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Abstract. This paper is the first part of an extension of the Pirogov-Sinai
theory of phase transitions at low temperatures, applicable to lattice systems
with finite range interactions, to infinite range interactions. Transforming the
systems to a version of an interacting contour model, we develop a cluster
expansion. Making appropriate assumptions about the interactions, we prove
that for sufficiently low temperatures the expansion converges and the cluster
property holds.

In the sequel, we will use the cluster expansion method developed here to
investigate the structure of a phase diagram for a given system. We will also
give some applications of our results.

I. Introduction

The understanding of phase transitions remains one of the main objects in statistical
physics. Since Peierls [14] invented an argument to show that the Ising model on
v-dimensional lattice, v ̂  2, with nearest neighbor ferromagnetic interactions has
spontaneous magnetization at low temperatures, the argument has been made
mathematically precise [2,8] and extended in many directions, and new methods
have been invented to prove coexistence of phases in various systems (see the
references in [16,18 and 1]). Most methods require that the different phases are
related by a symmetry of Hamiltonians and that the systems satisfy the reflection
positivity [4-7,16]. An exception is the Pirogov-Sinai theory of phase transitions
[15,18] and its extensions [1,3,9,19].

However, the Pirogov-Sinai theory (PS theory) and its extensions in the present
forms are applicable only to classical (lattice) systems with finite range interactions.
The main purpose in this paper and its sequel [13] is to extend the PS theory to
classical lattice systems with infinite range interactions. The extension is meaningful
for the following reasons: There are obviously many interesting lattice models with
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infinite range interactions. On the other hand, one may hope that the PS theory
can be eventually extended to particle systems interacting via (infinite range)
two-body potentials in continuous [Rv, v ̂  2.

The PS theory describing the behaviour of phase diagrams of lattice models
was based on the notion of a contour model and a contour model with a parameter
[15,18]. In [19], Zahradnik gave an alternative version of the PS theory without
the use of the contour model with a parameter. Instead, he introduced a truncated
contour model, not appearing in the usual PS theory. It turns out that Zahradnik's
approach can be modified and improved to be applicable to our situation.

An intuitive reason why an extension of the PS theory to infinite range
interactions should be possible may be given as follows: Consider the Hamiltonian
given by interactions ΦA,Aa Zv. Then, for any fixed positive real number s ̂  1,
the Hamiltonian H Λ on the finite region A a Zv can be written as

HΛ= Σ ΦA+ Σ *A = H'AtS + H"AtS.
AcΛ: AczΛ

άιam(A)^s diam(,4)>s

Suppose that we can choose s ̂  1 in such a way that H'Λs contains all the essential
properties in the PS theory and that H"As is sufficiently smaller than H'As in some
sense. Then it is reasonable to expect that the PS theory for HΛ can be developed
by means of an expansion method to control H"As. The smallness of H"As may be
insured by imposing some decay properties on the interaction ΦA. But we must be
careful about the above reasoning, because the theory will be formulated in contour
language. See the expression (1.1) and the discussion below.

Let us first discuss the general strategy of our extension. If interactions are
finite range, there are no interactions between disjoint contours if one defines
contours appropriately. This is the case in the usual PS theory [15,18,19]. However,
if the interactions are infinite range, it is apparent that interactions between contours
should be allowed. Introducing the notion of external contour systems [18] and
stable ground states [19] we will transform the model to a version of an interacting
contour model. The extension will be carried out in two stages: (a) Construction
of pure phases for stable ground states and (b) Investigation of the full phase
diagrams. In this paper we construct the pure phases for stable ground states by
developing a cluster expansion method which turns out to be similar to a small
activity expansion in statistical mechanics. For any stable ground state and for
sufficiently low temperature, we show that the cluster expansion converges and
that the cluster property holds. This implies that in the region of convergence the
phase corresponding to stable ground states coexist and that they are pure states.
In the sequel [13], we will use the cluster expansion method developed in this
paper, and a modified and improved version of the truncated contour model method
used by Zahradnik in [19] to investigate the structures of the phase diagrams. We
will also give some applications of our result in Sect. 5 of part II [13].

