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Abstract. We continue our program to establish the Higgs mechanism and
mass gap for the abelian Higgs model in two and three dimensions. We develop
a multiscale cluster expansion for the high frequency modes of the theory,
within a framework of iterated renormalization group transformations. The
expansions yield decoupling properties needed for a proof of exponential decay
of correlations. The result of this analysis is a gauge invariant unit lattice theory
with a deep Higgs potential of the shape required to exhibit the Higgs
mechanism.
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1. Introduction

We wish to establish the existence of a mass gap for the abelian Higgs model on the
subspace of gauge invariant observables. Earlier work on this problem hasled to a
method to establish these results and to a partial solution [1, 2]. Herc we continue
this study with the development of a multiscale expansion suitable for the problem.
The basic formulation of the model is given in [2]. We consider an action function
S? which is defined for a gauge theory on a lattice with spacing ¢. We use the Wilson
form of lattice action, which is gauge invariant. Thus it is important to consider
gauge invariant observables such as loop variables

u(y) =exp [ 3 iesA(b)} (1.1)

bey

where 7 is a closed curve on the lattice, or string variables
s(x, p, I') = p(x) exp <i€8 th A(b)> Py), (1.2)

where I' is a lattice curve from x to y. These variables must be renormalized
appropriately, by multiplying or subtracting ¢-dependent terms. For gauge
invariant operators (but not in general) we expect exponential clustering in the
equilibrium state defined by S° This state is given by the limit of normalized finite
volume expectations

(B)= ; {e S Bu, ))Iu@ . (1.3)

(We assume periodic boundary conditions, but this is not crucial since as a
corollary we establish the existence of the infinite volume limit.) Thus for gauge
invariant functions B, C we expect

[KBC)Y —=<{B)<CH|=0(1)exp[ —mdist(B, C)], (1.4)

where 0 <m and dist(B, C) denotes the distance between the supports of B and C.
For unit lattice models, (1.4) was established in [3] and here we investigate the
corresponding estimates uniformly in the lattice spacing e.

The exponential decay or mass gap is intimately connected with the Higgs
mechanism. We see the Higgs mechanism at work through the evolution of the
effective action as we proceed lower in momentum. The action on the &-lattice
appears almost massless, but as we approach the unit lattice, the Higgs potential
exhibits a pronounced ring of minima at |¢| = ¢,, which leads to a mass term for the
gauge field. The apparently massless rotational degrees of freedom of ¢ can be
gauged away.

To obtain decay, we need a convergent expansion with a small parameter.
Thus, we restrict the coupling constants (e, 4) to be sufficiently small in order to use
cluster expansions. Such methods yield a nonperturbative analysis of the vacuum
state, by explicitly displaying the exponential decay (1.4). Classically, the gauge
field mass is of order e/A'/%, so we choose this ratio to be a fixed number of order
unity.

The general ideas of these methods were described in our earlier papers
[1, 2, 4]. Gauge invariance enters in a crucial way, both in the Higgs mechanism
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described above and in the control of ultraviolet divergences. By separating high
and low momentum parts of the interaction in a gauge invariant way, we can
choose convenient gauges to discuss renormalization of the high momentum part
and to discuss the spectrum of the Hamiltonian in the low momentum region.

In the present paper, we consider clustering properties of the high frequency
modes of the model. Our goal is an exact expression for the effective action on the
unit lattice. The expression is complicated by the need to treat large field or large
action regions differently from the perturbative, small field regions. The effective
unit lattice theory is, however, similar in spirit to the one considered in [3]. A final
cluster expansion will be performed on this theory in another paper, and the proof
of clustering and of the existence of the mass gap will then be complete.

The dual requirements of clustering and of the renormalization group force us
to develop a cluster expansion for each frequency mode separately. We formulate
an inductive form of the model after k renormalization group transformations, and
then the bulk of this paper is devoted to clustering of the (k + 1)-st mode in the next
renormalization transformation.

The heart of our method is the way we accomplish changes of gauge without
spoiling the exponential decoupling properties of the functional integral. We
integrate out each frequency mode using a simple “tree” gauge on blocks (called
axial gauge). After a number of modes have been integrated out, such gauges are
not sufficiently regular to allow control of all the terms in the expansion. This is
expected even in perturbation theory, where only gauges such as the Landau gauge
are well behaved in the ultraviolet. Thus we must change the gauge in which those
modes are expressed in the effective action. In keeping with the locality
requirements of the cluster expansion, the change of gauge must be performed in
patches, with slightly different changes on the overlaps. It turns out that the effects
of the lack of alignment are small, and this way we avoid building up effects over
long distances — something that tends to happen when changing gauges globally.

A similar problem occurs in our treatment of the effective unit lattice model.
We have to change from the Landau gauge to the unitary gauge that is best suited
for exhibiting the Higgs mechanism. Again, this must be accomplished without
spoiling decoupling. Thus the method for changing gauges is the crucial aspect of
our analysis, both for high momenta and for low momenta.

This paper is organized as follows. Having discussed Green’s functions in [ 2] as
global operators, we start by introducing localized forms of these operators which
are better suited to the cluster expansion. We replace kernels G(x, y) with kernels
Goo(x, y)=G(x, y){(x, y), where { is smooth and supported in some neighborhood
of x=y. This section also serves to review the roles of the various operators. We
then briefly describe the cluster expansion in the first renormalization step. This
leads to the formulation of the inductive hypothesis for the form of the model after
k renormalization steps. Finally, we describe thc expansion in the general
renormalization step. Usually we are able to prove the necessary convergence
estimates as we describe each part of the expansion. This has the advantage of
allowing us to consider each part in isolation, without worrying about the overall
structure. Unfortunately this philosophy cannot be applied to the large field
estimates. For these we find it necessary to postpone the estimates of convergence
until integration over the final set of ficlds on the unit lattice. However, using the
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expected small factors arising from terms in the action with large fields, we show
how convergence will eventually be obtained. We also assume estimates similar to
those proven in [5] on the perturbation theory for this model.

2. Localized Kernels

In the previous paper [2], a number of operators arose from the application of
renormalization transformations to the Gaussian approximation to the Higgs
model. (Equation numbers from that paper will be prefixed here by 1.) Exponential
tails in the kernels of these approximately local operators are unavoidable.
However, they are inconvenient for our analysis here, since they interfere with the
decoupling of distant regions of space-time. Therefore, we introduce localized
versions in which the tail has been cut off at a sufficiently large distance. In
addition, for operators depending on an external gauge field, the dependence will
be reduced to a bounded region. The use of the localized operators instead of the
exact ones will introduce small error terms that are easily controlled.

Let us consider gauge field operators first. The minimizer H, maps unit lattice
bond fields to y-lattice bond fields, y = L™*. The configuration A = H,B minimizes
the Landau gauge n-lattice gauge field action under the constraint Q, 4= B. We
define H, starting with a large but fixed torus T, , of size O(e ™ '), say, in each latticc
direction. [ Recall our convention that subscripts on tori T or T, indicate the lattice
spacing (in this case ¢); superscripts (k) indicate the number of times the initial
lattice has been decimated.] This avoids spurious dependence on the lattice T, on
which we put our model, and so simplifies the infinite volume limit. (Alternatively
we could take the limit T;, , » € Z%) Construct a translation invariant localization
function {, such that

T eing 2
and such that {, is a smooth function of b. Here be T,, b'e T{¥, and
e, =) D2e ) =(LFe)* 42, (2.2)
r(e)=lloge; ', r>1. (2.3)
Then the localized version of H, has a kernel
Hy 1oelb, b)={,(b, b)H (b, D). 24

There is no ambiguity because {, permits a sampling only of b near b’, relative to
the size of T ,; H is also translation invariant. Since {, is smooth, H ,,. inherits
the regularity and decay properties of H,, see (1.7.2.2). So we have

|Hy joc(b, )| < co™c 4t ™00, (2.5)
Hy 1oc(b,b)=0 for dist(b,b)=5r(e,), (2.6)
|Hk,loo(b5 b,) - Hk(b7 b,)' é eﬁcr(ek)eACdiSt(b’b,) B (27)

and similarly for 0H, .., 0*H, 1, and for Holder derivatives of H, . of order less
than two.
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Next we consider C%, the covariance of the k-th step gauge field. This is defined
on the unit lattice T{¥,. First define

COby,by), if dist(by, by) <3r(ey),

0, otherwise, (28)

CO(b,,by)= {
and extend by translation invariance to T{¥. Then put

Cloe=(I-Q*Q)C™ (I~ 0*Q); (2.9)

this insures that C{X), like C%, satisfies the constraints from the renormalization
transformation and from the axial gauge conditions:

QCin=ClaQ* = (2.10)
Y Clob,bo)= Lz Ci'é’c(bo, b)=0. (2.11)
bely x bely, x

(See [2, Chap. 2] for definitions of the block averaging operators Q, 0%, and Q%) We
have estimates analogous to (2.5)-(2.7) for C¥..
From C{, and H, ,,. we construct a localized #-lattice gauge field propagator
analogous to Z,:
k-1

D 100= Z Hip CO M HE L = z Gihn. (2.12)

Superscripts L5, 1, etc. indicate the lattice spacing for operators rescaled to
nonstandard lattices. This propagator derives its regularity and decay from that of
C¥ and Hy .. Thus

(D roc /) D) S ce™ BRI (2.13)

and similarly for derivatives of &, .. and Holder derivatives of order less than 2.
Furthermore,

@k,loc(bbbz)zo for dist(by,b, )3% r(ey),

and Z, . is close to Z,, see (5.4.3) below.

The operator ¢, gives the quadratic form for the k-th-step field strengths
F®(p)=(ie,)~ ' logu(p). As before we construct a localized operator on T{¥ from o,
on T 1

olpy,pa), il dist(py, py) S S rle ),

2L
O, loc(pla Pz) = 0 (214)

otherwise,
where py, p, are plaquettes of T{%. Recall from [2] that
0= Qi —0Gy_4,0%)Q;* = QI — 02,0%)Q5*, (2.15)

the second equality following from the change of gauge, (1.5.2.6). Writing &, in
hierarchical form as in (2.12) and using the regularity of H;, 0 < j <k, we see that

loW(py, po)l Sce cdistPrr) - for  dist(p,, p,)=c. (2.16)

[The rapid decay of the terms with small j compensates for the scaling factors
(Ln)~*.JForclose p,, p, the kernel of o, can be large, of the order of  ~ 2. However,
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we shall only encounter situations where f*(p,)=(0A4)(p,) for p, near p,. Then we
prove that

(@S ) PI=1f Yl (2.17)

as follows. Write f®=0[]A4+ f', where [] is the characteristic function of a
neighborhood of p,. The distant part (o, /") (p,) is easily estimated by || f®] . b
(2.16). The near part is similarly bounded since g, is a bounded operator on curls
[2]. It was also shown in [2] that g, is bounded from below. In view of (2.16) we
have that

10k 10c(P 1 P2) = O3(P1s Po)| Sce” e cdtrnp), (2.18)
so that (2.16), (2.17) hold for o, .., and
Or10e2C¢>0 (2.19)
as well.
Another important kernel is the one generating the gauge transformation:
(0¥~ 2,0*05*0)A=H, A+ 0C,A. (2.20)

The kernel C, is constructed from the basic gauge transformation D, which
changes the minimizer from axial to Landau gauge (1.5.1.1):

Hy A B=H,B+0D,B. (2.21)
By changing gauge in each term in the hierarchical sum defining &, and applying
(1.5.3.1), we obtain

k—1
=Dyt %, DEMCOM MG ek (2.22)

The kernels of all these operators have an exponential decay on their respective
length scales; for D, the required estimate is (1.7.2.4). The sum over j is not well
controlled for close points; this will not be important for us. For more distant
points, however, the rapid decay of terms with small j controls the scalings and the
sum over j to yield a uniform bound

|Cil(x, b)) S ce ™ cdist=bD) — dist(x, b')>c. (2.23)

Here xe T, ,, b’ € T{4*. Of course there is no uniform bound on 0C,. The localized
version of C, is defined using another smooth cutoff:

<1,
O 224
We then construct C, 1, on T{¥ from C, on T§¥):
CroroolX, 0)=(x, B)Ci(x, b'). (2.25)
Then C, ), also satisfies (2.23) and
ICh10elx, ) = Cylx, b)| S e~ (@ g medisttn (2.26)

In the scalar field sector, we have the y-lattice propagators G(€2, u) defined on
subsets Q C T, with Neumann boundary conditions. To localize the dependence on
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u, we interpolate in a smooth fashion between operators with Neumann boundary

1
conditions on small cubes. Let {[J,} be the collection of R r(e, - )-cubes that can
be built from cubes of size M =0(1) as in [6]. Define
Gius x1,%2)= Y 2G5 X1, X3) (2.27)

as a convex combination of Neumann propagators. The convex combination
varies smoothly with (x, + x,)/2; it involves at most 2 terms and is concentrated
on [, when (x; +x,)/2 is near the center of [}, We then put

G toelts X1, %2) = ({01, %) G145 X1, X5), (2.28)
where {}(x,x,) is a smooth function of x; —Xx,,
1
0, if |x;—x5/= rlee—1)

4L
(ilx g, x5)= : (2.29)

1
1, i x—x,| S o rle-y)

8L

The boundary conditions are always at a distance O(r(e,)) from x,, x,, so a
straightforward application of the random walk expansion of [6] shows that

l(Gk. loc(u)f) (X)I é Ce—CdiS‘(supplf’ ) H f ‘] o (230)

(G 10ett) f = G(Q, 1) f) (x)| S e~ T(erd o~ cdistisurpt L0 | ) (2.31)

for dist(x, 2°) = O(r(e,)). [Each G,([],, u) is close to G(Q,u) for the relevant x,, x,,
therefore the convex combination and G, . are close also.] We assume that u is
smooth in the [],’s entering the sum in (2.27); for (2.31) we assume smoothness

throughout the subset QC 7,. This means that in a neighborhood of each [, there
exists an A, 4 such that

u=explien(4+04)] with [0A4],]0*A4| < 0(ple,)). (2.32)
Here
pley=|loge, ', p=0(1) (2.33)

is our logarithmic scale for small fields. Bounds analogous to (2.30), (2.31) hold for
covariant derivatives and Hdlder derivatives of G, (1) of order less than two.
We use G, ,. to define a localized quadratic form for scalar fields,

A 1ot = a1 ] — ag Q)G 1, (1) O (u). (2.34)

Here we have simply replaced G,(£, u) with G, ,,. in the definition of 4,(Q, u); see
(I.4.6.4). Hence

|Ak,loc(u;x17x2)_Ak(qu;x1’x2)|
Se r@demedxmimxl for dist({x,x,}, 29> 0(r(e;)), (2.35)

1Ay rocUs X1, x5)| S ce ™72l (2.36)

1
A gocu; X1, x5)=0 for |x;—x,|2 ir(ek—l)' (2.37)
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Again we assume u is smooth in the relevant regions; 4, .(u; x,, x,) depends on u
only in an O(r(e,))-neighborhood of x,, x,. Finally, in view of (2.35), the lower
bound (1.7.3.2) applies to 4, 1,.(4) as well. Let ¢ be supported in a region having an
r(e,) neighborhood where u is smooth. Then

(@, A 10W)) 2 ¢ ;k)* u(<b—, b, )d(b ) — (b -)* —ceipley)’ ;(k) |p(x)I”. (2.38)

Finally, we need to construct a localized version of
CQ, u)=[(42 u) +aL™>Qu)*Qu)l 1", (2.39)

the single-scale propagator for the scalar field in the k-th step. We have already
replaced A4,(Q, u) with 4, (). Let us assume u is smooth in a neighborhood of 4,
the region for the Dirichlet boundary conditions in (2.39). We define

CPw) = [(Ay 10e) +aL2Qu)*Qu)l 1. (2.40)

This is of course a nonlocal operator, but by (2.38), C%(u) ™! is bounded below and
a random walk expansion as in [6] can be used to prove that

|C% (s x, x5)| Sce ™l (2.41)

We shall actually use a convenient resummation of this expansion. The basic
expansion has the form
CPu=7y C,, (2.42)

where w is a walk on a lattice of spacing M = O(1). We define the localized form of
C®(u) to be

Clhoelts X1, X5)= 3 Co(Xy,X5), (2.43)

where the prime indicates that only @ remaining within4r(e,) of x,, x, are included.
Let X be a connected union of r(e,)-cubes, and let X° be the cubes of X not at the
boundary of X. We define

C(/’f,)x(u? X1, X5)= ZX Colx1,%,), (2.44)
where the sums runs over walks not included in ¥, which remain within X° and
which intersect each cube of X°. Then we define

CP)=Crow) + 2 Cx(u), (2.45)

and the convergence and locality properties of the random walk expansion imply
the following facts about these operators. The local part C%\,.(u; x1, x,) depends
only on u in an O(r(e,)) neighborhood of x,, x,; it vanishes for [x; — x,| >3r(e,) and
is bounded as in (2.41). The operator C%} ,(u) depends only on u in X. It vanishes
unless both arguments are in X, and is estimated as follows:

ICP x(u; X, x5)| S e TR X, (2.46)
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Here and elsewhere, | X| refers to the number of r(e,)-cubes in X, not the volume of
X. This estimate can be summed over all connected sets X to show that

|Cacltts X1, X2) — CP(us x4, xp)| S e T el ==l (2.47)

If X does not intersect A° then C%y(u) does not depend on A; neither does
C%)\oeu; X1, x,) depend on A if dist({x, x,}, 4 >7r(e;). In this case we write it as

Cloe(us x1,%5) = CPhocus X1,%,), A large enough. (2.48)

Note that all operators introduced through random walk expansions of C%(u) or
G,(Q, u) transform properly under gauge transformations, that is, by the difference
of the gauge transformation between the points of evaluation of the kernel.

