.

b) Δl(<φί)zc , (11.4)
L γ
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We now go to the inductive step from edge (or surface) to surface (or volume).
We denote this as the extension from dD to D. We let H± be the hypercube
containing dD of lowest depth. We extend φ[(x) defined on dD to eφ[(x) defined
on/).

Geometric Construction 3. This extension satisfies

a) e φ ί ( x ) = φ{(x) , (11.7)

b) Δ^φD^cA^φί) , (11.8)

(But see caution at end of this section.)
We now extend the gauges of the other hypercubes containing dD. Let H2 be one

of these.

Geometric Construction 4. We extend φ2(x) on dD to eφ2(x) on /), satisfying (11.5)
and (11.6).

As a final extension we assume φ'(x) defined on the boundary of hypercube //,
i.e. on dH. We discuss extending φ'(x) to H. If the mapping

φ':dH^G (11.9)

is homotopically trivial we will use the same Geometric Construction 3 to accomplish
an extension eφ' to all of H satisfying (11.7) and (11.8). In this case we modify this
eφ'(x) defined on //to esφ'(x) defined on H [this becomes the φ'(x) of (11.3)]. esφf is
a smoothing of eφ'.

Geometric Construction 5. esφ'(x) satisfies

a) esφ'(x) = eφ'(x) , xεdH , (11.10)

b) \D^'(^\^-^(-^ψ^MeΦ'} , ( i i . i i )

where the norm on derivatives in the left side of (1 1.1 1) is any reasonable L^ norm,
We finally consider φ'(x) defined on dH of hypercube H where φ' is not a

homotopically trivial map from dH to G. In this case we find an extension,
discontinuous at one point x0 . XQ is picked as a point in H with the following
property :

Centering Property. With H level r,

d(x0,

if H' is any cube that contains ,YO, with level H' = r'^r, then

where c(Ht) is the center of H± .

Geometric Construction 6. eφ'(x) defined on H — x0,
 as an extension ofφ'(x) defined

on dH, satisfies

a) eφ'(x) = φ'(x) , xedH , (11.12)
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~~ ° \\μ\x,υu)y ~ \u{x,x0))'"' ~j a{x9xQ)

(11.13)

Finally we come to specifying the g(e, r +1). Let e, level > r, be ϊy ^and e e ///, HI
level r; then we set

g(e,r + l ) = φl~
1(va)φί(vb) , (11.14)

where we have had in some cases to make an arbitrary choice of Ht for edges
contained in more than one level r hypercube (lying in a boundary volume).

Caution. The geometric theorems of Appendix A, require a universal bound on
Δί of φ's (as scaled to unit scale) and it is important to check our construction
maintains such where we use these theorems.

Appendix A. Geometric Constructions

A. Geometric Constructions 1 and 3

These two constructions will be treated together as part of a more general
construction. Let M be a compact differentiable manifold (without boundary) and
provided with a Riemannian metric. Let D be the unit rc-cube,

D = {Q<^Xi^l} .

Define Δ± as defined after (11.4), on any mapping from a subset of D into M.

Theorem A.I. For each constant c1 , there is a constant c2 ~ c2(cί), such that iff is any
homotopically trivial mapping from dD into M satisfying

, (A.I)

there is an extension o f f , f e , mapping D into M, satisfying

/) . (A.2)

We do not know if the limitation in (A.I) is necessary, whether there may not be
a universal c2 .

Proof. There is an ε > 0, such that if A±(f} < ε, then the image of/ lies in a piece of
the manifold diffeomorphic to a cube in Euclidean space. Moreover one can set
things up so that the inclusions of these Euclidean cubes into M have universally
bounded differential, and likewise the inverse mappings have universally bounded
differential. Thus if (A. 2) holds for mappings into M' = Rs for some constant c (s the
dimension of M), then (A. 2) will hold in the context of the theorem for some
constant c ', for mappings satisfying Aι(f)^ε.

We wish to show that if

f:dD-*Rs , (A.3)
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then there is an extension fe

fe:D-+Rs (A.4)
satisfying

Δl(fe}^c(s)Δl(f) . (A.5)

Moreover if the image of/ lies in a cube, fe can be chosen so that the image of fe

lies in the same cube.
We now prove the statement of the last paragraph. We choose axes in Rs parallel

to the edges of the cube. It is enough that we carry out the extension for each
component of the mapping separately, effectively proving (A.3)-(A.5) with s=l.
We are reduced to proving that there is a c such that if

f:dD^[a,b] , (A.6)

there is an extension of f,fe

fe:D-+[a,b] , (A.7)
such that

f} . (A.8)

In fact we can choose the c of (A. 8) to be 1 ! This is a well-known extension theorem.
With the considerations above for the situation with A1(f)<ε, the proof of

Theorem A.I is now reduced to proving the existence of a c^q) so that if

A(/)^ι , (A.9)

fe may be found satisfying

The germ of the idea that will be used to prove this, is to look at simplicial
approximations, of a sort, and note that only a finite number of mappings must be
considered. A bound for each of the finite set will imply (A. 10).