In order to avoid unnecessary notational complications, we limit ourself to the
systems with infinite range two-body interactions (plus arbitrary finite range
interactions), which are translation invariant. Our results can be easily extended
to a more general class of interactions without much difficulties. We believe that
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the results can also be extended to continuous lattice spin systems [3] and to
Widom-Rowlinson models [1].

We now describe briefly the basic ideas, techniques and results on the derivation
and on the proof of convergence of the cluster expansion, and outline the contents
of this paper. We introduce the notion of contours, boundaries of configurations
and external contour systems following [18 and 19] in Sect. 2.1. For any
configuration ω for which its external boundary is given by an external g-contour
system d = {Γl9Γ2,...9Γn}9 we transform the Hamiltonian to a version of an
interacting contour Hamiltonian:

H(d;ω)=^Φ1(Γ;ω) + £ Φ2(Γ,Γ», (1.1)
Γec Γ,Γfεd

where Φί and Φ2 are one and two body contour interactions respectively. For the
details, see Sect. 2.2. In Sect. 2.3 we list assumptions on interactions (Peierls
condition and regularity condition), and give definitions of stable ground states,
partition function and contour correlation functions. In this way we transform
the model to a version of an interacting contour model. The main result on the
convergence and the cluster property of contour correlation functions is given in
Theorem 2.3.4.

We derive the cluster expansion for contour correlation functions in
Sects. 3.1-3.3. If the one-body contour interaction Φt in (1.1) satisfies the property
in the PS theory (stability condition) and if the two-body contour interaction Φ2

is sufficiently smaller than Φv (regularity condition), an expansion method can be
developed. We establish decoupling and recoupling identities, which will generate
decoupling and recoupling processes respectively. We use the identities to derive
the cluster expansion of the following type: Let A c Zv be a bounded region and
let pΛ(S) be correlation functions of external contour systems. Then

pA(d}= Σ K(d,d^...,dn}gA(dv(vdi)\ (1.2)
{β^v .A}

where g is a contour functional satisfying an integral equation of Kirkwood-
Salsburg type:

(1.3)

on a Banach space J^, where K Λ i s an operator on OF. Using the decoupling identity
(3.1.8), and following a usual decoupling process similar to that in [11, 12], it is
easy to obtain the expansion (1.2). However, contrary to standard cluster expansions
[11, 12, 16], the decoupling process is not enough for deriving the integral equation
(1.3). Thus, in order to derive Eq. (1.3) and to control the operator KΛ, we use a
new technique, namely the recoupling process.

In Sect. 4.1 we state the results on the convergence of the cluster expansion as
A tends to Zv (Theorem 4.1.1) and on the cluster property (Theorem 4.1.2) which
imply our main results. In Sect. 4.2, we establish some useful uniform bounds.
Using the uniform bounds and a modification of the method used in [18], we
prove convergence of the cluster expansion. In Sect. 4.4, we give a sketch of a proof
of the cluster property. The appendix contains a proof of a technical lemma
(Proposition 4.2.2.).
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Let us make one additional comment on some difficulties in this paper. Our
extension is based on the use of the integral equation (1.3) [16,12,18]. The operator
KΛ in (1.3) is of the form:

^Λ=XΛ^Λ K = K t + K2 + K3 + K4. (1.4)

The operators K2 and K3 defined in (3.3.18) and (3.3.19), respectively, have very
complicated structures, which originate from the use of the recoupling process to
derive (1.3). In the PS theory, these operators are absent. This paper becomes
lengthy, because we have put a lot of effort into estimating the norms of K2 and K 3.