Lastly we note that the single-step covariance for the gauge field can be given a
random walk expansion analogous to (2.45), with similar estimates:

=t T Oy 2:49)

3. The First Renormalization Step

In this section we briefly and informally describe the sequence of operators
performed in the first renormalization step. This will serve to orient the reader in
the more detailed descriptions for the general step, and it will motivate the
inductive hypothesis for the general step. Most estimates will not be discussed here,
since they are special cases of those proven for the general step. We avoid formulae
in favor of verbal descriptions, except for the first few operations, which are special
to the first step.

We wish to give an expansion for the partition function, or for an unnormalized
expectation of an observable F. Thus we consider

[Fl= [ ZQu@ e S HF (3.1)

where F is a gauge-invariant function, a product of terms like |¢(x)%,
d(b_Ju(b)p(b.), Re(iee?)” '(u(p)—1). Bach such term may need to have an
appropriate constant subtracted in order to obtain e-independent bounds on the
full expectation

CFy=L[F)]. (3:2)

These “Wick ordering” constants are given by perturbation theory to a low order,
and will be discussed carefully in a subsequent paper on the perturbation
expansions.

The action on T, the e-lattice, is

1
Su.¢)= ¥ 8";;[1—Reu(p)]+%<¢,—é'i¢>+ Y eP@(x)+Eq+E;. (3.3)

pe T xeTe
Here — 4;=D;*D;, and
1

P(§)= 2101 =5loP + 7 —3om* |9, (3:4)
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We have taken the bare scalar field mass [coming from the radial curvature of
P(¢)] equal to 1; other values can be achieved by scalings. We have included a mass
renormalization dm?*=d0m?(e, .,¢) and a vacuum energy renormalization E,
=E, (e, 4, ¢|T,}). The constant E,= E(e, T,) normalizes the integral (3.1) so that
lim [1]=t1. (3.5
Ae—0
We will be considering subsets X of the lattice T* obtained by decimating T,
k-times and scaling the resulting lattice spacing to a. We denote by X* the set of
bonds with both endpoints in X; then X** denotes the set of plaquettes with all
four corners in X. A superscript ¢ denotes complement, so that X¢= T\ X, X*¢
=T®*\ X* etc. Thus X°*¢ includes bonds with one or both endpoints in X.
We rescale our expressions from T, to the unit lattice T,. The scalar field is
multiplied by ¢ ~“~2/2 and we have

LF]= [PuZ@paolu, ¢), (3.6)
Qo(u, )= Fexp [ - ZT ¢o *(1—Reu(p))—3<d. —4,0>

— L Polox)— X %5m282|¢(X)|2—é”o—E1]- (3.7)

xeTy xeT,

Here P, is the first in a sequence of scalar potentials forming the dominant term
after k steps:

1
Py¢)=L|pl* —2(Li)* 1] + m(L"E)"- (3.8)

We use a rescaled coupling constant
Je=(Lre)* ™7, (3.9

and since e?/A=0(1) we have also ¢}/4, =0(1), by (2.2). The constant &, includes
the scaling factors,

&o=Eo —(d—2)|T,|loge " (3.10)

Each factor ¢ in F acquires a factor ¢ “~2/2 but we use the same notation.
Ultimately these scaling factors will be cancelled by successive rescalings back to
the original scale.

We begin to compute [ F] by integrating over u, ¢ under constraints given by
the block fields v, y on the L-lattice. This is the renormalization transformation,
described in the previous paper. With the gauge fix J,,(u), it takes the density

Qo(u, ) to
21, W)= | DuD $d(v/Qu)da(u)F exp [ - % eo *(1—Reu(p))

—3aL”*(p— Q). v — Q) —3<{¢, — A,
— X Po(o(x)— X %5m282|¢(>€)lz—é"o—E(O’—El]- (3.11)
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Here we define
E® = —|TMlog(al’™%/2m), (3.12)
which normalizes the transformation so that

[F1= [dvdyoi(v,y). (3.13)

The first operation is a decomposition of the lattice into large and small field
regions. This is accomplished by means of a partition of unity,
1= z éA(OO)cZABO) . (314)
AD
Here Ay C T, is the small field region. It is composed of r(e,)-cubes, in each of
which the factor y ¢ enforces the following conditions:

IDdI<pleg), lw—0WPI=<pley), |PI=7ig " *pley)
IO <pleg), where fO(p)=(ie,)” ' logu(p).

The factor { 40 forces at least one of these conditions to be violated somewhere in
each r(eq)-cube of AP,

Later in this step we will introduce sets 4, 4%, etc., which are obtained from
AW either by deleting r(e,)-cubes at the boundary of A", or by deleting r(e,)-cubes
covering regions with “irrelevant” terms from the expansions. (These are terms
bounded by a high power of rescaled coupling constants.) In the k-th step we will
introduce analogous small field sets 4%, AP, etc.

In the previous paper, we worked with the basic quadratic form (A4, 0A4). This
is obtained now by expanding the Wilson action in powers of e,. In 4** we have
small ) so we write

(3.15)

" (S p)*

/2
o [ —Reu(p] =3/ + ¥ (=17 T 4 W)
=1 O + Volp)+ Wolp). (3.16)

We consider the expansion up to order 7 in e, explicitly, the remainder is called
“irrelevant” because it is bounded by cefp(e,)"* > <ee? ™! for i1 large enough. The
first term, summed over A{** gives rise to the quadratic form 1{A** f(©)
AD*x O (We use A** to denote the set of plaquettes with all four corners in A;
A* denotes the bonds with both endpoints in A. The same symbols are used for the
corresponding characteristic functions.) The low order terms in e, are new
interaction vertices.

For factors (iec?)™ Y(u(p)—1)=(iey,) ‘e ¥*(u(p)—1) in the observable F,
pe AQP** we expand:

) B B © B (ze )n—l .

(ie(z)) " 'e~*(u(p)—1)= Zl e 2 (;—, (fo(p))
=Fro(p)+ Firelp)- (3.17)
The first three terms are relevant (for observables this means they do not go to zero
with &.) The others are included in F(p). (Our use of the terms “relevant” and
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“irrelevant” is different from standard renormalization group language.) We sum
over these two terms for p e ©(F)n AY**, where n(F) is the set of plaquettes having
factors Re(iec?) ™ (u(p)— 1) in F (with multiplicity). Denote by S(F), &(F) the bond,
sites having factors :¢(b_)u(b)p(b . ):, or :[¢(x){*: in F. The result is the following
expansion for F:

F= Z n irr P) H Frel(p) n

S,,Cn(F)mAW)** peSx peSs pen(F)\A%D)**
xRelies?) " '(ulp)—=1) [ @b ub)pb,): [T o). (3.18)
beB(F) xel(F)

The irrelevant part of the gauge field action is Mayer-expanded:

GXP[— ) Wo(l?)} = Y I (e —1). (3.19)
peA(OO)** SpcAO* pes),
We group together large-field regions and regions with irrelevant terms. Anticipat-
ing the structure of the induction, we define A{3"¢ as the union of r(e,)-cubes
covering A and all plaquettes in S, or S,. We divide 4{3" into connected
components {X,,}, and define
gO(Xw)=

SeCa(F)nAO™n X 5, c AD* Xy peSn

X Flrr( ) H Frel(p)

peSENXEX pe(n(F)nX{,f)\A(OO)**
x Re(iec?) " '(u(p)—1) [ @b )u(b)p(b.):
beB(F)n X%,
< IT el TT (e7 7w —1)
Xel(F)nX,, pESp

X eXp [ y (1 —Reu(p))

peXg;k*c\A(O)** eo

- X (Po(¢(X))+%5m282|¢(X)lz+E1(X))}- (3.20)

xe Xm\A(OO)

We have written E; = ) E(x), E,(x) defined by fixing one vertex at x for each
xeTy
diagram defining E,.
The remaining r(e,)-cubes covering the support of F are divided into connected
components {X,}, and we put

FordXo)= [T Fualp) 1 @b )u(b)p(b.)

peXg*nn(F) be X% B(F)
x [T et (3.21)
xeXsnE&(F)

Our density now takes the following form:

e p)= Y ¥ [2uDpd(v/Qu)d ) o 2aco

AD) (X}

X T180(Xo) [T Fo, 10X ) exp[ —5 (A [0, AG** [

—3aL7*p—Qw)e, v — Qu)$)> —3{¢,(— 4.)¢>
P10 AG) — o — E'], (3.22)
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where the basic interaction terms have been included in

Pl AP)= 3 (PG +m YO+ B T o). (323)
xed peA@
These expressions have a form similar to that of the inductive hypothesis for the
general renormalization step, introduced in Sect. 4.1. Nevertheless, we continue in
an informal fashion with the first step, in order to outline the conceptual ideas
whose details are treated in the general case of the next chapter.
We begin with a translation of the gauge field which takes the block field v out
of the o-functions of the renormalization transformation. Thus we put

o [y i beBB)NAPE,
" g, otherwise.
=u(AP*0%),, (3.24)

where the prefactor A4{"* indicates that what follows is present only for be 4%,
From the restrictions on the fields, we have that uj = €%, with |4}| <cp(e,) in
AP* The axial gauge o-functions arc invariant under this translation. In A,
o(v/Qu) becomes proportional to §(QA4).

In the general step, a gauge transformation is needed at this point. However, it
is unnecessary here.

The quadratic form for the gauge field in A{** is

<A(10)**f(0), A(IO)**f(O)>

= (AP*HOA + L 2Q%f), AD**(0 A" + L™ 2Q°%f)>, (3.25)
where
f(p)=(ieo)” " logu(p). (3.26)
A second translation is needed to remove the term linear in A’. We put
A'=A0 — AQ*[72C00* QS (3.27)

which does not precisely eliminate the linear term. However, it is local, and away
from 04 the linear term is extremely small. If we neglect terms at 04 and
localized terms of the order of e~ we obtain the main quadratic forms for
block and fluctuation fields:

<A(10)**6A(0), A(lo)**ﬁA‘O)>+ <A(50)’**ﬁ U%,loc/l(so)l**f>-

The prime denotes decimation (taking the corners of blocks only); the superscript
L indicates the block lattice spacing.
Let us write the background gauge field in A* in terms of A¥. It is

u=(Q"*v) explie(4'” — AL*L 2 CIQI*Q*)]. (3.28)

We wish to expand in A? in the scalar field quadratic forms, and in the
observables F, ., where this gauge field appears. This will give us scalar field
forms that depend only on the block gauge field. Let 6, be the characteristic
function of A{* We expand in 0,4'?. For terms of zeroth order in 0,4 we have
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a background gauge field
uy = (AP*Q*0) (AU ) exp(ieg AL * L™ CIRL0*Q°*f) .

Here u® =exp(ie,A?). Terms of first or higher order in 0,4” will be treated as
interactions.
The expansion yields for the scalar field forms

3al72p— Qu)d, p — Qu)p) +3<P, — A, ) =7aL™*Cp—Quy)d, v — Ou,)$)
+1($, = 4,6+ RO, 0,4) + T W), (329)
O

where R contains the first 7 orders in A”) (or in e,) and the higher order,

irrelevant, local terms are incorporated in W{%([]). (These terms can always be

localized to some r(e)-cube [].) Similarly each factor F (X ,) is written as a sum

of two terms: the first m orders in e,, and the remainder which is bounded

uniformly in ¢ for an appropriate choice of .

The next step is a scalar field translation to remove the termlinear in ¢ in (3.29).
Again we make a local translation,

¢=¢+aL 2ADCRUu)Q*(uy )y (3.30)

Neglecting terms at 04 and local terms [range O(r(e,))] of the order of e ~"*?), we
obtain the basic quadratic forms in ¢ and y:

3P (A, +aL™2Qu)*Qu)p' "> +3 <A, AT 1olu) AL w) . (3.31)
In the small field region 45 we have small block fields:
lo(p)— 1] =ceopleg), W= cpleg)ig 7,

(Da ) (D) =cpleg), b e AP,

where (b )=1u,({b"_,b ). We change nothing, then, by inserting a factor
X1, a0 (v, ) which enforces these conditions by means of approximate character-
istic Tunctions. Similarly, it can be shown that

A9 <cpleg) in AQ*,  p P <cpley) in AD*, (3.33)

(3.32)

and we inset a factor y/ Iy enforcing these bounds in A5,

We now consider now the interaction terms 2, lOC(A‘O’) and ROu,,0,4), and
reorganize them as follows. Vertices are restricted to AY), and terms whose
combined order in e and 4'/? is greater than /i are removed. The result is a standard
set of terms which will appear at each iteration step. Here they are grouped into an
interaction VO(AP, u,, A, '), a polynomialin A¥ and ¢'*. All other terms are
either localized near A or else are of high order in couplings. The other terms are

written as Y Wi%([]), each term localized at an r(e,)-cube, and we have a bound
0
(W) = e™(e/eo)<. (3.34)

Here >0 is a fixed small power, x> d is a fixed large power, and ¢, is the lattice
spacing to terminate the induction.

go =2 min{1, (8//e2)!/2} . (3.35)
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The bound (3.34) is sufficient for a rough treatment of such terms, since (I¥¢/e,) is
summable on k even with an entropy factor (Lf¢/ey) % Terms satisfying such
bounds are called irrelevant.

We avoid any further consideration of the irrelevant terms by Mayer-
expanding them as in (3.19). This includes terms W (), Wi%([J), as well as the
small terms neglected in obtaining the quadratic forms for A?, f; ¢‘©, and .
Grouping all irrelevant terms localized in [] into W{°([7), we write

exp(— L WD) = 1 11 Cexp(-Wo@)-1). (3.36)

In a similar fashion we break off the low order terms in the observables, and we
obtain a sum of terms, depending on whether the relevant or irrelevant parts of
Fy 10(X,) are chosen. (For observable terms, irrelevant means bounded independ-
ently of ¢.)

We then avoid regions with irrelevant terms exp(— W °([J))—1 or from
Fi 10X ). Subtract from A all such regions; call the result A and define 4" by
deleting an r(ey)-collar from it.

The original characteristic functions y A are inconvenient for our subsequent
analysis because they couple block and fluctuation fields. We remove them, relying
only on y;, A" and 7y for restrictions. This means we expand each characteristic
function as / =1—y We obtain a sum of regions A which contains only 1-terms:

XA(QO): Z C,;l(gmc. (337)
;1(0)
Here the function {’ e forces some field to be large () in each r(ey)-cube of
AO\AY. Then A is defined by deleting a collar from A

We now are prepared to calculate the integral over d)‘o), A9 in A%, We write
the integrals there as normalized Gaussian integrals with conditioning at the
boundary of A(%). This conditioning is given by ¢©, A*in A%, and is a source of
some nonlocal effects which must be dealt with. First of all the normalization
factors for the Gaussian integral depend on the fields in 4(%)°. These can be written
as the normalization factors without conditioning, Z A Am)(u ) times quadra-
tic forms in ¢ 401, A” 4. These forms are nonlocal and ghey must be given
random walk expansions. Secondly, there are cross terms between the fields in 4
and in A% in the exponent in the normalized Gaussian integral. We take care of
most of these with a translation localized near the boundary of 4%). The residual
linear terms, of the order of e~ “° are left (resulting in an uncentered Gaussian)
and produce small effects in the cluster expansion.

The result is a small-field integral of the following form:

[duS (A", 0o [T Fo el X,,) exp [— VAL, uy, A, ¢O) — ¥ WEO(X)].
o (338
Here A", ¢'9” are the translated fields, and the terms W ?(X) come from the
random walk expansion mentioned above. The complete expression for our
density is of course much more complicated; we focus on this because it is the only
remaining nonlocal effect. We give a cluster expansion for it now.
Without going into details, it is worth remarking that if we pull out the terms in
V© which are independent of ¢, A4©® (call these V%)), all other terms are

con:
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uniformly small (bounded by a power of ) because of the restrictions on the fields.
The cluster expansion puts the integral (3.38) in polymer form,

eV S ] ga(X, (3.39)
(Xo} a
The polymer functions g, depend only on fields in X,, and exhibit exponential
decay in |X .

The clusters X, intersection A} have some dependence on ¢ g, A4
The remammg clusters have completely decoupled from the large field’ region. We
denote the region they cover by A(%. In this region we resum the cluster expansion
and use perturbative expansions to calculate the effective action for v, .

The resummed integral in 4 is written as

zp(AF))
V)

The first factor is the expectation of the portion of the observable in A% in the
interacting fluctuation measure. The exponent is the effective action, which is
calculated as follows. We interpolate the interaction V@ — V{9  with a prefactor ¢.

At the same time we interpolate away the characteristic functions ' in 4{%). The
perturbative part of the effective action is

exp(logz(49)). (3.40)

P (A) = P logz (A=, (3.41)

d
ol dt“
and the remainder involves truncated expectation values in the interacting
fluctuation measure with parameter t € [0, 1]. These truncated expectation values
can be given a cluster expansion exhibiting their locality properties. Since they
involve at least n+1 interactions, the estimate on the resulting clusters is
improved; there is a high power of couplings or a large field effect from a derivative
of y'. Thus the remainder is expressed as Z WLY'(X), a sum of localized, irrelevant
terms.