We consider simplicial subdivisions of dD and of M. We require the inclusion
maps of simplices to be differentiable. For sufficiently fine subdivision - we hold
these truths to be self-evident :

1) That each / satisfying (A. 9) may be associated to a "good" simplicial
approximation fa [in a sense to be specified in 2)].

2) That there is a c'[ such that there is a mapping f f , for each /

ff .dDxI^M (A. l l)
with

ff(x,0)=f(x) ,

/?(*,!)=/"(*), (A'12)

and satisfying
(A. 13)

(c'[ independent of/.) This map/f may be chosen so that/1

e

x(0 =f*(x, t) is uniform
motion along a geodesic.
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3) That there is a c'2 such that there is a mapping /2

e, for each fa

f2

e:dDxI->M (A. 14)
with

/2e(*,0)=/β(x) , /2e(*,l) = *o(/*) (A. 15)

[i.e. /2

e(X 1) is a trivial map]. And f2 satisfies

(c'2 independent of/). Remember there are only a finite number of/ f l 's.
4) That 2) and 3) imply our theorem [verify the claim in the sentence containing

(A.9) and (A. 10)].

B. Geometric Constructions 2 and 4

We treat these two constructions at the same time. Let M be a compact
differentiable manifold (without boundary) and supplied with a metric. Given two
maps g1 and g2 into M we define dM(g1,g2)

g2(x)} . (A. 17)
X

With B the until ball, we have given three maps

A'.dB-ϊM , f2\dB-+M , ff:B-+M ,

where // is an extension of /i .

Theorem A.2. IfdM(fι ,/2) ̂  £M> w/Y/z εM an absolute constant independent of the three
maps, then there is an extension f2 of f2 to the ball satisfying

dM(f!J2

e)^c1d
M(f1J2) , (A. 18)

^ ι ( f 2 ) ^ c 2 [ Δ 1 ( f f ) + d M ( f l 9 f 2 ) + A1(f2)] , (A. 19)

for some absolute constants c1 and c2 .

Proof. We construct f2 explicitly. We let a be given as

We let B be centered at the origin (to simplify notation). For |x|^l — a we set

We determine /2

e(x) for |Λ:| ̂  1 — α by requiring

/,(0=/2(f*) (A.22)

for xedB, to be constant speed motion along the shortest geodesic in M with

Λd)=/2(*) , (A.23)

Λ(l-α) =/!(*) . (A.24)
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C. Geometric Construction 5

We consider a mapping / of the unit ball B into M, a compact differentiable
manifold (without boundary) equipped with a metric.

Theorem A.3. There is a mapping fs:B-+M, such that

*)fS\8B=f\6B , (A.25)

-^ιω (A>26)

Proof. We will need a smoothing function w(x)eC°°, satisfying

a) w(x)^0 ,

b) J wOc) = l , (A.27)

c) w(x) = 0, M^l .

We define

(A.28)

where s is the dimension of B.
We also need a function rf(%)6C°°, d'.B- +R1, such that

(A.29)

We now embed M in some Euclidean space R\ and view /as a map from 5
into R*. We define

/β(x) :£->*'
by

(A.30)

(a vector-valued integral). The distance between fε(x) and M in JR* can be made
uniformly small

d(fε(x\M)^εr all x (A.31)

for arbitrarily small ε' if ε is small enough. If ε' is sufficiently snail, the map from the
image of fε to M, given by mapping /e(x) to the closest point of M, is a
diffeomorphism. (This is the "normal projection" onto M.) It is thus sufficient to
verify (A. 26) for such an/ε./

s will be/ε followed by the normal projection onto M.
The verification of (A. 26) for/ε is straightforward.

D. Geometric Construction 6

We let / be a mapping on the boundary of the unit ball B,

B={\x-x0\^l} , (A.32)

f .dB^M , (A.33)

M a compact differentiable manifold (without boundary) equipped with a metric.
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Theorem A.4. There is a mapping fes on the ball minus its center

fes:B-x0-*M , (A.34)
such that

a) f*s\SB=f\SB , (A.35)

b) |Z>α/es|^cα - ^pj- —-— Δ±(f) . (A.36)

Proof. We define rf'eC00,

such that

(A.37)

and follow the construction of subsect. C using

(A.38)

instead of (A. 30). Notice that in this equation the argument of/remains on dB. As in
the above subsection?/is viewed as a mapping from dB into R*. The theorem follows
via the same route as above in a straightforward manner.
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