In principle, it may be possible to derive a polymer type expansion [17,11] by
using decoupling and recoupling procedures used in this paper. Then our main
results would follow from a method of combinatoric estimates [10,11,17]. Because
of coding problems arising from the complicated expression of K, we did not pursue
this idea.

II. Notations, Definitions and Main Results

2.1. Basic Notations, Contours and External Contour Systems

We will follow the notations used in Sinai [18] and Zahradnik [19] very closely.
Let Zv be a v-dimensional lattice space (v ̂  2), and let Ω be a finite set of spin
values. For any A c Zv, denote by ΩΛ the set of all configurations on A. Throughout
this paper we use the norm

| | x | | = m a x | x f | , xeZ\ (2.1.1)

Given A c Zv, we denote by bd(/l) the boundary of Λ:

dist(x,Λ c)= 1}, (2.1.2)

where Ac denotes the complement of Λ. A set A c Zv is called connected if for any
two points x,x'eA there exists a sequence x = xi,x2,...,xn = x' of points x^A
such that \\Xi — xί,1 \\ = 1 for i = 2, . . . ,n. For each finite A c Zv and each
configuration ωeΩz , denote by ωΛ the restriction of ω on A.

Fix some family QaΩ and a real number s ̂  1 . The family Q and the real
number s^ 1 will be chosen appropriately once a model is given. Given qeQ,
denote by ωq the constant configuration ω(x) = q for all xeZv. We will call ωφ

qeQ, the ground states. For a ground state ωq we say that a point xeZ v is a
^-correct point of a configuration ω if for each yεZv such that || x — y \\ ̂  s, ω(y) = q.
We say that xeZ v is a boundary point of a configuration ω if it is incorrect for
each ground q'eQ. A boundary of a configuration ω is defined as a union of all
boundary points, denoted by dω. A restriction ω to any finite connected component
of dω will be called a contour of a configuration ω, and this component will be
called the support of this contour. Thus a contour Γ is given by Γ = (M9ωM),
where M is the support of Γ; M = supp Γ. A contour is said to be finite if
card (supp jΓ) < oo.

Let Γ be a contour, A component of (supp jΓ)c will be called a ^-component
if the neighboring spins ofΓ have the value q. If the exterior component of (supp Γ)c
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is a ^-component, then Γ will be called g-contour and denoted by Γq. For any
ground state ω^g'eβ, denote by Intq, Γ the union of all interior ^'-components
of (supp Γ)c. We write

IntΓ= U Int^Γ, V(Γ) = suppΓuIntΓ, (2.1.3)
q'eQ

extΓ = (F(Γ))c, |Γ| = |suppΓ|,

where for any set A a Zv, \A\ is the cardinality of A.
A finite connected subset B c Zv will be called simple if £c has no interior

components, i.e., Bc is connected. For a given finite A c Zv and a geβ, let

<^(/i) - {Γ«: F(Γg) c Λ, dist(K(Γ«), Λc) ^ 2} . (2.1.4)

We emphasize that in the definition of Ήq(Λ) we used the condition V(Γq) c A.
Note, however, that if A is simple, then ^q(Λ) is the family of all ^-contours in
Int(Λ). Let <^(ZV) be the set of all finite g-contours. The family of all external
^-contour systems is defined by

£2 if iϊj}.
(2.1.5)

The empty set φ also belongs to $q(A). We note that for a given de$q(A)
contour Fed is external in the sence that F c(V(Γ'))c for any Γ'ed if Γ' φΓ.
Let <^(ZV) be the family of all ^-contour systems consisting of finite ^-contours.

For a given ^-contour Γe^q(Λ\ denote by Ω(F) the set of all configurations
ωv(n on V(Γ\ which satisfying the condition that being extended by q to whole
Zv, they have F as one of its external ^-contours.