The perturbative terms involve a set of diagrams, the propagators of which are
fluctuation covariances Cb, C‘,?(’m(ul) with Dirichlet boundary conditions on A%,
These nonlocal covariances are replaced with our standard localized ones, C{2) and

}Sg(ul) with the difference given a random walk expansion. Any term involving a
covariance other than C{2) or C{%(u,) is extremely small, O(e ~ "), and localized
with an exponential decay. For simplicity we extend the range of integration of
vertices to all of 4Y; the difference involves only small, local terms in A~ AE).
As a result of these changes we have

Vi AR)+ P A = P4 1o A + T O (X). (3.41)

A perturbative contribution to zy(A4))/z(4%)) is also extracted through
integration by parts. When the order in couplings is high enough, the expectation
is calculated with the cluster expansion. Nonlocal covariances in the perturbative
part are replaced with local ones as above.

In a final operation, we Mayer-expand the irrelevant terms W{?" and W%,
The region A% is defined as the part of 4} free of irrelevant terms, either from the
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exponent or from the observable. All the terms associated with the connected
components {X,} of the large-field region A{%° are grouped into large field
functions g,(X ). We rescale the L-lattice of blocks to unit lattice spacing. From
the block field y we get a contribution to the normalization energy:

E®'=(d—2)(logL)|T{", (3.42)
and we put
& =6,+EP+E. (3.43)

The result is the following expression for our density:

0, )= % f@”/ﬁ“)c*)ﬁ Agor ﬂ g:(X,) H Fi ol X )ZAW)E*CZAOg)gv(ux)

{X o}
X €Xp[”‘i<A(50)/**f 1)> 01.100/1(50>,**f“)>
-3 <A(0)l1‘p’ 4 1,10C(u1)A(80),w> AWI,IOC(A%O)) _(”‘{Ol] . (344)

We write explicitly the integral over u® in A%)°* because in general, normalization
factors Z(,{< o(u) will depend on u®| Aftger through the background field u,. We have
also 1ntroduced the rescaled field strength f(p)=(ie,)~ ' logu(p). The expression
(3.44) will serve as a model for our starting point for the general step.

4. The Inductive Hypothesis

Our starting point is an expression like (3.44) which depends on fields, u, ¢ on the
unit lattice. These were the fields, v,  on the L-lattice in the previous step, but we
have rescaled and renamed them. We assume that we have already performed k
renormalization transformations and expansions of the type we are about to
describe. Thus the unit lattice here corresponds to the I¥¢ lattice if we had done no
rescalings. The original lattice T, is now T,, n=L"¥ we assume that Ire<e,
=min{1, (84/e*)'/?*} ¢, with f>0 small and e<1. Thus we are stopping the
inductive expansion somewhat before either of the two lengths in the problem are
reached. The length 1 comes from the curvature of the scalar potential, the length
(824/e?)1/2 comes from the curvature of the vector field potential when ¢ is replaced
by a value minimizing its potential. When Lf¢>¢,, we apply a final cluster
expansion designed to exhibit the Higgs mechanisms. This will be the subject of the
next paper in the series. The expected correlation length is of order
I=max{1,(84/e?)"*}.
Our k-step density has the form

ox(u, )= Z J"ﬂ [JuU)IA‘J)‘*]Qk(u O { X} {u}),

J=

Q;((u, (b: {X(uj’ R u(“})

= Ak, age- 1y [1edX )n Fie 10X H [Z % j)eke Aw(uk)]

P B IO, g A
=3 (AT G Ay o) AET VD) = Py 1o AET ) = 6] (4.1)
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If we integrate this density over the u, ¢ variables, we obtain our original
unnormalized expectation [F]. The measure du'” is the normalized measure on
u(), fdu?=1.

We now explain the various elements of this formula. Each X, is a union of
r(e,_ ,)-cubes of the L™ '-lattice, and the X ,’s do not overlap. Each X, also specifies
subsets AN X, for 0<j<k—1,0<x<13. These are unions of r(e;)-cubes of the
L/n-lattice. These sets satisfy compatibility conditions arising from our construc-
tions. In particular, with AV = U (49N X ), we have A CAY; Y for j>1. We

have covered already the case j = O, which is slightly different. For j=1,2=1,...,8,
11 the sets A9 are determined by AY) , by subtracting collar neighborhoods of
widthr(e;) in the L/n-lattice. We have 49 CAY) | The sets A7), A} need not lose
anything from AY}, 4{), though they may be smaller The sets A4, AY) lose a collar
from AY), 4, which may be smaller than 44, 4. These sets w1ll be defined below
in a manner analogous to that in the first step. We define A4 as the set in T} -,
obtained as the union of I/-blocks at the points of 4Y. The factors g,(X ) represent
the effect of large fields or irrelevant interactions from all previous steps. The
factors g,(X,) depend on u'”, 0<j<k—1 and on u, ¢.

The external gauge ficld appearing throughout the initial density is u,. It
depends on all the u" [or equivalently, the AY =(ie,)” ' logu"’]; but in AL~ V* it
simplifies to

e =(Q*u) exp(—ie 7y 100 Qi * ), (4.2)

where f®(p)=(ie,)” ! logu(p). This is just a localized version of (1.4.5.4).

The form of u, in A%¥~V*¢ is quite complicated; we will see it as we construct
U, + 1 in the induction step. It is important now only to know that u,_, depends only
on the fields 4", u in a neighborhood of b of size r(e, _ ;)/2L on T{¥. Furthermore,
the configuration is smooth in the sense that for each j<k (and lattice spacing
{=L"/), and for each r(ej-cube [] in AY, there exists a gauge transformation
u,—uj such that

ui p=explie;,L 7 Az)  with A7), [(0°A%) (P, [(0* A% (x) Scplepi(e)  (4.3)

in . In the k-th step the behavior of u, in A%~ V*¢ matters only in operations
involving the Gaussian normalization factors.

The configuration u, on T* glves a configuration i, on T{¥* by taking a
product along the bond in T"‘)* ie.,

iy, p=(Ch_. by ). (4.4)

The factor z; 4u-n- gives restrictions on u, ¢ in A%¥~1 The following are
implied by the smoothed characteristic functions in 7, -1

If(k)(p)|§cp(ek), peAg‘“)’**,

(Da,®) (B) Scpley),  bedf™ D,
[P < chy (e, if (Lk‘la)d</1, XEA(OI‘_“’,
PEl—BA) VA Lfe) P = c(Lfs)~ 'pley), if (L) 22, xedg™ V.

4.5)
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We have incorporated some rescaling factors (powers of L) and the difference
between p(e,) and p(e, ;) into the constant c.
The Gaussian normalization factors are given now, in a rescaled form.

Z(/‘i‘zlﬁ)c*c = IQAAgJé’C*CéAx, AH))r(A)éAH))rc*c(QA(l%c*cA)
x exp(— g {AYE* A, 0* o 0AE* A) — EJ, | A5*]), (4.6)

Jj.loc
where A lies on the I/y-lattice. The subscript to 4 indicates where an A-field is
integrated; the subscripts to d,, and o(Q A) indicate which blocks have axial gauge
conditions and which block bonds have conditions on QA. We have Dirichlet
boundary conditions in A{)* We have included a constant factor to take care of
the scalings and make this independent of k. It is defined using

E,=—log [fi (Lfn)“‘”z} #7)
’ 2n
[AYE*] = [AFg*| = [AVG (LT — 1) — | AL (4.3)

Here || A{)*¢| is the number of free integrations in AY%*¢ after enforcing the
o-functions.
Similarly for the scalar field we have

Z )= [ D 4 exp(—3{AYYP, (A5 ew) + aL 2 P(u)) Ao > — ELJ AT,

(4.9)

with
Plu) = 0(u)*Oluy) , (4.10)
EQ = —(d—2)logLy. (4.11)

The interactions of u, ¢ are in 2, . (A5~ V). The subscript loc indicates that the
terms therein couple fields no farther than O(r(e, _,)) apart. 2, .. is given by a
perturbation expansion up to some fixed order i, which we describe in detail in a
later paper. For the present analysis, it is sufficient to describe a few basic features
of Z,

The gauge field propagator in &, .. is % 1oc [except for some renormalization

loc*

loc

k=1 ]
transformation vertices, where it is z Gihn see (2.12)} and the scalar field

j=1
propagator is G, 1,.(). The fields u, ¢ appear in the diagrams through the »-lattice
minimizers u, and

b= G 10 () O (U b (4.12)
filp)=(ien®)~ ' loguy(p). (4.13)

Propagators and external fields are connected together at vertices which arise from
an expansion of the n-lattice action. Vertices are restricted to A%~ "); for vertices
involving the gauge field the restriction is accomplished by means of a function #,
multiplying each vector field leg at the vertex. The function A, changes smoothly
from 0 to 1 in a neighborhood of A~ 1*,
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The dominant term for the scalar field is P,(¢,), where

O ML ID + - (ko) (4.14)

Pidd) =y 7y

Under the restrictions in yg, |Py(¢,)| < cple)*. At Pi-vertices with [ external legs, we
have its [-th derivative

PP = cAilple)* ™", for (L)<,
PGl S c(Le)'ple)* ", for  (Le)'> 2.

In fact all terms except Py(¢,) in 2, ;.. obey bounds O(ef ~*(L¥¢/e0)'/* ~%), with o> 0,
small, a<pf. If ¢ or u obey better bounds, then there is a corresponding
improvement in bounds on terms in %, ... We will prove a general theorem on
estimates on perturbation expansions in a later paper.

Also in &, ,,. are vacuum energy and mass renormalization counterterms,
properly localized. In &, we keep track of normalization energies occurring over
the whole lattice. This includes the basic normalization counterterm E,, and
factors from scaling and from normalization of renormalization transformations.

The observable is treated in a manner analogous to Z, .. Each factor
F . 10:(X 5) 1s a perturbative expansion to order m of some of the factors in F [thosc
located in X, a connected union of r(e,_;)-cubes] with the same propagators,
vertices, and external fields as before. The only difference is that the connected
diagrams have at least one vertex from the observable F(X ). Also the expansion is
taken to a lower order in coupling constants for most F’s. The order depends on
how singular F is. The sets X are the connected components of the smallest union
of (e, )-cubes covering all vertices of all diagrams in the expansion for F(A{5 ).

As in the case of the effective action, the remainders from the perturbation
expansion for F(X,) were included in the hole functional g,(X ). In the case of the
effective action remainder terms, this was possible because of a sufficiently high
power of e “%(I*e/e,)'/*~*; in the case of the observable it is possible when terms
obey bounds uniform in k and ¢. The bounds may depend on the numbers of fields
of various kinds in F, and how close they approach one another. The perturbative
terms in F(X,) are considered more carefully to show that they obey bounds
independent of ¢. Cancellations with “Wick ordering” subtractions must be
performed to obtain bounds which depend only on I¥e. For example, as long as
(I¥e)* < J, we expect for the expansion arising from :|¢(x)|?: a bound of the order of
(L Ye)*)? "4+ A Y%ple, — ;)* (with the first factor replaced by loglF™'c if d=2).
According to our convention, the perturbative terms in F(X,) and Z, . are called
“relevant” because in each case they contain insufficiently many powers of
coupling constants for brute force estimation.

Finally, we assume that every factor or term in our starting expression is gauge
invariant in the following senses. Gauge transformations

Uy p = Uy pe THO P(x) - Plx)e (4.16)

(4.15)

leave each expression invariant. We will need to use only gauge transformations
supported in A5 ), so the terms in question are scalar field forms, interaction
terms in #, ,,. renormalized observables F ., characteristic functions y - v,
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and the normalization factors Z(,{L)(uk) However, all expressions possess this
invariance, even those that are buried in the inductive definition of g.. Note that 4
above is any real function on T,, although only its values on T{¥ are relevant for ¢.
We call these transformations background gauge transformations, because the
integration variables 4, u are not involved. In fact, transforming these fields
would affect the axial gauge conditions and the gauge field renormalization
transformations. These are invariant under only a very restricted class of
transformations, which we describe now.

The second kind of gauge invariance is called block field gauge invariance, and
is invariance under

y=tye KD ),
uf) ) expl i (0" A (B)], i be AP, @17
uP—ul | otherwise,

for / a function on T{¥. Here Q;, denotes the averaging operator for real-valued
functions on sites. The dependence of v, and u and the u'” is such that the above
transformations induce the gauge transformation wu, ,—u, , exp[ —ien(¢"Q* 1)1,
and thus we have invariance in the previous sense. Here, however, the variables u
and uY are also transformed, but in a way that does not affect the d-functions
giving the axial gauge conditions and gauge field renormalization transforma-
tions. We remark that the first translation of u in 4Y’* accounts for the lack of a
transformation there in (4.17).

In both types of gauge transformations we would have rotations of the earlier
fields ¢V| agpe Which are integrated over in g,. But since the measure det) is
rotatlonally invariant, no account need be made of these rotations.

5. Renormalization and Decoupling in the General Step
5.1. Renormalization Transformation

A density of g, ,(v,y) is obtained by applying the renormalization transfor-
mations of [1] to g;, as follows:

0k+1 v, )= Z TL[f H dumm* L, uku.k(u é, {Xw} f“m}}

Y [ Dud(v/Qu) jk[]‘ DU e | 2

il

(Xo}
xexp[ —3al” 2<w — Q). v — Qu)d ) — E¥]0iu, b, { X}, {u'}).
(5.1.1)
Here a~1 is fixed throughout, and the normalization is
E® = _log(al~?/27). (5.1.2)

We normalize the d-function on U(1) so that

[dud(w) f)=f(1), [du=1. (5.1.3)
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Under gauge transformations 2 of u, ¢, u” that vanish on points of T* "V, we see
that the d-functions and gj, are invariant. Since u, also transforms by 4, we have
Q(u,)¢ invariant as well. Thus no change is made if we insert the axial gauge
conditions

oaw)=TI [T o) (5.1.4)

ye T‘l’”’ xeB(y),x*y

into the u-integral above.

5.2. Restrictions on the Fields

We insert a partition of unity under the integrals:

1:
PoCAYs= 1 Py A= D" Ppc AR~ D P Al = Dre
a0 " ~,C -,
x [Ixn I »lls I
xePyx xeAK™D\Py yePy yeAk=D"\Py
€ N € N
x 1w I Il I1 Lo (5.2.1)

bePy bEA‘l’g’”'*\Pb peP, peA(l’g‘ RIGaV %

where we denote

_ {X(;“kp(ek)y |¢(X)|) ’ If (Lkg)d < /l
BT V()™ pleg) 1) — (82) (L4212, i (Lo
=1-1

(5.2.2)
Ly =x(plex) (v — Qu)P) W =1—1%,
1o =1(p(e), [(Dg, @) (b)) =1~ 13,

1p=x(exp(ey), [u(p) —1))=1—yx.

Ateach x, y, b, or p where a ° factor is present, we expect to obtain small factors
exp(—cple)?) < ef, for any k, using the positivity of terms in the action.

The function y(p, x) is defined as follows: We let (1, x) be an even, C* function,
equal to zero for |x| =1, and equal to one for x| £9/10, and with

—7(1L,x) =c"'n™ for all n,x. (5.2.3)
dx
Then we put
xp, x)= (1, x/p). (5.2.4)

The restrictions on |¢| are best understood by looking at the leading term in
Prtoe Pl i) = Pi(9), where

Py¢) =L |g1* —3(Lie)*||* + 647 (Lfe)’
=Zllpl—20)* +(24) (1 —20)* +3(Le) (Il —20)*,
d—-2

00=(84)""2(Ike) 2 . (5.2.5)
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For (Ike)! </, the quartic term gets larger before the quadratic term, whereas for
(I¥e)*> J, the quadratic term gets large first. It is easy to see that for |¢(x)| in the

support of x5, Py(¢(x) 2 0(p(e,)?).
We define the small field region A% as the union of r(e,)-blocks, none of whose

points are in A5 "', P, or in bonds, plaquettes, or blocks in P,, P,, P, The
regions A%, 0< o <8 are thus determined. We resum the partition of unity to
obtain
1= ) Cygoekass (5.2.6)
Ag“ 0 a0
where
Cmokn: 2 Il 7 [ Lx

Pa Py Py, Pp xePx  xe Al D\PLAU

A [ Ip>

pePp  peAfT DIPLAO (5.2.7)
Law= TI teer I1 %,
xeAl) pe Ao

Here the sum is over subsets compatible with A%, A%, Y.

Our density now has the form

k-1 )
Gww)= YT [TuT PN/ | [T TuiflyLagrtag

(
Xo) AGO '
k=1 _ )
X Lk, age= v [T 81X o) [T Fr 10 Xo) ‘Ho [Z(X%QC*CZ(/{EQ(”I()]
o) o j=
x exp[ — 3 {AST G, gy o ASTHHEW)

—3al” >y —Qu)d, y — Qu)d)
3 {AETV D, A o) AET VD) = P ol AE )~ E—EV]. (5.2.8)

Let us remark that having imposed the axial gauge conditions, we resign from
all but the following restricted block field gauge invariance:

wy_,lpyeiekl(y). qu_*queiek(Q’*l)(x),
Uy oy L @IAED ey Ly e 1ek(0QB) (5.2.9)
uf) >u) exp(—ie, Lin(@~"Qx ;) (b)),  beAP* only.

These transformations represent exactly the gauge invariance that was not broken
by the axial gauge conditions but was broken by the renormalization transforma-
tion. By compensating with transformations of the block fields v, y, we again have
an invariance. This restricted gauge invariance we intend to preserve in all
subsequent operations. For example, it is easily seen that the characteristic
functions we have inserted are invariant. After integrating over ¢, the ¢-rotation
becomesirrelevant and we will obtain the block field invariance at the next scale, as
described in the induction hypothesis.