Before closing this section we give a comment on the family of external g-contour
systems $q(Λ). For any bounded A c Zv and s ̂  1, denote

Λs = {xεA: dist(x,/Lc) > s}. (2.1.6)

Let A c Zv be simple. Then, for any configuration ω with the property that ω(y) = q
for any ye(/ls)

c

? there exists a unique maximal subset ext(<5ω) of dω, called the
external ^-boundary of ω, such that ωext(δω)e^(Λ). Conversely, for any finite Λ
and any dεSq(A\ there exists at least one configuration ω such that the restriction
of ω to its external ^-boundary coincides with d.

2.2. Hαmίltoniαns and Contour Hamiltonίans

In order to avoid unnecessary notational complications we mainly consider systems
with infinite range two-body interactions plus arbitrary finite range interactions.
Let some family {ΦA} of finite range interactions (functions on ΩA) be given,
invariant with respect to shifts in Zv and with a finite interaction radius s(ΦA = 0
if diam(A) > s). For any x,yeZ v, let Jy-x:Ω x Ω-+ IR be a symmetric function. For
a finite A c Zv and a configuration ω, the Hamiltonian is given by

HA(ωAωAC}= X ΦA(ωA}+ X J, _ >(x), cφ)). (2.2.1)
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We will impose a decay property on the two-body interaction Jx_y later.
Let A be a simple, finite and connected region and let ω be a configuration

such that its external boundary ωext(5ω) be given by an external g-contour system
{7~\ , Γ2, . . . , Γn}e^q(Λ). For any B c /v, let ωB^q denote the constant configuration
on B with its value qeQ. Then

HΛ(ωΛ\ωΛCίq) = H(ωA\ωAc^ - H(ωA^q ωΛC>ί) + H(ωΛ,q ωΛctq)9 (2.2.2)

and

+ Σ Σ

•[Jx-y(co(x)9ω(y))-Jx-y(q9q)']

1 "

(2.2.3)

Let ω(x; F(.Γ, )) be the configuration defined by

Then from (2.2.3) it follows that

/ 1 FJ=ΣΦ 1(Γ ί;ω)+ Σ Φ2(^^ ;ω), (2.2.5)

where for a given configuration ω with ωext(δω)= {.Γ!,^,...,/",,}^^^),^! and
Φ2 are defined by

f)), ω(y; 7(Γ£))) - Jx-,te, g)] (2.2.6)
{x,y}nK(Γ(-)^φ

and

+ Σ [Jx-yίωW.ωίyW-J^^ςf)], (2.2.7)
/xeF(Γi)

yeF(Γ,)

respectively. We note that Φ^Γ ω) depends only on the values of ω on V(Γ).
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From (2.2.2)-(2.2.5) it follows that

HΛ(ωΛ\ωΛctq) = ΣΦ1(Γ ί;ω)+ J Φ2(Γi9 Γ,.;ω) + H A(ωA,q\ωAC,q\ (2.2.8)
i = l W = l

Obviously the last term in the above does not depend on ωΛ. Therefore, discarding
this term from HΛ(ωΛ\ωΛCfq) does not effect the conditional Gibbs densities. Thus
for any configuration ω for which its external ^-boundary is given by an external
^-contour system d = {Γl9Γ2ί...,Γn}e£>

q(Λ) we define the contour Hamiltonian
by

H(d;ω)= Σ Φ^Γ ωH Σ Φ2(Γ,Γ';ω), (2.2.9)
Γed Γ,Γ'εc

where Φi and Φ2

 nave been defined in (2.2.6) and (2.2.7) respectively.