In an analogous fashion, yp must be rotated when performing a general
background gauge transformation. After integrating over ¢ we will obtain the
invariance (4.17) at the next scale.
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5.3. First Gauge Field Translation

The first translation is done in 4{"*, and it removes the v-field from the 5-functions
there. As in (3.24) we put

u=u(A9*Q*p), (5.3.1)

cf. also (1.6.2). (The reader may wish to refer to chapter 6 of [ 2], where the effects of
the translations are followed without the complications of the large field regions.)
Using the restrictions [u(p) — 1| < e,p(e,) in AX** and the axial gauge conditions,
we obtain that

uy=e~1 with |A4;|<cple,), for beAP*.

Let us define f(p)={(ie,)” ' logu(p). The restrictions on u(p) and the fact that
v=Qu imply that | f(p)| < cp(e,) for pe A¥"* Under the translation we have

JOp) = AL**(ie,) ™ logu/(pu(pp) + AP*H0A'+ L72Q/) (p),  (53.2)

where p, is the portion of p intersecting some B¥(b'), b’ € A{"*, and pj, is formed by
replacing each bond in p, with the block bond b’ in A¥"* whose B%(b’) contains it.
After this translation the background gauge field is
= (AP*QP v) expiegn[ QFF AT * A’ — Dy 1. 0*QFF(AP*¥(ie,) ™ ' logu'(p)u(pp)
+ AP*FH0A' +L72Q*)], (5.3.3)

for be A%~ V* The background field f, appearing at some vertices in 2, ,,. and in
Fy 10c is transformed accordingly. In A9* this simplifies to

= (3% ) expie[QF* A" — T 1, 0*QF*(0A + L™2Q*f)], (5.3.4)
cf. (1.6.2.3). The quadratic form f® transforms into
B R, g  A DR8
=LA AP logulp)po)
F2APFFAPHHOA + L72QH ), 04 10 AS ™ **AP** (i) logu(p)o(po)
+ 3 (APFOA + L72Q0*), 0y 10 AV *H(0 A + L72Q°¥f))
=92,+9,. (5.3.5)

The translation affects the o-functions as follows.

Oaxt)=0,.(t'), Ov/Qu)= 5A<lk,,*c(v/Qu)5A(lky* (5—7’; QA’> , (5.3.6)

where

ek A i3 N (1
0 ggiors (E QA) = 1] 5(2; (QA') (b )>. (53.7)

beA(ors

The factor e,/2m arises because du,=/(e,/2n)dA,.
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5.4. Gauge Transformation

We need to make an A’-dependent gauge transformation to put u, into a proper
form. The purpose of this operation is to keep the operators H, appearing in u, and
in G, 1, in a good gauge, i.e., Landau gauge and not axial gauge. The axial gauge
operator H,_,, would arise more naturally in our procedure, but it does not have
the necessary regularity. properties. This operation is not performed in the first
step, since Hy=H s, =1.

The unlocalized form of the gauge transformation is based on the identity
(2.20),

05 A’ — §,0%Qe*0A = H,A' +0C, A’ (5.4.1)

The operator C, has an exponential decay, but C, and JdC, can have local
singularities which is why the term 0C, must be removed.

Todo thisin a way that does not introduce nonlocal dependence on A’, and in a
way that does not change u, in A9°*, we make background gauge transformations
onindividual terms that depend on u, in A9°*¢. Up to some small errors, the scalar
field rotations can be removed using the rotational invariance of 2¢, Zy.

The expressions XAg‘)’ Xk, Ag“ 1)’y Fk,loc(Xa)> Z(/{;{))(uk)a <1P _Q(uk)d)a Y- Q(uk)¢>’
ALY D, A 1o AL Py, and Py ,(A% ~V) are the ones depending on u; in
AP+ The dependence is through some simple, localized expressions like

(PQu)P) (V) G roclthe; b, b Juy(b),
(an(“k)Gj, 1o U QF () (x4, x2) fp)*,

or in similar expressions for the diagrams in %, .. or F, . The Gaussian
normalization factors are written as in (4.9), and the dependence on u, is in the
operators

4; toclti) = ajI"'a}sz(uk)Gj, loc(uk)Q;F(uk) and  P(u),

and we have terms of the above type. However, a slightly different procedure is
applied to normalization factors; we describe it later. Let us fix a set of sites where
fields y or ¢ sit; then the dependence on u, _; is only for b in some cube [J, enclosing

. 1 .
all points closer than 3L (e, — 1) to the fixed sites. | There are at most some fixed
number of propagators G; (i) or % ., and each has a range less than
1
iL (e, ). Thus we can choose L such that [], is a cube of size ﬁr(ek).] For the

diagrams without external ¢, y fields, we have to localize one vertex in a unit cube

and consider the localized diagram as a separate term. We define an appropriate

o containing all relevant bonds for the propagators in the localized diagram.
The gauge field appearing in any one term can be written as

u, = (0% 1v) expien[(Qr* — D, 100* 03 0) 1A — L~ 2@1(, 100 Q0% f 1y, (54.2)

where [Jis a $7(e,)-cube in T{¥* containing a collar neighborhood around [J,. We
extend [] to a component of a +r(e,)-neighborhood of A9*\ A$* for all terms
such that [, intersects A9*\ A%*, The values of A’ outside [] do not matter
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1
because ¥, ,,. has a range zr(ekﬂ), and so u, , doesn’t depend on them for
be1, We now write

(01— T 10 ¥ QO IA = (OFF — O I A +wi A’ (54.3)

The kernel wi =(Z, — % 1o.)0* Q0[] involves only the tails not included in the
expansion (2.12). Using the regularity and exponential decay of H;, H; ,,., along
with (2.7) and scaling properties of these kernels, we find that

-1
Kawll)(p’ b/)lé Z (Ljy,)*l—(d—z)*l+(d—2)efcr(EJ)e—CdlSt(p,b/)
i=1
é evcr(ek)e—cdist(p,b’) ,

and similarly for w, 0*w}. Also, w] is finite ranged in the sense that w) =w}[]; we
use wi(b,b’) only for b in [J,C[1.
The nonlocal gauge transformation (5.4.1) is now applied and we have
(O = Zh 100" QiFO) A" = (H, +0C)A +wi A
=H, j,c A +0C, 04 +w, A" (5.4.4)
We have put w, =w' + H, [0 — H, .., and it satisfies the same bounds as wy.
The background gauge transformation
Uy, = Uy = Uy, €XP(—ie(0APCLIA') (b)),
B(x)— P(x) explie (A5 C,[0A4) (x)), (5.4.5)
w(y) () explie(AYC,A4) (),
is now performed on the term localized in [],. The background field becomes
= (0% v) expieg[Hy o, A’ + 045 C, A’
+w A =L 29, 10 0%05%  f 1, (5.4.6)
for be AP*;in AP* it is unchanged from the expression (5.3.3), obtained after the
first translation. This field depends on the term considered, but we shall remove the
term w, A’ from this expression later (only in A9*). Without w, A’ the field u is

independent of the term.
There are still the phase factors at ¢ and . We define

¢ (X (15()6 wk(A(k)Ck locA’ )(x) W/(y)zlp(y)eie"(}lgk)ck"°°Al)(y> )

By (2.26), C; 1,c(x,b) approximates the phase factors in (5.4.5), while being
independent of [J,. The measure d¢ is rotationally invariant, so we can replace d¢
with d¢’ and drop the prime. We have not yet integrated over 1, so a different
density is obtained by replacing ¢’ with . However, the new density oF, ;(v, ) still
has the property that |dvdyof, ,(v,y)=[F].

After these rotations, the scalar field still have small, term-dependent phase
factors. The scalar fields appear as ¢(x)exp[ie(w,A4") (x)], w(y)expliew,4") (y)],
where w, =AY Cy o — A C, [ satisfies a bound

w,(x, b)| L exp(— cr(ey)) exp(— ¢ dist(x, b)), (5.4.7)
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[this follows from (2.26)]. Like the w, A’ terms, the w, A’ terms will be expanded out
of all expressions.

The same constructions apply to f,(p)=(ie,;n*) ' logu,(p), and we end up with
fUp)=(ie,n?)~*logu,(p). Of course, the term 0AY°C,[]A" disappears. The terms
involving w; A’ will be separated out later.

The constructions described above were motivated by a desire to preserve
locality, and to avoid effects of the gauge transformation from reaching the hole
functionals g,(X ) or the large-field regions. The Gaussian normalization factors
Z A(J)(uk) are intrinsically nonlocal objects; all regions are essentially tied together.
Only after some expansions can some small terms be localized. Thus at this point
we must resign from a local form of the gauge transformation. Recall from (5.3.4)
that u, has been written as

(AP*u) (AP*Q5% 1v) expien A3 (QFF A" — T 1, 0¥ Q¥ (0 A+ L7 2Q°%f)). (5.4.8)
We put
AL — D 10:0*QfF ) A’ = APHOP — T 10,0 Q5 F ) AP A’
(0% — Dy 10.0*O1* JA* 4" = AP*(Q3* ~ D 10 0% 05 *O)AP* A
+ Hy 6o A$* A"+ 0C,AP* A +ws A’ (5.4.9)
Here

Ws= [(gk,loc’“@k)a*Qi*a +H, _Hk,loc]A(sk)*

is another small, exponentially decaying kernel. We can gauge away the term
0C, AP*A', leacing us with the following background gauge field for the
normalization factors:

(Au) (AP* 0% v) expie [ AL (01 — T 1050 AL A’
—L” Zzg{)*gk,loca*Qk—% lf + Hk,loc g‘)*A/ + WSA ] . (5410)

The term ws A4’ will be removed later on; it couples 4’ to bonds everywhere in T,.

5.5. Second Gauge Field Translation

We translate a second time to eliminate most of the term in 2] linear in A". This is
analogous to what is done in Sect. 1.6.1. The linear term is almost equal to
{AP*F*L72Q°%f, QecH A", since by (1.6.1.5), (2.15) we have
0, 0A'=Q0H, A" . (5.5.1)
So we eliminate most of the linear term by a translation approximately equal to
A(")*L ZC”‘)H*é’*Qe 1f
The translation we actually use is localized, and is given by

A=AV — APFL2CRH 100 05% 1 f - (3.5.2)
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Our construction of a C{¥) satisfying (2.10), (2.11) ensures that d, (4) =9, (4®),

loc

3QA")=5(QAW). The quadratic form 2/ becomes

Q/l =1<AU‘)**8A“‘) k. 1oc A(k)**BA(k)
+ (APRRL2QH — DAY L L HE 10c0*OF% 1 f, 0 oe AT **0A™)
"'EL 4<A(k)**Qe*f‘aA(k)*Cg)c K 10c0* QK% 1 S, O-k,loc(A(lk}**Qe*f
_aAg‘)*Cig)ch loca*Qk+ 1f)>' (5~5-3)

In the second term we isolate a term localized near A% and a small term. We
write

9 = </1(1k)**L‘2Qe*f, O-k,locA(lk)**aA(Zk)*cA(k)> ,
and in the term with A9* instead of A4%*¢ we put
Or100A45* AW =5, | OAP* AW =,0AP*TAY +wyA%
= QLO"H AP* 1A% 4wy A®
SOTH,, 10 AD* AW 1y 4B (5.5.4)

The %r(ey)-cube [ is centered near the plaquette that we are evaluating
Ok 10045 % A® at. The kernels wj, wj have range less than 3r(e,), and we have

Wi(p, b)l,  [Wilp, b)| Se ", (5.5.5)

In (5.5.4) we have applied our usual method for obtaining formulas for localized
kernels analogous to those valid for unlocalized ones [in this case, (5.5.1)]. The
precise form of the error terms will be unimportant; only bounds like (5.5.5) will
matter. The f-A® cross-term is now

2+ (AL 2O, w3 A =, Ok +10"H,, ocClorL™? Ag()*a*o_k,locaA(k)>

loc

+ L7200 10" H 10 AT A (5.5.6)

We insert the decomposition f= AY**f + AP ** in the last two terms. The
terms with A% **¢f will be denoted by 25. The first A%** term involves

CR* 0, oD =T+W], (5.5.7)

"

with another small, short-ranged kernel wj. The term with the identity operator
cancels the second A%** term. Thus if we define

Cows AWy = LAPREL2Q, w5 AW
— (AR LT Q5 0 H oo w5 AV (5:5:8)

2,=9,+2;, (5.5.9)

then we have written the cross-term as 2, + { f, w; A%, with 2, large but localized
in a $r(e,)-neighborhood of A%, and with w very small and having a range 37(e).

Next we do a similar analysis on the third term in 2, the term quadratic in f.
The important contribution is when f is localized in A%"** in which case we
obtain the quadratic form of, | ., for f, plus small errors. The analysis here
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parallels that of [2], Sect. 6.1, with adjustments for localized kernels. Using (5.5.4),
(5.5.7), and

100 X QU — 0% 10 0*)QK™ (5.5.10)
Qk,loc+Hk,locC{I;)cHItloc:91?+l,loca (5511)

we may write the AY"**f terms as
FCAY 0 10 AS D+ 3 Liwaf D

with w, a small, short-ranged kernel. All terms involving at least one A% **f are
assembled into a quadratic form 2;.
To summarize the effect of the two translations, we have

FAETIH D, 6, oo AT = 2,42,
=2, +5AP*HAY, 0, 1o AP*HOAR) +5CAY S 0Ly 10 A
+ 25+ 254+ fiws AN+ 3 fowaf D (5.5.12)

Here 2,,i=1,2,3, are large linear or quadratic forms, localized near A%*. They can
be written as sums over the components X, of A%, i.e, 2,= Y 2/(X ). The kernels

u
w3, w, are not localized near A%, but are small, have a range approximately r(e,),
and become independent of the A% in A¥), say.
After the translation, the background gauge ficld looks as follows. For
b e A%< (5.4.6) becomes

u, = (Qx% yv) expien[(wy + Hy 1o0) (A(k)‘/lw)*LJCYé)cHl’f 10c0* Q5% 1 f)
+0APC, 1A% — L~ ZQk 10 0¥ f]. (5.5.13)
In A¥* we apply (5.5.11) to obtain
u, = (0% (v)expien[ Hy, 1ocA® — L‘29k+1 1000 f+w, AT (5.5.14)

The same formula holds in A%* for the gauge field in the normalization factors,
except that we have ws instead of w;.

5.6. Expansion with Respect to the Fluctuation Field

Let 0, be a function on T;* that equals 1 in A2*, 0 in A%*, and changes smoothly
from 0 to 1 in a neighborhood of A¥* of thickness M =0(1). We expand most
terms in our density with respect to 0,H, ,,.A* =0,4,, and with respect to w, A’".
This produces a number of important vertices for A®), as well as irrelevant terms.
We also expand in the small kernel w, appearing in phase factors before scalar
fields. This produces only irrelevant terms. After these expansions, the background
field will have the form required for the next step in A%* with dependence on v
only. In the next section we consider the expansion of the normalization factors.

The new background field for the action and observables is denoted i, . ;, and
for be AY* it is given by

1 = (0% v)expiegn[(1— Gk)Hk,ch(k) L_2@k+llocﬁ*Qk+1f]' (5.6.1)
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In A%* the A% term is absent, and except for scaling, this reduces to the form in the
induction hypothesis, (4.2).

To summarize all the changes we have made on the background field, the final
form of &, ., is given by (5.3.3) in A¥~V*~AP*, by (5.5.13) in AL*~ AL* (but
without the w, terms), and by (5.6.1) in A%* We will not need to define i**!
anywhere else. The corresponding background field strength is given by

f;c’g-l(p):(iekn2)’l logii, . 1(p). (5.6.2)

Later we will define u, , ; which will be slightly changed from i, , , in AP* AP
but which will be defined everywhere because it appears in the normalization
factors.

We need to check the regularity condition on i, . ;. It states that there exists a
gauge transformation i, ,—;,, in each r(e,)-cube [1CAY such that i},
=exp(ie,nA*) with | 4%, |0A%, |0* A% < cpley)r(ey). In AP* we have i, 4 ; =u,. so the
condition follows from the induction hypothesis (4.3).

We verify the bound by first checking it for u,, then noticing that all the
operations changing u, into #,,, did not destroy the bound. We use the new
bounds on u(p) in AL** to estimate

ue=(Q*u) exp[ —iegn %y 10.0*Qi* [] (5.6.3)

with constants uniform in k. [ There are bounds from the (k— 1)-st step, but these
would not yield uniform constants.] Thus we can assume that | f®(p)| <cp(e,) for
peAg”**.

Fix []CAY for estimating @, , ;. In []' [a neighborhood of [ of width $r(e,)]
we can write u=exp[ie,(0/ + B)] with |B(b)| < cp(e)r(e,). We have f* =0B in the
cube, and so

e =(Qi* ') expien[(OF* — D 10.C*Q*0)B]. (5.6.4)
1 —
51 r(e,_ ;). Note that Qf*e** is a
gauge transformation (generated by Q,*/), so we can delete it from u,.

Our desired bound now follows because by (5.4.4),

(OFF — T 10c0* Q*O) ' B=(H, oo+ OC,+w1) [I'B. (56.5)

We have used the fact that &, ,,. has range

loc

The kernels H, .., w, and their derivatives are bounded, so A%, 0A%, 0*A* are
finally all bounded by cp(e,)r(e,).