2.3. Assumptions, Definitions and Main Results

Recall the definitions of the set of ^-contours ^q(A) and the family of external
^-contour systems $q(A) in (2.1.4) and (2.1.5) respectively. For any finite A c=Z v

and any qεQ we define the partition function by

Z,(Λ)= Σ Π Σ e-HM. (2.3.1)
deSq(Λ) Γec OJV(Γ)GΩ(Γ)

The term corresponding to the empty set d = φ in the above equals to 1. Notice
that for a simple A the above definition coincides with the usual one corresponding
to ^-boundary conditions on (Λs)

c. For any Γe^q(Zv\ define the crystal partition
function by

Zβ(Γ)= X e-w <»\ (2.3.2)
ωeΩ(Γ)

For A = lntqΓ9 it follows from (2.3.1) that

Z,(IntΓ)= Σ Π Σ ^H(δ;ω) (2-3.3)
σe(fς(IntΓ) Γ'eo ωV(Γ/)eβ(Γ')

For a given external ^-contour system d^S\(A) we define the external ^-contour
correlation functions by

PΛ*W = 7JΛ) Σ ΠΠ Σ Σ e-w»*»\ (2.3.4)
^qV*) d'effq(Λ) ΓedΓ'ec'ωV(Γ)eΩ(Γ)ωV(Γf)eΩ(Γ')

δvoe£q(Λ}

where the sum is taken over all ^-contour systems d', compatible with d in the
sense that dud'e^C/l).

We now list assumptions on the interactions and then list our main results.

Assumption 2.3.1. [Peierls condition] For any g-contour Γ = (M,ωM) let

= Σ l--^r-ίΦA(<oA)-ΦA(<»ΛΛn
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Then there exists a sufficiently large τ > 0 such that

holds for any g-contour Γ.
Since we have absorbed β = \/T into the Hamiltonian H(δ,ω), the parameter

τ is propositional to β. Next, we give an assumption on the decay property of the
two-body potential.

Assumption 2.3.2. [Regularity condition] The two-body potential satisfies the
bound

e-^x^J(\\x-y\\)9 (2.3.5)
CO

where δ is a metric on Zv such that

sup ]Γ e-*(x>y)^M<ao (2.3.6)
x yelv

for some constant M > 0, and J:U -> ίR+ is a non-negative function satisfying

oo \

2 £ £J(2s + r+| l ) , | | ) ig-T, (2.3.7)
r = oye ι* 48

for the positive real number s introduced in the definition of contours.

Remark, (a) If the two-body potential decays as

for some A > 2 v + l and ε > v , then one may choose the metric <5(x,y) as
(5(χ, y) = ε log(l -f || x — y || ). In applications, τ is usually of the form τ = cβ/sv for
some constant c independent of β and s. Note that we have absorbed β into the
Hamiltonian. In this case, (2.3.7) holds for sufficiently large s or small b. See
Appendix A of the sequel [13].

(b) Instead of the condition on the metric δ in (2.3.6), the following condition

<5(x, y)— >oo as || x — y\\—>ao (2.3.8)

is sufficient to get our main results (Theorem 2.3.4, Theorem 4.1.1 and Theorem
4.1.2). We impose the condition (2.3.6) stronger than (2.3.8) to investigate the
structure of the phase diagrams.

Next, we define a contour functional Ψ(Γ) by

e-ψ(n = Zq(Γ)/Zq(IntΓ). (2.3.9)

As in [19], we introduce the notion of the stable ground states

Definition 233. A g-contour Γ is called stable if

A ground state qeQ is called stable if every JΓ7G^(ZV) is stable.
In the sequel [13] we will analyze the stability condition in detail. At present,

we remark that if all ground states are related by a symmetry, then the Peierls
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condition and the regularity condition imply the stability. See for an instance
Proposition 4.2 in Part II [13].

Theorem 2.3.4. Let qeQ he stable and assume that the regularity condition in
Assumption 2.3.2 holds. Then for sufficiently larger τ, the following results hold.

(a) The infinite volume limit

ρq(d}= lim ρΛtq(d),
Λ->Z V

exists for any δe^q(I.v) as A tends to Zv.
(b) The infinite volume limit contour correlation functions pq(d] satisfy the cluster

property. For any d,drE$q(Z.v) with

as dist(3,δ') tends to infinity.
In principle, it would be possible to estimate the decay rate of the clustering in

terms of the metric δ by checking carefully each step in the proof of the above
theorem in Sect. 4.4. Using the above result (and Proposition 2.1 in Part II) with
the argument used in [18], one may construct a pure phase on Ω1 for each stable

. See the discussion given below Proposition 2.1 of Part II [13].

III. The Cluster Expansion

3.1. Abbreviated Notations and Identities

Before developing the cluster expansion, we introduce more abbreviated notations.
We then state decoupling and recoupling identities which we will use to develop
the cluster expansion.

From now on we fix a (stable) ground state qeQ and suppress q from notations.
We also write #(ZV) and ^(Zv) as <# and ff respectively. For any ΓE% and detf,
we write

V ( d ) = ( J V ( Γ ) , \dω= £ , J d ω = Π J d ω , (3.1.1)
Fee Γ ωV(Γ)eΩ(Γ) 8 Γed Γ

and for any d,d'e$(Λ) with dvd'e$(Λ) we also write

Φ2(3,Γ;ω)= £ Φ2(Γ',Γ;ω), Φ2(S,3';ω) = Σ £ Φ2(Γ,Γ';ω). (3.1.2)
Γ'eδ Γec Γ'ed'

Then it follows from (2.2.9) that

H(d u d'\ ω) - H(d; ω) -f H(d'\ ω] + Φ2(δ, d'\ ω). (3.1.3)

Using the notations in (3.1.1), and the definitions of partition function and contour
correlation functions in (2.3.1) and (2.3.4) respectively, we may express that

Z(Λ)= Σ \dωe-H(™ (3.1.4)
de£(Λ) c

and

Σ Sdωldωe-*™"*. (3.1.5)
d'eS(Λ\V(o)) c o
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From (3. 1.3) it follows that

for any d.dΈS with
Next, for any /"e^ and O<Ξ$, denote

}-\, g(d,Γ;ω) = e~
φ^Γ^ - 1. (3.1.7)

Then it follows that ί/ze decoupling identities

e-φ>(Wrt= ]-j [(e-
φ*<* Γ>>- i)+ 1] = 1 + Σ Π 9(d,Γ'-9ω) (3.1.8)

Fee φ ^ δ j c z c Γ&dγ

and

#Λ(δ,Γ';ω)=Πί>~Φ 2 ( Γ'Γ ; ω )- ! + !]-!= Σ Π β(Γ,Γ;ω) (3.1.9)
Γet 07^ c5 XΓe^! /

hold for any d.δΈS with ^u^'e^. On the other hand, it also follows that ί/ze
recoupling identity

1 _ g-Φ2(δ,a':ω) = I _ ΓT g-Φ2(δ,Γ/:ω) _ y-r r/ | _ e^Φ2(d,Γ' ω)^ + g~Φ2(δ,Γ/;co)-|

Γ'eσ' Γ'eδ'

Γ'ee' φϊd\cc\Γ'εc\
(3.1.10)

holds for any d.d'eS' with o\jdr£$.
In order to simplify notation and expressions further, we will use the following

conventions:
(a) Whenever we use an expression like F(3 1 ? . . .,dn;ω) for given external

contour systems {dl9...,dn}, it means that F depends only on configurations ω in
i), where

(3.1.11)

(b) We will use the abused expressions such as

F(d; ω) = £ J dωF(d, d' ω). (3.1.12)
d C

The above really means that F(δ ω) is given by

(3.1.13)

Thus, F(δ ω) in (3.1. 12) is still dependent on ωeί2(δ).
Throughout this paper and the sequel [13] we will use the above conventions

without mentioning them explicitly.