The first operation we performed was a translation, which of course does not
spoil the regularity of u,. We then made a gauge transformation and removed the
small kernel w,. The gauge transformation does not change the regularity, and
0w, 0*w, are small, so the bounds remain valid. After another translation we
removed the field 0, H,_ ,,.A*. This field satisfies 0(0,H,_,,,A*') < cp(e,) because AY
<cple,) and because 0H, .., H .., and derivatives of 0, are bounded. Similarly
O* (0, Hy 10cAY), 0,H, 1, A® are bounded by cp(e,). Thus removing 0,H, ;, A% does
not spoil the regularity, and @, , , satisfies the regularity condition. In an analogous
fashion we can check that the j-th regularity condition for r(e,)-cubes remains
valid.
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We now proceed with the expansions. We do not expand in the characteristic
functions Lagos A, ages v We take terms which came from the original expres-
sions Fy joes

<1P - Q(uk)¢a lp - Q(uk)¢> 5 <A(8k_ 1)/¢a Ak,loc(uk)A(Sk - 1)/¢> 3
and 2, 1,(A% "), and write the background ficld as
gy 1 00= ¢ eXpie[0Hy 1oAY +w AT =1 el (5.6.6)

The scalar fields appear with factors e“<*>4" before then. All expressions depend on
A®, f only locally, or at most within a component of A%,

The first expansion we give is for #, , @ itself. (We derive some expansions for
the j-th step objects for use in the next section. The expansions are modeled after
ones in [7], so we will be brief.]

We have with (=L, 4 scaled to the {-lattice,

g U=l 4y <1 + Zl (iejé_f;l)”/n!) =14 (1 +F1,j(g))' (5.6.7)
Next we expand Qi , (%), [=1 or j, j<k,

Qi WP (v)= ¥ ) LM (12 (x) <1 +§1 (ie,LA(I" ‘y',’x))”/w’)

x€Bi(y
=(Qydy + 1)¢)()’)+(F2,1(Z, U 1)) (V). (5.6.8)

Inserting this formula into |(y — Q(d, , ,#)¢) (y)|*, we obtain the vertices new to this

step. For the covariant derivative on the (-lattice, we have

(i 1) (D)= Dy, ., ) (D) + s 1 F 1 (ADp(b). (5.6.9)

For the basic quadratic form with Neumann boundary conditions on Q giving rise

to G (), we have
_AaNkHa. Q+ain([‘k+1)“‘ Vj(Q)> (5.6.10)

where V(Q)is obtained by inserting (5.6.8), (5.6.9) into the left-hand side. This leads
to an expansion of the scalar field propagator in a fixed region Q:

GAQ 1) =GRl )+ G i WG @), (5.611)

ot a;P (i, )= — A3,

g+ 1.

The terms in ¥; are small (O(ej %)), bounded kernels, either alone or applied to
D,, . or D} . Thus the regularity properties of G (i 4 ;), Dy, ., G (i, ;. ;) imply that
we can develop this expansion to any order.

We insert this into G; (@ 4 ;) to obtain

Gj,loc(ak+ () (X, X5)= GjAloc(ﬁk-F D (x5 x,)
+ SV}’(-’% X,) Y ;'a(Gj(Da’ Uy + 1)VjGj(Da> g1 1)) (X1, X5).
The second term can be changed slightly by changing the set [, in G;and changing

the tails of the operators. The difference is w;, a small (O(e = ")), local kernel with
small covariant derivatives, and depending only locally on #, , ,, i. We obtain

G;.loc(ﬁ)w e Gj, tocll 1)+ G;’, tocl i + 1)VjGj, toclUk 1 18) + W .
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This is now iterated to yield

i, G rocllly 41 8)= Z G, loc uk+1)[VGj toeltiy + 11"
+ G ol 1) [ViG 1ocl i+ )ViG toclli 4 1) + W, (5.6.12)

with another small kernel wq.
These expansions are inserted in F) .., < — Q(uy)d, v — Qu)p >, P, 1oe» and in

Ay, ety 1) =a,l — a}%Qk(ak 1) Gy ooty 4 Q4 1 17) .

We expand the phase factors as 1+ (e**24"— 1), the second term being extremely
small. We also have the field strength expanded as

S :J?;c"+ 1 +ow A+ a(eka,locA(k)) .

Any term involving w; or w,, and terms of higher than 7i-th order in ¢, are
irrelevant and will be treated separately. The lower order terms are polynomials in
A®_ All terms are local.

Let us summarize these expansions as follows. In the action we have written

3aL7 P — Quid, v — Qup)dy
A3 ATV, A 1o AE VD) + P ol AT VP 15)
=3aL™ 2 — Qi1 1), — Qi 1)) +3{AE g, A 1oty 1 DAET D)
+ 'J]k,loc(A(Sk_ 1)7 ¢’ ﬁk + 1) + R(k)(uk +1» Qka. locA(k)) + Z Wl(k)(D) . (561 3)
) ]
The tildes on ¢ and v indicate the presence of the phase factors. Here W{¥([J) is

localized near [, an r(e,)-cube in A¥, and (W¥([])|<e} ' ~* (Two powers of ¢,
may be needed to beat the bounds on ¢.) If we define

ﬁ(k)(ak +1» eka locA(k))

= Z [d o GaL” 21— Qi ' Ot 104 T |2

3 ATV D Ay roel - VAET VG + P 1o AE TV, -.-))] . (5.6.14)
er=0

then R® can be obtained by replacing propagators G([1, d ;) with Gy 1oe(d s 1)
and eliminating extra kernels {} explicitly (not in G o (1 ).
In a similar fashion we put

Fk, loc(Xo') = F}('?X)OC(XU) + Fk, 10c(Xo') s (5614)
where F{™), (X ,) is defined by replacing G,((1, i . ,), {} in

dm
01 H, Ak
2 [d m Fk loc(Xo’ uk+ ele vt toe )

er=0

All remainder terms are in F ,(X,), and we have |F, (X )| < c(F).
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5.7. The Gaussian Normalization Factors

The expansion with respect to the fluctuation field A*' must be performed with
special care in the Gaussian normalization factors. Nonlocal terms naturally arise,
which must then be organized properly and treated with random walk expansions.
At this point, the background field in the normalization factors is given by (5.4.10),
which simplifies to (5.5.14) in A®*. We express it as u, , %, with

fi=expieg[0,H, 1 AP +w A =expienA. (5.7.1)

In this way the field u, , ; is defined, and after A is expanded away, it remains in the
normalization factors for the next renormalization transformation. One could
apply (5.4:10) inductively to obtain a complete formula for Uy, ON the whole
lattice. We will only need to use the fact that it agrees with i, , ; in AP*, cf. 5 6.1).
The regularity conditions can be checked for u, , ; in the same manner as for Uy o

In the integral representation for the normalization factor ZA(J)(uk) rescaled to

the unit lattice, we have the quadratic form (with Dirichlet boundary conditions)

C(Aj%l{))(uk-F 1 l?t)~ 1_ Aj, loc(uk+ . f{)+ al.” ZP(uk+ 11:4)
=4, 0elt 1 1) +aLl”?P(uy ) — WY
=yl ) " =W, 512

All the terms from our expansions of the last section for 4; ., P, with &, , , replaced
with u, , ,, i replaced with i, are included in WY, Thus we have

Clylat 8™ = Clhyl )™ V20 =l )2

X CAU)(”k+ DACY, )( )

10

and so
zY % () = f{%g(“kﬂ) [det(] CU% (U 4 1 )12 W[j)C(AjiJo)(“H 1)1/2]~ 2 (5.7.3)

Each term in WY has at least one factor e;, and all fields are logarithmically
bounded. Thus the operator after the identity is bounded by a very small number.
Thus the determinant can be expanded as

exp[ s Luc %L«uMW(ﬂ)’] (5.7.4)
151 21 10

The operator CY),(u, + ,) is our first encounter with nonlocal effects. To treat it
we apply the genera ized random walk expansion (2.45), modified slightly to use
cubes of size If “'r(e,) in T, -, We need a similar expansion for W% into terms
defined in regions X with appropriate decay estimates.

For example, we have in F j(/Ib) a series involving powers of (ws4"),, with a
nonlocal kernel ws. We put these powers in the form of a sum on X of quantities
defined in X only. To each be T, and each collection of bonds b,, ..., b, € T® we
associate in some arbitrary manner a set X (a connected union of r(e)-cubes
containing them). Then we put

(Ws )= 2 Wo,n(X). (5.7.5)
W)= T ] b b)Ae)),

compatible with b, X
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where compatible means that b, ..., b,,, b were associated to X as above. We have
[A'(b)l < cpley), [ws(b, b))l = e~ 7@ a0 nd o

Wy (X S e erte X, (5.7.6)
We may use (5.7.5) to analyze the interaction terms generated in the expansion

with respect to A=0 WHi 10cA® +ws A’ Treating for the moment only the high
order terms, we obtain an expansion for F; ;in (5.6.7):

Fid)= 3 O el Ayt S F, 0,

with |[F; ; y(X)|Sel ! ~#e @ X" (Here |X| ™ is defined as max{0,|X|—1}, and A
has been rescaled to the { =L/ lattice.) In a similar fashion we can write

(F2,i(’§€> e )M=Y Cup (FP)P(x)

xeB,(y)
X ni (iejgj(r;{)x))n/n! + ;(Fz,j(x)¢)(Y)7
with
[Fy X5y, x)| S{eh™ ! mxemerten X
These expansions can be inserted into ¥, yielding
V=V L VX, (5.7.7)

the first term containing the expansions to order 71 in ¢}, the second containing the
remaining terms. Both terms involve small, bounded kernels (of order ¢} ~*for V'™,
of order €' ~*e~r@IXI” for (X)), alone or applied to D,, , or D;"M1

Next we examine the propagators, and cxpand in V; to all orders:

Gj(Q> Ug + 1&)=G,’(Q, U )t Zl Gj(Qa Uy 4 1) [VjGj(Q’ U )]

Thus we have

20

Gj,loc(uk— 15‘) (xy,Xx5)= G;:loc(uk+ (x5, x,)+ C/,'/(Xp xX3) Y (Gj(D(Xla X2)s Uy 4 1)

X LViG {00 15 X), e 1)]7) (x4, X))

We insert the expansion for V; into this formula, and insert expansions for

O juy ¢ (11), Quty 1), G, loc(uk+ 1“) nto A ety ¢ 1) +al” ?P(uy , ). Terms whose

order in e; (or equivalently in A) is between 1 and 7 are considered as part of

— WU Terms of higher order, or involving F, (X) or V(X) are grouped into an

expansion Y — WY(X), with [W(X; x|, x,)| <! " *e”@IXI" Thus we have
X

written the interaction term in (5.7.2) as

WU =wu 4 Z W(j)(X)
X

The lower order terms need to be resummed by gathering terms with different
into a perturbative expression. This is because ¢~ “® is not small enough to
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compensate for having only a few powers of e, We must replace G ([J(x, X,), Uy 1)
with G(€2, ;. ) for some fixed Q. This is accomplished with a random walk
expansion for G (Q,u). Such an expansion is given in [6]. It takes the form

G{Quw=Y Glw),

where w 1s a walk on the lattice of M-cubes in T} ,. Each G(w) has regularity as in
(2.30), as well as an exponential decay in the length of the walk. By summing over
an appropriate subset of walks that remain inside X, a union of I}~ Jr(e,)-cubes,
we obtain G (€, X, u). [An analogous construction for C%(u) is described in (2.42)
~2.45).] Walks that stay within [J(x,, x,)nQ define G; ,, (2, u; x;, x,), which is
then nonzero only if |x, — x,| < O(I¥ Jr(e,)). A convex combination as in (2.27) is
used to preserve regularity across boundaries of M-cubes. The result is the
expansion

G2 =G, 2 u)+ Y G2, X.u). (5.7.8)
X

Of course, G (€2, X, u; x;, x,)=0unless both x; and x, arein X. All operators obey
the usual regularity bounds, provided dist({x,x,},Q>c. The bound on
G {(Q, X, u) has in addition a factor e """ "/I¥|. The dependence on uis in X only;
for G 1. it is only in an I* ~r(e,)-neighborhood of x,, x,. Also, when x, and x, are
farther than L*“/r(e,) from @, G; . is independent of €.

We have developed expansions for C9(u), WY, and G (Q, u). We now put them
together to analyze the expansion of the normalization factors. In the expansion

(5.7.4) we put WO=WUm 4 v WU(X). In terms with [<7 we separate from
X

1

20

terms as

tr(C‘/{’JO)(uk L)WY the terms of order <7iin e;. We can write the sum of all these

(
1

i g ) N
N () o’ ¢
nz,l nl [de’" log Z/{gg(uw 1 explie’e, (A ))j|3'=0

These will be treated carefully by a resummation. In the other terms we insert the
expansion for C4},(u, 1 ;); they then take the form ¥ W9(X), with
10 X

(WO )| S el eI (e LI X[ S efemeIXl T (57.9)

We can take « arbitrarily large by increasing 1. The high power of ¢; beats the big
factor (r(e,)[* /), the volume of an elementary cube measured on the j-th scale.
This is to account for one free summation on T{”; all but one such summation is
controlled by exponential decay on the j-th scale.
_ Wereturn to the perturbative terms. Resummation in j will be possible only if
A is localized to sets like AYNAY "V, Thus we write

k—1 1

~ & k- 3
A=0(H, AP +wsA)+ ¥ 01 =0, wsA'=4,+ Y Aj.
=71 =

j=0
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Here 0 _, =1, and each /Tj is a smooth, small field supported in AP~ AY* Ve (AL if
j=k). The low order terms can be written as

n 1 n k B k L, Xy
Y 7[[] < Y > logZ‘!,(ukHexp <iej(, Y e,A;))} )
n=1N.| « = lJ 1o =0 ej=0

Note that Z“f »(...) depends only on ¢, for [=j. Thus we can write the last
expression as

k I3 1

Z: Yy —

Jn=1 R s iminge=m

k x
[ T+ logZA(,, <uk+1 exp( ) e}A%))} . (5.7.10)
a=1 =j ef=0

We write all terms in the form of the expansions derived in this section, except that
we write a new expansion analogous to one we gave above for (wsA4');":
[ (Hja“ _0;a+ IwsA)y= ; Wb,g_(X)'
Here aC{1,...,n}, and w, ,(X) is also bounded as in (5.7.6).
We insert this expansion in

d (5 ’/T€>
e Pl £ )]

The result is a localized expansion Z F%;(X), with [F% ; (X)|Sej e e lXl

(unless j Ja= k for all ¢ € 2, in which case IX | is replaced by | X| 7). We make the same
expanswns in F, The expansmns for F P F, ;areinserted in the low order terms
inV,G; ety + (), and A ooty Ji)+aL” %P(u, . ,i1). Finally, they are inserted into
(5.7. 10) using (5.7.4) for logZ.

The term m=j is special we bound that term directly without resummation.
The random walk expansion is inserted for C),(uy . ;), and we obtain an expansion
Y W9(X), with
X

IO (X)| S el e @Kl X A AP A A1)

Each term contributing to WY”(X) must contain at least one kernel ws. There is a
summation in A}, but since at least one field A ;1s present, there is an exponential
decay on the j-th scale localizing summations near 49"~ AY* V¢, This gives rise to
the volume factor in the above bound. The volume divergence will be beaten by

small factors coming from large fields near AY"~AY™V; we will have available
logy.(e0/e)
. and since x(loge; ')r(e;) "> ) Z+ 1 e} ~7 this is sufficient.
=5 ' .
Next we take an m>j and we try to replace each CU,(u,.,) with

cy ‘_J(A(;,,))(u,gr »)- Using the random walk expansions we can write the difference as
Z CY(X), with [CY'(X,x,, x,)| S e i 2lem @ X for x|, x, in B, (A{"). For

some eKIAU) r\A‘J* Deljr(e;)?

m> Jj,all operators CY9(uy 4 ;) in our low order expansion satisfy this restriction.
Terms with all C§) _ om)(t 1 1)'s will be considered below. In all other terms, we
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random-walk expand any CY

m

_ aom(Uy - 1)’s, sum over m, and obtain

Z W(j)'”(X), with |W<j)///(X)|§e-cr(eJ)lX|.
X

We need to replace the propagators G; (4 1), G, g+ ) by GAAS, uy ).
They appear in the expansion of 4; (1, +,) and indirectly in C(u, ;. ,). We write
G rocltty+ 1) = GAS g 1) (G 1oty 4 1) = G 1o A, thy 1))

+ ; Gj(/T(2m)a X7 U+ 1) s

and similarly for G; ,.((J, ;). We only need to look at this operator in A$".
There a random walk expansion on the j-th scale will yield the usual regularity
bounds on the second term on the right with an extra factor e ~“”. We insert this
expansion into CY’ ! to obtain

Cg,),_j(/tgm))(uw )= Cg,),.f,mgm)(z(zm)s Uerr) ' }Y: 4(X),
where

Cg,).,ﬂmgm))(z(zm)a Uern)
=a;l —anj(”H I)Gj(Z(Zm)a Uy )QF (U4 1) +al” Pl 1), (5.7.11)

A (X, xp, xp)|Se r@X =0 if x; or x,¢X.

Thus we have

Cg,)n B J(Agm))(uk )= Cgsj,),, _ J(Agn))(/T(zm)z Up+1)
- Cg; - ,(Agm»(/T(zm)a Uy 1) <; 4 j(X)> Cg,),, - J(A(;"))(uk 1)

This expansion is inserted at each appearance of C*” in our low order terms. The
same analysis is performed when G ([, uy , ;) appears instead of G (14 ;). In the
leading terms (terms with no e~ from the random walk expansions) we put
7 =14({]—1). The leading terms are now
g

n=1 n! {jo}: ming jo=m

"o ‘ - ko
X | T1 10828 agmy | A5” ey exp (il Y ejA; , (5.7.12)
1=1deja 3 I=j ei=0

where this Z uses the quadratic form in (5.7.11). Remainder terms are again
localized — there will be typically some delocalized operators and some localized
ones. Thus we random walk expand any G(AY",u,. ). Also, we expand any
ng)n-J(Ag"'))(/T(zm)» Up+1) S

oG

ZO Cg,),‘q(/tgmn(“w 1) [; Aj(X)C(Bj,),,_J(A(Jm))(uI\—F 1)1]” s

p=

and finally we random-walk expand all Cy) r A(}m))(uH )’s. We gather all terms of
this rather complicated expansion of the remainders and sum over m, to yield

Z W“)“”)(X), with IW(j)(iv)(X)l ée—cr(e,)le )
X



294 T. Bataban, J. Z. Imbrie, and A. Jaffe

As always, X is a connected union of IF Jr(e,)-cubes, and WYV (X) has
dependence only on fields in X, X, or B, _ (X).

We make a final change in the leading terms, namely we replace
cy J(A(m),(/lz , Ugq) with COAYY, u,, ), the covariance without Dirichlet
boundary conditions. We give a random walk expansion for the difference,
Y CY"(X). 1t is actually a double expansion, since each term in the usual random
X

walk expansion still depends on A$" through the basic quadratic form [which
involves G (A%, u, ;)] and through operators C¥(A$", u, . ;). However, each of
these can be expanded as described earlier, yielding terms CY"(X) with proper
locality properties, and obeying the following bounds:

IC(/'}”(X’ X, Xz)l gewrrlxx —x2| per(e)) |X] e~cdist({x1,x2},A(3m)c) )

Leading terms are now given as in (5.7.12) but with no Dirichlet boundary
conditions. Finally, remainder terms are expanded out completely. All remainder
terms have at least one operator CY”(X), which provides exponential localization
to B, (A$"). The field 4, is supported in /4¢", thus all terms have at least a factor
e~ ) Thus we can sum all the remainder terms into

Z W(j””)(X), with |WU)(”)(X)| ée-cr(eﬂle_
X

Now the leading terms can be rescaled to the I/~ ™-lattice, and we sum over
j<m. All the changes we have made allow us now to compose the normalization
factors as

m—1 =

[T Z95"(AY, u)=Z (A%, u) - const,

j=0
where the m-step Gaussian normalization factor Z,, arises as in Eq. (2.40) of [7].
We obtain the perturbative expansion

n

n=1 {jy}:ming j,=m

n d _ k ~
x| 11 - logZ,, | 45" uyy exp|ie, L™ Y eAr ™ :
azldej& I=m ej=0

The diagrams in this expansion are covered by our theorems on the perturbation
expansion. The point is that various Ward identities and symmetries necessary to
obtain good bounds can only be seen in this resummed form of perturbation
theory. We give the random walk expansion for the propagator G, (A, uy ).
There is at least one factor e, in all terms, and a free summation in A%
AAMEDm < k) or A (m=k). Thus we can write the perturbation expansion for
m<kas ¥ WmE(X) with
X

Iw(m)(vi)(X)I éerlnﬂze~cr(ek)IXlleA(Sm)/mA(gnJr 1)C| .

As for the WY terms, the volume factor will be beaten by convergence factors
from the large field region A A e,
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The term m=k is treated slightly differently. We decompose A] into
0 Hy 10cA® +0,wsA". Terms with one or more wsA’ field are expanded as in the
m<k case. In terms with all 6,H, ,,.A® ficlds, we expand the propagators as
before, leaving in the main terms the localized propagator G, i,c(4y+ ;). The result
is our standard perturbative expansion in the field 6,H, ,,,A", which we denote
O%uy sy, 0.Hy 10cAY). The remainder terms become Y WH®I(X), with
[ X)| < o erten K] X

We can summarize the results of this section as follows:

k-1
'Ho Z(/{Eg(“kwL 1)
=
k=1 _
=11 Z (1 1) €XP [ - Q(k)(“k + 1 O Hy, locA(k) -2 VV?,(k)(X)J , (5.7.13)
j=o0 X

where X is a connected union of r(e,)-cubes in T,

J

k
WH(X)= Y WOX) 4.+ WIE(X),
=0

WO Sefe "M 4 3 ef e OB ()0 AP AT (5.7.14)

J<k
and
Q(k)(“k+ 1 O H 10c/4(k))
Il d" - _
= Zl Jo log[[dl g0 exp(—3<{, Gy rocltye+ 1 € ewihctlic 10 AT TLh Sy L.

(5.7.15)

5.8. Scalar Field Translation

The scalar field quadratic forms, after all our manipulations with the gauge field,
are as follows:

%<Af3k* 1)/(15: Ak,loc(ak—F 1)/1({;(~ 1)l‘/l)> +éaL72<U7” Oty s ), p — Qi 4 1 )P

To eliminate most of the linear term <y, Q(%,, )¢ > in the small field region, we
make a translation

o=¢®+al 2 APCQUuy 4 )O* e )Y - (5.8.1)
(Recall that u, , ; =1, , in AP)
The terms quadratic in ¢® are then
AT PP, (A oellly 1)+ alT 2P ) AE QM+ 2, (5.8.2)
where
2, =%3aL” 2™, AGT VPl )P .

In the cross terms between ¢® and 1y, we write y = A¥"p + AP . The terms
with A%y define 25, a form localized near A%, The other terms can be written as
(™, weyp >, with w, a small kernel with range less than r(e,). This is because (5.8.1)
would climinate entirely the linear term were it not for the localizations.
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In the terms quadratic in v, we again combine all terms involving 4§y into a
form 2, localized near A", The remaining terms become
3aL” 2 AP, (I —aL™ 2 Quy i ) CiEty 1 )Quie s AT W) + 5, Waw)
with w’, another small, local kernel. We apply the identity [7]
al” 21— a® L™ *Q(uy 4 1)CP 4 1)Q(th 1 1)
=a L7 = af L4 Qs (s )G 4 1 (e )1 (e 1)

but in a localized version with C{{, and G}, , ;.. and with another small kernel w/,
on the right. This yields the desired form A}, | ,,.(4, 4 ), and so we obtain

7AW Ak 1ol VAP W) 3w wap), with wo=wh+w)
To summarize, we have written
LA A roolly ) AET Y +3al” A — Qi )by — Ol )
=24 25+ 20 3 AL N (Ao 1)+ Al Pl ) A4S )
3 AW, AR 1 ot VAT YD+ PP, wepd +5p,wapd . (5.8.3)
with wg, w, small local kernels, and with 2,, 2, 2, localized near A%,

5.9. Bounds on Fluctuation and Block Fields

As we remarked earlier, the restrictions on u(p) and the gauge field renormalization
transformations imply that

1
e 10gv(p)' =lf(p)=cple), pedf**. (5.9.1)

Also, bounds on ¢ and p—Q(u,)¢ imply that for ye A,
W Scpledd . (L)' <4,

) — (82)™ V2(Lke)4= 22 < eple) (k)™ ", (Ie)'= 1., (59.2)

Next, we wish to prove that

e (<D, b DYp(b ) — b ) =Dy, , W) (D) cple),  bedAP™. (5.9.3)

We prove the bound first for D, y (before the gauge transformation of Sect. 5). Our
bounds on p—Q(u,)¢ reduce this to estimating

Dy, JP(x) = (Kb, by (T (x|

forany xe B(b_), x'e B(b ;). This is proven with several applications of our bounds
on Dy, ¢. In going from u, to u, ., we made a gauge transformation and removed
some small fields. Also, the gauge transformation was not quite compensated by a
rotation of y. Thus in going from the old |D,, | to the new |D,, . y|we make errors
of the order of ce,p(e,) iy /4, (Lfe)* < A or

ceple¥ VAP 4 (1)), (k)2
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In both cases this is bounded by e#(I¥e/c,)/* ~* — see the discussion below of the
bounds on interaction terms. The desired bound follows.
These bounds allow us to insert the following characteristic functions:

T+ 1,400 = [T xlcexp(ey), lv(p)—11)
PEABR)'**
x [T xleplediy Y&, 1wy U) xeple), [(Dy, ., w) (b))
yeAg‘V eAO" ¥

and the integral is unchanged. If (I*¢)?>=/, the bound on 1w is replaced with

aleple) (L)1, [w(y)[—(B2) 7 12(Lre) = 2P2)).
We remarked earlier that A" is small in 4$* We then defined A% =4’
+ AP*FL72CE HE | 0*08% | f Since f is small and H, ,,. is regular, we have that

AP <cple), beAP*. (5.9.4)

We want a similar bound for ¢®(x), xe A4%. Note that C¥)(u, , ,) is almost
equal to C®(u, , ;). Thus we have that in 4%, say
al” 2Cig 4 1) ¥ = Q(u . ¥ p + O(pley))
(the corresponding statement with C*(u, , ) was proven in [8, Eq. (2.113)]. Using

arguments like the ones we used to bound D, i, we can replace Q(u; , ;)*yp with ¢
in this bound. This proves that

lp®¥(x) Scpley),  xeAP*. (5.9.5)
The bounds (5.9.4), (5.9.5) allow us to insert the characteristic functions
Lago="T1 xleple), A%) TT xlepley), ¢*)

Kk K
be AG* xeAg)

without changing anything.

We note that the restrictions implied by y ago are stronger than the correspond-
ing restrictions in y g1 in AF. [When (I¥¢)'>/, we use the inequality
(84) 12 ([ke) =212 1 p(e, )(L¥e)~ I<cp(ek) . '/%] Thus we can replace y Age 1y
with . A= D 4G without changing anythmg

Let us summarize the operations performed so far by using the concluding
formulae in the last several sections to write a complete expression for our density.

i+ 1(0.p) o
= Y5 TduAGOS () 00/ QUG g < 2% 0 A“")f U IC.

(Xe} ALO

X CAg‘)CXA(O")XkA ADoKk + 1.Ag<)’Z/A<7k> [TeX,) n F;cml)oc o) Y;)c(X )
w
k-1
X1 D2 J] XD [~ AP 0AN. g, AP0A)
i=
“%<A(5k)/**fa 0£+ 1,1ocA(sk)/**f> —2,-2,-2,-{/, W3A(k)> —%<f, waf)
—2,— 25— 25—3AFT VP (Mg ool Ty 1 )+ al” *Pliy 1) A5V ¢®)

—%<A‘8")’w, A£+ 1 tocl Uk + 1)Ag()/1p> - <¢(k)a Welp)
— 3P W)y — & — E® -2, loc(A(Sk -, Uy 1)— R(k)(uk +1 Qka,locA(k))

- é VVl(k)(D) - Q(k)(uk + 1 ngk, locA(k)) - ; WZ(k)(X):I . (596)
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5.10. The Interaction for the Fluctuation Fields

Having made the scalar field translation, we regard the terms 2, ,,., R®, 0%, F{™)
as polynomials in ¢®, A%, We make some small changes and localizations in order
to obtain the standard form of the fluctuation field interaction in A,

We have the external ficld

aal” sz, toel Ui+ )OF (U + 1)A(7I()Ci§)c(“k + Qg+ )y

appearing in the diagrams in 2, .., R®, F{™ . The first we leave alone, whereas
in the second we localize the field to A and replace it with

ak+1L_ZGZ+1,loc(“k+ DO (U +wgyp.

The kernel wg is local and small with small derivatives and Holder derivatives. This
is accomplished in the usual fashion by replacing G, o6(tty 4 1) Cika(uty 1 1) with the
corresponding operators with Neumann boundary conditions on an r(e,)-cube
(J. The propagator composition formula [7, Eq.(2.41)] is applied, and
Gl (0, u 4 ) 18 localized again.

We localize all vertices to A%; vector field legs at a vertex are multiplicd by a
smooth function 0, changing from 0 to 1 in a neighborhood of A¥*. We also
remove all diagrams whose combined order in 2!/ and e is greater than 7. We still
consider all P, vertices together; any P{” vertex is considered as one power of /.
Each mass renormalization counterterm is written graphically and powers
counted accordingly. The result is the interaction V®(AP, u, , ,, AP, ¢*), and

P, loc(Ag‘ -, Uy )+ R(k)(”k 15 OcHy, locA(k)) + Q(k)(“k 15 Oka, locA(k))

= gk. loc(Ag( - 1)7 A(8k)c’ ak + 1) + R(k)(A(Bk)Ci Ut 15 Hka, locA(k)
FONAR, s 1 OH 10e AY) + VOAL, w1, AY, 9W) + % wiOD).

Here in writing A¥° we mean that only the terms without proper localizations are
included. The terms W{*([]) contain terms localized near the r(e,)-cube [] which
involve the small kernel wg or have high powers of coupling constants. We have an
estimate

WO = LeP(Lrefeg) ] < e (Lrefeo),

with x>d as large as desired if 71> 71(k). This estimate comes from our analysis of
the perturbation expansion and the restrictions on the fields. We find that each
vertex results in at least a factor ef(Lfe/e )t/ 2.

Estimates on V®, Q®, R® follow from the same analysis. When localized for
example to a cube of size r(e), all terms [except for
Pay  L72Gl oot )QF 4 1(tye 1 )w] are bounded by ef(Lfe/eo)'* 7%, with o, f
small and positive.

In a similar fashion we modify the external scalar fields in F{™), . and eliminate
diagrams of order higher than m. Thus we write

F}(r?,l)oc(Xd) = Flrch loc(Xa') + Fk, loc(Xc) >

with F w.10c(X ;) containing the wg terms and the higher order terms, and satisfying
Fy 10X ) S c(F). We regard F7' .. as a polynomial in A%, ¢®.
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5.11. Mayer Expansion I

In this section we expand irrelevant terms down from the exponent. This operation
is done to simplify the structure of the integral in the region free of irrelevant terms.
Let us combine the irrelevant terms as follows:

SwsADY 3L wa f O+ D™, wepd + 3w, wop) + %: WD)+ Y WiR(X)
X
+ Y Wé"’(D)z Z W}"’(X),
o] X

with W{®(X) containing terms with dependence in X. We combine the estimates on
the above terms to obtain

!W4(.k)(XN g [eﬂ(Lkg/80)1/4~1]ﬁ+ le—cr(ek)|X|
+ Y el e @B (X) A~ AG T,

J<k
We can only Mayer-expand small terms, therefore we parcel up W*(X) into
manageable chunks. It is a simple matter to decompose W¥(X) as follows
WHX)= ¥ ) Wi x; X)+ Wikx, X).

J<k x;€Bic- ;- ((X)n AP AT De

Here x, is some distinguished point in X (for unity of notation) and

O R
Wi, X S [eh(Liefeg)]" e @0l oD
The Mayer expansion is the usual identity

exp<~ Yy Wi’”(X)) =Y ] (e W0 gy, (5.11.2)
X Sa (j,x;. X)eSa
Let S, be the set of all trlplets (j» x; X) that arise in the above decomposition of
WM(X), for any X. Then S, is summed over subsets of §,. Note that e~ "0 % g
satisfies the same bound as W ¥(x;, X).
To see what kind of control we have over this expansion, let us do a typical
estimate of the type we need:

Z n(e~W4‘f‘J)(x,,u,Xa)_1)~

542 (U X, X)) 19 X5 =X

-S-eXp( Y oej e TIB ;i (X)nAY nAg" ”C|> [eP(Lie/e)]® "IN (5.11.3)

i<k

We consider first sums over X, such that x; ,=x; A combinatoric factor c/**!
controls each sum over X, and can be absorbed into the factors e~ "“!XI™ in our
bounds on e ™" _ 1 [f there are n such sets, we use n factors of el TTETrten,
j<k. The resulting estimate has a factor

Z (el -ae~cr(ek))n é exp(ell —1€*c’r(ek))

at each xj, j<k, or O(1), j=k. There remains a factor [ef(L*¢/eq)]™* V'1*! from a
worst-case analysis of the unused small factors, and (5.11.3) follows.
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We also expand out the observable:

I.[ (Fk loc +Fk loc(Xa)+ﬁk.loc(Xn)): Z n\ ka.loc n F loc(X

G1 G1€0 o¢d,
with Fj o= F 10c + I;k.lw, and with 6, summed over subsets of the index set for ¢
on the left-hand side.
We now fix ¢,, S,, and define A as follows:
AP=aP\ ) X\ U X.
\ﬂéﬁx V(i x;, X)eSq

Then we define 4% by deleting a collar neighborhood of width r(e,) from A¥. In
A% we attempt to remove the characteristic functions Zago- Thus we write

A0 = Y A0 A AR Y A
VOO R FTCRVICDTOR

and for each type of characteristic function in Lago weexpand y=1—y° as follows:

]—I Ix= Z n (_ L
xeAg” SxCA(Qk) xeSy
We have similar sums over S,C A%, S, C AP* S, C A9** and we define A} as the
union of all r(e,)-cubes in /1“", none of whose points are in S,, or in bonds,
plaquettes, or blocksin S, S, S,. The characteristic function expansion can now be

written as o
Yago= . Cgae,
9 & 9
/1‘9“)

o= N |
{Sx,Sy.Sp, Sp} compatible with A(()")", AE;‘) xeSx
< T (=) T o) 1T (= 16)-
yeS, beSh peSy,
Finally we define 4%) by deleting a collar neighborhood from A%.

These expansions complicate our expression for gf, (v,yp) in (5.9.6),
however the integral in A{) is quite simple now. It involves a small, local,
polynomial interaction V* modifying a Gaussian integral in ¢, 4A®), The inverse
covariance is local and bounded from above and from below. The characteristic
functions y' are simple functions of ¢*, A% keeping them bounded. The
observable is a product of polynomial pieces given by low-order perturbation
theory. Large field and nonperturbative effects have been separated out.

5.12. Conditional Integration

We exploit the simple structure in A} by doing the integrals there with
conditioning on Ay, AF*<. The formula we use is a generalization of the
following identity for scalar fields:

Bl (9l dp| g™ 4704401246400

— (4l F( ¢lAc)Jd¢|Ae‘<A°¢’AA¢>e‘ t2chaaty
yd(blA ‘1/‘2<d>yAA¢>e‘(Ac¢,AA¢>
[do], e* 1/2(¢, 446> 5= (A% AA$)

:(jdd}' e*l/Z<¢yAA¢> _[dqslAc d)lAc 81/2<AC¢*AAA LAAhd

X - qug]A o~ 1/2(b. Aab) = (%6, AAG)
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Here 4" is equal to the last integral, without G(¢). Thus in our expression for
ok, (v, p), we have now an “exterior” integral over u®, ¢® in A}, whose Gaussian
piece has been replaced by

e
(k) k (k)
(TS P ‘e A
5AX,A§’6) ( ) A(lk) *nAY“)) * (277: Q )

X exp[ — AP OA*AY, 6y o AP0 AT A
=3 (AE AP, (A roclli ) +aL™? Plity ) (AET 0 AT 9Y)
+3 (ALY (k)SAk,loc(uk+I)C{/’l“)k)(uk+I)Ak,loc(uk+1) ">
LCARAD, L7 QH QAN 0%, o L A0~ 2) A AW
+ 3 ARF AP (1 - L1 Q*Q° Ay *) 0%y locac%{g)c*ca*ﬁk’mca
X (I — L™ AR Qs*Q) ARy * A% ] Z(kw)c*CZ kg?(ukﬂ). (5.12.1)

The “interior” integral is

1 -
jfd¢(k)|A<‘g>dA(k>!Agtgc*cOAx.A;@'(A(k) Ao QA oo TT Filiod X))

G1€G

xexp[ ‘L<A(k) (Zs(k) (i v+ 1) +aL™ *Plu ) (A(lk()) + 2A(1k<))c)¢(k)>
1 <A(k)c*cA(k) a*o.k loca(/l(k)c*c+2A(1k())c*)A(k)>
—VEAD, AR, Y] (5.12.2)

Here /" is defined by the last integral, but without 7, FJljc OF .
Let us describe more carefully the calculations leadmg to (5.12.1). The third
form, together with Z Aﬁ%’(uk+ 1), 1s a calculation of

fd(b(k)lAg‘g exp[ =3 <A, (A rocltty 4 1)+ aL™ 2 Pluy 1) (AF+2485)p®>].
The 4-th and 5-th forms, with Z(/’f(:%)c*s, are a calculation of
| dA(k)lAgf;;c*céAx, Agr;,w(A(k))éA%mc(QA W) (e,/2m) 145!
xexp[ =3 (AR AY, 0% 1o A(ATY*+ 2475 AW) ] (5.12.3)
The factors ¢,/2n come from the replacement of du® with dA%® for the frec
variables; for the constrained variables the replacement is compensated by a

removal of the ¢,/2n factor from the J-functions, see (4.6)-(4.8).
We calculate (5.12.3) by means of a translation

A(k):A(k)/_‘A(lkgc*CQs*QA(lk())C*A(k)’ (5.12.4)

which removes the dependence on A} *A™ in the d-functions. In fact, 5,5, 40, (A®
p 10 Ax, Al
= py 400(AY"), and since QQ** =1,
710

Am s QAW) = Aw exe QAFYF AW

The fourth quadratic form above is obtained by collecting the terms in the
cxponential quadratic in A{)*A™, There remains a linear form

AR Y %0, D1 = ARE*Q QAR AW, (5.12.5)
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whose expectation in the Gaussian
exp(—JCAHE A%, 0%, DAL AC)

gives rise to the fifth form.

We remove the nonlocality in the third and fifth quadratic forms with random
walk expansions for CA(m(uk+ ) and for C/’f{k)m as in (2.45) and (2.48). These obey
the usual estimates. We denote the first and second quadratic forms by 2, and the
other three [with C‘,{‘(k)(uk+ 0, C® e replaced with C,W toc Uk 1)s CAVBMJUC] by 2.
Altogether the expor?entlal in (5 12.1) has been written as

exp[~ﬁ7—328— ; Ws"‘)(X)]

Here WP(X) contains the terms with C%, y(u . ) or with C,wm +, and satisfies
[W(X)|<e” @)Xl The quadratic forms in 2, and 2, are localized near A%).

We make the same translation (5.12.4) in both numerator and denominator of

the normalized integral in A%} Terms quadraticin 4%)4* cancel, but we still have

the linear forms (5.12.5) and {AFPY, A oelthy s I)A(l"(’)cqﬁ‘k’} as in our last

calculation. We remove most of these forms with localized translations
AR =40 — C(/f(i‘g‘*‘ loca*ak, 1006(1 —L 1A(lk())c*cQS*Q)A(lkéc*A(k) ’

M (5.12.6)
¢(k)=¢{k) - (/Iﬁ)k) jocl U + I)Ak.loc(llk+l)/1(lk())c w0

Terms quadratic in Af*A® or A¥p™® cancel as before, leaving the following
integral:

T (A ™ ago T Flipd X oV o,

G1EG]

Here du®) A is an uncentered, normalized Gaussian measure,
k k) k
Ay A4S, o)
1
— kyn k) N k N k k)’
= i A aggee A g g (A0 sy QAT AR

X exp[-l<A(k’c*”A(k)” 7*07( IOC(QA(k)C*CA(k)H>

"%<A(1k) ® (A roeltty ) +al” 2P(”k+1 )A(k) ¢(k)>

AR A (1= 00, 100 e 1000, 1oc ] — L AREFQ QYA A
- <A(k)¢)(k)” (I = (A gocluy 4 )+ aL—2P(”k+ ")

X CA”‘) toclUi 4 1) Ak, toc(tty + 1)/ k)c(ib k)>] (5.12.7)

This measure has covariances C ”‘é’k,m, A(k)(uH 1), and nonzero means reflecting

the terms linear in A%)¢®” or ARexe 4607
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After the conditioning our density assumes the following form:

QII€+ (v, )
= 3NN ST gl

X} A‘O") S4 a1 A(") i=0

x 5A(1k)’*‘(U/Qu(k))o‘/ﬁxk)'*nmi‘a)/C* <:)n QA(M> éA(k)CZA(k)mA”‘)CC/AN(‘\')CZk+ 1, A0 [TeX,)
o

k
' -~ W) (x,,
X 1 Flpd X, 1 (e 0¥ )U (28 e ZQ (1))

TEdy (yx;, X)eSa

xema[—%<A%V“foaHJmA$”“7>

-3 <A(8k)llpa k+1. loc(uk + 1 <k)/ \/:, "2

i=1

6= BV =P ool A5 A i) = ROUAP w1, O Hy 15 AY)

wQ(k)(A(Bk)C’ U g 15 ()ka.locA(k))i| j dﬂ(/lt?’g)(A(k)H k)” }’ (k) IT Fk Ioc )

GLET

X exp[ VEAD, uy oy, AD, W) — 3 Ws""(X)]. (5.12.8)
X

The next two sections will focus on deriving a cluster expansion for the du'%) 0o
integral in (5.12.8)

5.13. Decoupling of the Small Field Region

We give a cluster expansion for the d#mg) integral in (5.12.8). The purpose is to
remove the dependence of the small field integral on the boundary fields. The
cluster expansion has two parts; Mayer cxpansion of the interaction, and
interpolation of the covariances of du A¢9-

Let us divide A% into its elementary r(e,)-cubes [1®. We assign to D“” all
bonds {x, x +¢,» with x e [1®. Note that V¥ (A, u, , ;, A®, p*)involves A* [Am*’
Pl ﬂmk) only. Thus we localize the fields ¢*, 4% in V“" by writing

d)(k): Z D(a)d)(k)’ AR — Z | (@ gk

We associate to any collection of localization cubes a smallest connected union of
cubes containing them (call it Y). Summing over all terms in V* and over
localizations giving rise to Y, we obtain a decomposition.

VAP, 1, 1 AP, PE) = 3 V(Y)Y (AL
Y

const

The last term includes all terms independent of A%, $*. We have an estimate
V(YY) £ eP(IFe/e,)'* % Note that Y contains at most a few cubes.
Next we Mayer-expand the interaction

GWTWWMQWHAWWm“ZMWM}

= 3 Y e VP T (VM) [T (e WM 1),

Sy Ss YeSy XeSs
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Here Sy(S5) is the set of all Y’s (X’s) that arise in a term in the Mayer expansion.
We decompose AY) into elementary regions {[J,};., which are connected
unions of []®. Two ] are included into a [, if one of the following conditions
hold:
(1) They are both in some Y, Ye Sy,

(i) They are both in some X, X €S,

(ii1) They both contain sites or bonds within r(e;) of some X, , 0,€46,.

(iv) They are both in a connected component of A%).

For the decoupling of the Gaussian measure, we interpolate the covariance
with parameters s;€[0, 1], i€ I, which turn off interactions between []; and []5.
The factors 5(QA®") (b)) in the measure constitute an interaction between blocks.
It is convenient to treat them directly, so we trade them for a fictitious integration
dB, where B is a field on A{)“*¢. We insert 1=.4"""'[dBexp(—1/2{B,B)) and
translate A%” by Q**B to obtain

FAAMY) g g s QARER AN, gnA) £ (AW
= A1 [dAR dBe T P BB QAN + 00 B)o o (AW) f (AP + 0 B).
(5.13.1)

The translation does not affect d,,, and by (1.2.19) we have QQ°* =1I. Integrating
out B yields

N[ dAN exp[ =3 CAY, Q* QAN )00 (AN f (I = Q*Q)A™M")

Thus we have a new quadratic form for A{)*A®” namely
0*0+(I—0*Q)0%0; 1,0 — Q°*Q). (5.13.2)

This is still bounded below on the subspace determined by J, (A%"): our lower
bound on 0%, ,,.0 implies a lower bound

1QA 24 0(1)] AV Q*QA®"|* 2 0(1) | A%

Applying (5.13.1) to numerator and denominator of the d,uw integral in
(5.12.8), the A"’s cancel, and we obtain

j‘d‘u(k) A(k)// qﬁ(k)r/)/{ ‘k) H Fk o an) ]—I (e—V(")(Y)_‘l)

CLEG YeSy

X H (efwgk)(X) <l—[ f(D >
XeSs iel
where f([],)is the product of all the factors under the du'%), integral above that are
localized in [J,. (Factors localized in A are assigned toO the [J; intersecting the
corresponding component of A%)<.) Our construction of the []; ensures no overlap
of factors between different [];’s. Everywhere A% appears as (I — Q**Q)A®". The
expectation <), is in the measure

1 .
Y& APl 440 ax, 409 AY") exp [5{P, AP) + (P, F )].

We have simplified the notation by writing ®&=(A%", ¢“"), do|,gu).
=dAY"| yoencd ] 40, ATFD =(ATF*AY", A{PY"), and so on. The quadratic
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and linear forms A and % are obtained in the obvious fashion from (5.12.7),
replacing A¥* A% with (1 —Q**Q) Ay *AW”. The linear form is localized near
the boundary of A%,

To preserve positivity and boundedness properties of the inverse covariance,
we define our s-dependent inverse covariance by taking convex combinations of
inverse covariances with Dirichlet boundary conditions. For an arbitrary subset I’
of I we define Dirichlet forms:

Ar: Z DiAL__li"' DCADCa
ied
where []°= y [J;, and all operators are restricted to the subspace A“"(I', ,)=0.
igl
Next we define an operation
arAp=Aror,

and we define a quadratic form for s={s,}

iel"

A_s_: [ =sda;+sda= Y [T 0=s) [1 s4r.

iel rci ier ie\I'
Note that by resumming the expansion above and using the fact that for i” +ior ¢/
or for i=1i, [J{ay ,A)J; = [1;4[];, we obtain that
A0 =ssp A0, i
4,00, =11,40;.
Using the theorem on unit lattice operators in [6], we can invert this operator to

yield an exponentially decaying covariance C,=(—4)) .
To give our expansion, we use the fundamental theorem of calculus to write

@U@»:—ZW&A<HﬂD>

el rcr el

Here s, specifies s;,=0 for i¢ I, dsp= ﬂ ds;, 0/0sp= ﬂ d/ds;, and (-, is the

expectation with quadratic form A, mstcad of 4. To calculate the s-derivatives,
note that the first derivative produces a term
< % Sj<DiCb>ADj(D>; [1 f(D1)> .
jFi iel sr
Subsequent derivatives either hit factors s; already pulled down or bring new terms
down with new truncations. After all derivatives are performed, we set the

remaining s; to zero, so only terms with no s; multiplying them survive. The result
is

<ﬂﬂD> S (dsy Y <%ﬁ@1¢mh®1nﬂmﬁ.

el rci pairings p={p,} of I'
Py ={iy, jy}

Recall that we have a linear term in the measure, ¢¢®¥”. With this term,
integration by parts replaces @ by C(6/0@)+ C 7 (see Egs. (12.2), (12.3) of [3]
where a similar expansion is used). We integrate by parts all fields appearing in this
formula. Each @ contracts through a C; to another @, to an f([(J), orto #.1Ifa
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closed loop forms, or if a train of covariances beginning and ending in # forms,
then the term disappears with truncation. Thus we have only trains beginning with
a 0/0® and ending in cither d/0® or 7. The sum over pairings and the sum over
ways of arranging the contractions combine into a sum over walks {®,}, . ., » =(i5,
I, ...,1|,) involving the sites in o, an element of a partition 7 of I'. Thus letting 2(I')
denote the partitions of I, we have

() = x s v (1] 3 (o coan.cman,

iel rci meP(I) \ xen Lo(a)

0
ADHo(zn ( 25 + /{>>j| R D)> ,’ (5.13.3)

ief

The 1/2 for the %/0@? term compensates for the fact that we count a walk as being
different from its reverse. The combinatoric structure of (5.13.3) is very similar to
that of the GJS cluster expansion [9].

Let us examine the factorization properties of this expansion. The form 4 has a
range less than 1/2r(e,). The f([7;) do not couple different [];. Hence only adjacent
[J; with s;#0 interact in the above formula. Thus our expression for

d/ds; <ﬂ f(Di)> factorizes over the connected components of I'. (Here we say

el

that [J, is connected to [, if they abut on a hypersurface of any dimension.) The
expression also factorizes over the []; ieI\I'. Call the factorization regions
clusters.

It is worth mentioning here that only clusters intersecting A} have any
dependence on AFYp®, AL)* A This is because F, AY —AD" Hp® — H®" are
nonzero only in 4. Thus we have finally decoupled clusters that do not intersect
ALF from the large field regions - at least in so far as the fields u®, ¢® arc
concerned. There is still dependence on the block fields v, y which have yet to be
integrated over and decoupled. We denote by A} the set of sites in clusters not
intersecting A)

We give now the expression for the polymer activities of this expansion. Given
some region X, a union of [];, we sum " over all subsets of {i e I : [];C X'}, such that
X is a single cluster. Writing

¢,=C/,40,C,0,,...00;,, C,,

i)

we have

b 5 ‘
= > oy 7 ‘
vosie s (s (3 < 607 )] o),

Heres={s;: [];C X|,and {-),, yisdefined by integrating over the fields in X only.
We obtam the following expressions for the d,uA(k, integral in (5.12.8):

D) o~ V&au(af) Y [1gu(X,)= o~V Ena(A{) Y T1e.(X,) (5.13.4)

Sy Ss {X ) filling /1(172)) % X a

Here g,(X,) is obtained by summing over Sy, S5 compatible with X, (cach ¥, X is
contained in X, or the corresponding component of A{)):

g:(X,)= 3 g:(X,).

Sy.Ss compatible with X,
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Let us estimate g,(X,) now. Each time some cubes are joined into one [J; by an
e VM _{ oran e " — 1, we get a factor ef(Lke/e,)!* % or e~ ¥ Each time
some [];’s are joined we have s-derivatives, which produce functional derivatives,
chains of covariances C,,, and factors # =0(e”“'*’)). Functional derivatives
hitting y-factors farther than 1/2r(e,) from A% produce factors e 79" after
integrating with respect to A%”, $®”. These derlvatxves are supported at [4®"]
> cpley) or |p®”| = cp(e,) (here we use the fact that the translation vanishes). Thus
we can use the arguments at the end of Sect. 14 in [3] to extract the factors e ~P(¢%)’
from the Gaussian measure. Functional derivatives hitting e =¥ yield factors
e(I¥e/cy)'*~*. Functional derivatives hitting y'-factors within $r(e,) of A} are
connected through C,,, to 4§}, so we get small factors e ~““” from the exponential
decay of the operators C and 4 in C,,,,. Altogether we have small factors at each
end of C,, (except for contractions to F{' (X, ).) If the walk w(x) wanders
through more than a few cubes, we begin to pickup factors e ~““*), These control
the sum over walks and partitions, and the factorials, as in [9]. (Factorials can be
produced when many functional derivatives hit the same object, for example a
characteristic function.)

Altogether, we typically get at least a small power of e#(Ife/eo)'/*~* in every
cube of X ,. The exceptions are when cubes are in a component of 4%}, when they
support some Fy' loc(X ), or when X is a single cube. We must allow for divergent
factors such as (L*¢) ™ at F}',,(X,,), where i depends on F. Estimating the sums
over S,, S5, and the sums in the cluster expansion leads to combinatoric factors

expl(e’(Lie/e)' " 1X, ), f'>0.

Such factors are easily beaten by the small factors described above for nonexcep-
tional cubes. For the cubes in A{) or for a single cube, we have to include the
proper volume factor in our final estimate.

In sum, we have the following bound or g,(X,):

|22(X )| S expl(ef(Lfe/eq )1"’4_’)’3'(|X AT+ 1)]

% 1—1 —m(oy) eﬂ(Lké/F )1 4-1) B X A(“)‘l )

The product over ¢ runs over o, € 6, such that X, CX,or X isina component
of AF) overlapping X, If | X,| =1, w1th no F7,.-factors, then we have the more
precise bound |g,(X a)—llgel’(L"s/go)”“ * obtained from the same estimates on
the Sy, S5 sums, and from extremely small factors when a y'-factor is replaced by 1.

5.14. Resummation and Extraction of the Perturbation Expansion

The estimates in the last section show that the basic volume dependence or
pressure for our expansion is naively of the order of (e#(I¥¢/e,)"/*~**. We need to
do better in A%, the region that has been decoupled from the large field regions.
We improve our expansion in A} by computing the pressure and the expectation
of F! o as perturbation series plus remainders of the order of (ef(IXg/e,)"/* )" 1,
(eP(Lfe/e)'*~*y™* 1, respectively. The remainder terms are so small that they can
be treated like the large field effects and ignored in the expansion at the next scale.
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The perturbative terms exhibit renormalization cancellations, and so obey the
bounds we need for the next step.

To extract the perturbative terms, we resum the decoupling and Mayer
expansions in A4%). Note that W9(X)=0 only for X at the boundary of 4%). Thus
W-terms will not appear in the resummed expansion. We obtain for the
expansion in (5.13.4)

Y [18.(X,)= ) [1 gz(Xa)ZF(A(H) )

{Xo} « {X,} overlapping A(lkl)c o

where

! i — YR (AK)
zp(A1)) = </.Agk2> I1 P o X g )e ™Y (A12)>1
A

5
cn:XglCA(l‘? (k)

~ LA (5.14.1)
VOuUB)= Y VvW(Y).
Ycak
Recall that A% =AM ¢®"=¢® in A¥, and that A®” has been replaced by
(I —Q**Q)A®" everywhere in the integrand.

We treat z (A1) as follows:

z(AP)

2(419)
where z(AY)=z,_ (A]}), and we give expansions for zy/z and logz. The first
expansion will give rise to Fi, | ;.. plus remainders, the second to 2}, | ;.. plus
remainders. We consider only logz for the moment.

Define z,(4%)) for t € [0, 1] by replacing V(A%}) with t7(4%), replacing y(cp(e,),
(I—Q*Q)AW) with y(cp(te,), (I —Q**Q)A™), and similarly for y(cp(e,), #*). Thus
the restrictions and the interactions disappear at =0, at which point we have a
purely Gaussian expectation.

Thus we define perturbative terms for the action,

z(A1}) =

exp(logz(41}),

n 1 o
jkﬂ ; —;T Z(/l(ll‘%)|,:0,
and a remainder
! (11— d

7 (K)y — — . .

R(AP) idt GEE <dt’”"dt>,' (5.14.2)
Here (-, is the interacting expectation

1 k k
0= = g™ VA
t t(A(k)) A1 1, A( )

with X'A;;),t defined as above replacing p(e,) with p(te).
We express each d/dt as a sum Y (d/dt),, where (d/dt), acts only on the ¢ before a

particular term V®(Y) in ¥V® or in a particular y-factor. We cluster expand as
before each integral making up the truncated expectation values {(d/dt),,;

;(d/dr),. . >.Let HC{1,...,i+1} specify which observables are included in one
of the integrals. If J € H then we have a factor (d/dt),, in the integral. The partition
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{[;} of A% is determined by the sets Y from e "™ —1 factors, and by sets Y
from V%( Y) factors differentiated down. The expansion takes the form

< I <u> Z/A(lhz)‘te—:vw)(ml’;))> - Y [185(Hp Xp). (5.14.3)
J 2] 1A% {Xq filling A% f
Here H,CH specifies which ( d/dt) have supports intersecting X ;.

The polymer activity g5 is essentlally the same as g,, but with additional
observables, namely the (d/dt) -factors determined by H ;. Also, the interaction and
characteristic functions have been partially interpolated away, and there are not
W-terms.

If [Xyl=1, H;=0, we write g5(0, X 5)=1+g5(0, X ;) and the above expansion
holds again, but without the condition that {X ;} fill A%). The {X;} must cover all
cubes connected with the (d/dt), , je H. Let us drop the prime, and prove that

g3 (H . X )] S (A (L) 141l =0 X 1l (5.14.4)

We use X;\Hj to denote the set of cubes with no (d/dt),, factors, je Hp.
The proof of this estimdte is similar to the one for g,. We mention only the new
features. Each factor V¥(Y)in ﬂ (d/dt), produces a factor e’(If¢/c,)'/*~*in the

final estimate. This is obtained in tfle Gau531an integration estimate, using the fact
that V®¥(Y) is a small polynomial in A%, $*. [The restrictions disappear as t —0,
so V¥(Y) cannot be replaced by its supremum.] The factors e~ —1 can be
bounded as before, because the coefficient ¢ in front of V*¥(Y) plus a small power of
e, easily beat the bounds A%, $® < cp(e,). Each t-derivative of a y-factor in 7409,
gives at least a factor e/(I¥/c,)"/* ~* This follows because with (1, x)=d/dxy(1, X),
we have

A(k

d

sct” 1|‘/¥ (1, A®/cp(te))l,

and similarly the n-th derivative in t of y(cp(e,), A®) is bounded by ¢ ™" times a
function bounded by a constant and supported in ¢, p(te,) <|A%| < ¢, plte,). After
integration over A%, we obtain factors ct ~"e” Pt <(ef(Lke/e,) /)", Similar
bounds hold for ¢*. The bound for H,=0, |X 5|=1 was obtained for g,, and the
same proof applies here.

Returning to our expansion, let us sum first over {H,}, the partition of H
determined by the { X ). Denote the X;’s with H;+0 by X ; the X ; with H; =0 by
Y;. The expansion (5.14.2) becomes

) [1gs(H, X,) I;[ 2300, Y;).

{H,}e Z(H) {X},{Y s} nonoverlapping 7

d
Idt scp(te,), AY)| =

Each X, must cover and connect all the t-derivatives specified by H,. Next we
reorganize this cxpansion in order to extract the truncated expectation values
(5.14.2). This involves adding and subtracting terms in a scheme familiar to one in
[10]. We insert factors

0 if X,Y overlap

X, Y)=
ux,¥) {1 if X,Y do notoverlap,
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and similarly factors u(X , X,), u(Y;, Y,). We extend the sums over {X }, {¥;] to
nonoverlapping sets; however the corresponding subsets of H remain the same —
no duplication of ¢t-derivatives. We put u=1+a and expand in the usual manner.
This enables us to factor out the normalization z,(A{)) to obtain

d
)07 B 202
jeH vt {H,be?(H) {X,} (Y1,....,YB)
B

1
X EZ [T a(L)[1gs(H,, X)) [T g3(¢, Y5).

© G ZeG v =1

Here % denotes pairs of clusters (lines) and G runs over graphs of such lines in
which each Y; is connected directly or indirectly to some X,. The connected
components of G define a partition of H which corresponds to the partition in the

formula
d d
<j£]H <E>yj>:: <H;}§@(H) U <jerf[1; [; (E>J>t

Thus we have a formula

d
(i) <a>y,]>,— wn o

B
Z [1 a2) H gs(H,, X)) ﬂ g3(¢, Y,),
e LeGe =1
where G, runs over connected graphs involving all clusters X, ¥;, and hence all of
H.
We use this to give an expansion for the remainder from the perturbation
expansion of the interaction:
A=Y W),
XcA<1‘<2)
Here W¥'(X) is obtained by summing only over {X,}, (Y,..., Y) which fill X,
summing over {7} with suppt(d/dt), C X, and integrating over { as in (5.14.2). It is
now a standard exercise to estimate the expansion, using (5.14.4). The result is

WA (X S (P (L) 4~y 0,

(We allow adjustments in f, o, ', keeping them small.)

We make some modifications in the perturbative terms to achieve the standard
form of the interaction, 2y, ... We give random walk expansions for the
propagators C‘f,‘(’kf, A(k>(uk+ ) produced in this step. The leading terms, with only
propagators C%% 100 ¢t 409, 1oc(ly + 1), we transform further. The others, localized in
region X, have a factor of e @)Xl We also consider as remainders any terms
whose order in /J and e is greater than 7.

We wish to replace C%y) .. with C{£.. Recall that C%¥ is the Dirichlet inverse to
(5.13.2), and we define C%, . by cutting off the kernel when the arguments are
separated by O(r(e,)). C¥) was defined in (2.9), starting from the inverse to 0*oy 1,0

on the appropriate subspace. The replacement of C%) A0, Toc with C$J .. produces
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terms localized near A These terms are bounded by a small power of coupling
constants, e(I¥e/ey)!/* % To make the replacement of C%) .. with C¥) note that
the former always appears between two operators as (I — Q*Q)Cy) (I — Q*Q").
This differs from C*) by a small, local operator, since after replacing C%J ,,. with

loc

C%), we have an identity
(I = Q*Q)CHHI — Q*Q*)=CW = Cig. +O0(e ™).

Thus after removing some O(e ™ ““¥) remainders, we have our standard covariance
Clet-

We compose propagators, using also terms from
VB (A%). For gauge field propagators, we apply (5.5.11). For scalar field prop-
agators, we use the identity 2.42 from [7]:

Gh(Ds“kH)‘Fal%vaGk(D’“H1)Q (uk+1) (D Ug 1)
X Qplty 4 VG, vy 1) =Gl (s g4 )

There are also small (O(e™ ")) terms involving G, oot 1)— G [, th o 1)s
Clotty s )= C* (T, u 1), and Gysyodltty s )= Gy (st 1), and - boundary
terms as above involving Cw, ot s 1) —CB (. ). We end up with scalar field
propagators Gl . | joo(Uy+ 1) For simplicity we extend the localizations of vertices in
all diagrams back to A% (for gauge fields we use a smooth localization function).
This produces more boundary terms. Then the terms produced in this step
combine with the old terms V¥ (A%) to produce the full interaction 2f, | ;,(A%).

con

Altogether we have written

Vi A+ 2 (A8 =P ol 4E)+ X WR(X).
X
If we put WH(X)=WH(X)+ W¥"(X), then WF(X) obeys

(eP(Lkefeo) /42y H LHFIXT D dist(X. A%)€) = r(ey)
(eP(Lke/eq)V/* )” X1 otherwise.

X)) = {

We apply a somewhat different procedure to extract the proper perturbative
terms from the observable. We integrate by parts in the Gaussian expectation
(5.14.1). Each F}! l(,C(X Jis a polynomial in A%, $'; those ficlds can be contracted
via covariances CA‘E) or (! (k,(ukﬂ) to other observables, to /Auy: or to the
interaction. After each mtegratmn by parts, we replace the covariance by C¥) o
CM(u, ) and give a random walk expansion for the difference. For each term, let
X be the union of the cubes covering the X, and the regions from the random walk
expansion. A connected component of X is ‘called complete if a contraction to 7
occurs, if a term from the random walk cxpansion occurs, if at least A+ 1
interactions have been differentiated down, or if the term is constant (all legs
contracted). We stop integrating by parts fields in complete components of X.
After sufficiently many integrations by parts, all components of X will be complete.

We break up the observable according to the connected components of X. The
components containing contractions to /Am, terms from the random walk
expansions, or at lcast 7+ 1 interactions are called remainder components (X, ).
The other components are called constant components { X}, since the observable
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there is independent of A%, ¢®. We can arrange the construction so that the { X}
are determined once the remainder components are specified. Summing all
possible diagrams in X, gives the observable for the next step there, Fry ; jo(X ).
Summing all terms in X, gives an observable F, ,.,(X,). Then the result of the
integration by parts is

<HFI\ loc a1 > Z ]_]Fk+1 loc XC)<HFk.rcm(Xr)>17

where -, is the interacting expectation at t=1.
Having extracted the desired perturbative terms Fr, , ,,.(X,), we need to finish

the calculation of the remainders by giving a cluster expansion for <ﬂ F. rem(X,.)> R

with appropriate bounds. We use essentially the same expansion as before, Mayer-
expanding V®(Y)’s and interpolating the Gaussian measure. Finally the polymer
expansion u =1+ a permits us to factor out the normalization. Without going into
details, it is clear that the result can be written in the following form:
<n FP ol X, > Y I1GX) 11 FhndX).
{Xph ¥’ c:Xed yX,

The X, are disjoint, and each one covers at least one X
observables F}' ..

The main source of concern in estimating G,(X,) is that we only have bounds
IF o X, ) S e(Lie)™™9e "™, coming from our estimates on perturbation expan-
sions of observables; similarly for F{, | ..(X.). Here m(c), m'(c) depend on the terms
in Fin X, or X By performing sufficiently many integrations by parts, we have
arranged for enough small factors to beat these large factors in the remainder
terms (at least if X, is not at the boundary of A{}). Near the boundary we have
potentially large covariances C%y ,— Cle.. or ka) ot ) —COu, 1), so we
make use of the proximity to 4%} (ke to provide the necessary convergence. These
considerations lead to the followmg estimate:

IGU(X)| S c(F(X)) (eP(Lke/eq) 2P 1X el
x I1 [c(Ike) @m0

Xoy CX dist(Xgy. A)) <r(en)

the support of one of the

ay

To summarize the results of this section, we have

o~V Enat(4 ) Y ] gx(X,)

{Xo} @

= )) ﬂng)ZﬂG

{X«) overlapping A"‘>C a

x 1 Fkﬂ.loc(Xc)eXp(—g’Hl.mc s’”)‘ZWé")(X)) (5.14.5)
X

c:XL-QﬁX,/

5.15. Second Mayer Expansion and Scaling

In this section we recover the induction hypothesis for k + 1 instead of k, and write
a formula for the hole functional g, , ,(X ). First we Mayer-cxpand the irrelevant
W terms:

eXP(— ; Wé’”(X)) =Y |1 (e "&®—1). (5.15.1)

S¢ X€Se
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We define
A(lk% :A(Ik_?'.\\ U X‘U Xr"“ U Xc’

\XeSe L le:XenX+0,XeSq

it is a region now completely free of irrelevant terms. We write

[7] Fk+110cX) an+110cX )an+lloc(Xa’)7 (5152)

c: Xo¢ ‘V\J,X

where {0’} ={c: X C A}, and {¢'} are the rest.

By inserting (5.14.5), (5.15.1), (5 15.2) in (5.12.8), we obtain the final form of the
density o5 (v, ).

We now scale this density from T,**" to TV, putting yp*(y)=L" " 272
w! (L™ 1y). If we define

d—2
Q(anl):expl:_T logL)lT““l} (v, L7221,

then the integral of o(v, ') is equal to the integral of o™(v, ™). Thus we define the
(k+ 1)th normalizing energy to be

-2
Gor =6+ EY+ S5 % (log L) 114 ). (5.15.3)

Let us describe how the scaling affects a few of the objects that will be needed in
the next step. Defining f**Y(p)=(ie,, ,)” " logu(p), we have that

o — -1, AL~ Ty nyex (k+1)
e L 2D oy 1000 S = LDy 100 Qi f ;

and thus in 4%* we have
Ups 1. =(Q v)exp[—ie L~ 'n7y . Llocarl"*in S
as in the induction hypothesis (4.2). The quadratic forms become
FCALFR TN gy 10 ASFHETDS 4 3 AE Y, A ocltiy e )AS W)

The interaction and obscrvables arc scaled and written as 2, ,, ,,(4¥) and
Fri110d(X,), respectively. Propagators and vertices appear scaled to the L™ 'y
lattice. The scaled form of the normalization factors is given in (4.6), (4.9).

Let {X } be the components of A%}, and let X, also specify A%~ X . and a
collection { X ,} of sets from the previous step. We exhlblt the factorization of most
of the terms in g, (v, p) by writing

k
Gerilop)= 3 [ 1]« i“(’)fA(lgc*Qilw (v, {Xa)’}’ {”U)})

{Xoorb J=O0
Ok‘rl(b P, leJ u(i)})

k - -
=Tk+1, a0 ” i+ 1(X oy H Fitia0dX o) 'I—[O [Z(/{zl{))f‘*c'z%%g(ukﬂ)]
=

o’

XL FCAG 60,6, o Agr ey
k) k I 2
- %<A(8) s Ayt oty VA P> =2y x.mc(/l(sk))“?(w s
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which is in the form of our original induction hypothesis, (4.1). The hole functional
has the expression

Xo

g (X )= >

Sa,01. AN X 01X}, (X, 1}, S6 compatible with X,

x| d(/)(k)|/1<ﬁ)>vmx,,, Oax. AﬁQ'fmx(,,,(ll(k))é/tg’«)'*mx“,,(U/QU(k))

o

€
Y (k) . PR
X ()A'l")'*mA(l’:))"'*r\)((,,r <77Z A VTS SRV TS RVICLES SRIETISLE o

x[TedX,)  T1  FrwdX,) [ (e "8

0¢dad. XoC Xy (j-x; X)eSa

$ TG TG [T ™0 1) [T Foy X0

¥ XeSe ¢ XerCXe»
8
xexp| — Y 2UX )= P A4S APNX Gy )
p X 1* i o’ 7 k.loc 8 > 418 o Yk+ 1
i=

(k) A(k) k
—RYANX w1, O, H, 3 AY)

= QAP CX sy 11, OkHA.lncA(k))] (5.15.4)

Compatibility means that the summations run over sets associated only with
- and that the sets would have given us X, in the course of our constructions.

Specifically, this implies a certain “density” of terms leading to convergence
factors, and compatibility of the sets with the layered structure imposed by the A%,

We have discussed the estimates on many of the elements of the expansion in

2.+ 1. However, we cannot complete the estimates until after extracting conver-
gence from the large field conditions. This is accomplished only after integrating
over the final v, y in the last step. These problems, and the problem of decoupling of
the final fields, will be considered in a subsequent paper.
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