3.2. The Cluster Expansion

Let B c= Zv be a finite subset. For any external ^-contour system 5,9;e^(β) and
for any configuration ω for which d u d7 is the external ^-boundary of ω we define

/B(3,ω)= Σ fdωe-H(^:ω). (3.2.1)
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Using (3.1.6), the decoupling identity (3.1.8), writing d' = d^^jd" and summing over
3", we obtain

Λ(3;ω) = e-
H(™ £ ί d"( Π 9(S9Γ9ω)]fB,m(dί9ω)9 (3.2.2)

c^έ^B'^d)) dl \Γcdl /

where the term in the sum corresponding to dl — φ is allowed. Notice that

:/B\κ(r)(<M) (3-2.3)

by (3.1.4) and (3.2.1).
For a simplification of notation, denote

K(d,ω)ΞΞe~H(G>ω\ K(d,d'9ώ) = e-H(δ'ω}γ\ g(d9Γ;ω). (3.2.4)
Γec'

From (3.2.2) we have

fB(d;ω) = K(d;ω)Z(B\V(d}} + £ J dωK(d, d± ω)fB\v(δ)(dί ω). (3.2.5)

Iterating (3.2.5) we obtain

fB(d\ ω] = K(d\ ω)Z(B\V(d})

^ ^JdωK(d9d1ιω)...K(dn.l9dn'9ω)K(dn'9ω)

Z[Λ\v(dv(() dt} )\ (3.2.6)

where in the sum Σ' the summation is over all {d1,d2,. ..,dn} satisfying
uδfE«?(β\F(δ)), δf ^ φ and F(<3f.)n 7(3^) - φ if i ̂  j.

We write

K(d, ω) Ξ K(d ω)/Π Z(Int Γ), X(3, 3'; ω) = X(δ, δ;; ω)/f] Z(Int Γ),
Γec

K(dι9d29...9dn)=]]ldωK(dί9...9dn9ω)9 (3.2.7)

and

Z(Λ\V(d))YlZ(lntΓ)

Then from (3.2.6) it follows that

fΛ(d;ω) = K(d;ω)gΛ(d)Z(Λ)

Σ ( Σ' HldωK(d9dι9...dn 9 ω ) f

(3.2.9)
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Since

we obtain from (3.2.9) that

= K(δ)gΛ(d)+Σ Σ K(d,dl,...,dn)gΛdu(Jd, (3.2.10)

where in the sum Σ' the summation is over all {dl9d2,» ,dn} satisfying
u<3z.e^(/l\F(<3)), at. / φ and 7(3,0 n 7(370 = φ i f ΐ ^ j . The above expression is called
the cluster expansion.

Let us express the decoupling process (3.2.9) and the cluster expansion (3.2.10)
into more compact forms. For any 3,3'e/(Zv) with dud'e<f(Z v ) with 3u3 ;e<?(Zv)
we define

K(δ ω) if df = φ

Y fί fdωX(3,3 1 , . . . ,3 Λ ;ω) if d' / 0.Z— / 11J V ? 1 7 ' «7 / ' T^ / O Λ 1 1 \(3.2.11)

Then the expression (3.2.9) can be written as

fA(d ω) = Σ X(3', (3; ω))gA(d u δ')Z(/l). (3.2. 12)

If we define

(d;ω)), (3.2.13)

then the cluster expansion also can be written into the compact form

PΛ(S)= Σ ί d ω A ( d l , ( d ; ω ) ) g Λ ( d u f f )
ceS:(Λ\V(d))c

(3.2.14)
ceS(Λ\V(c))

The expressions in (3.2.12) and (3.2.14) will be called the decoupling process and
the cluster expansion respectively.

3.3. An Integral Equation of a Kirkwood-Salsburg Type

We now derive an integral equation of a Kirkwood-Salsburg type of the following
form for the external boundary functional g A(d) defined in (3.2.8):

gΛ=l+KΛgΛ (3.3.1)

on a Banach space ,̂ where KΛ is an operator on ̂  . As mentioned in the
introduction, we will use a recoupling process generated by the recoupling identity
(3.1.10). It may be possible to derive an integral equation of type (3.3.1) by using
only the decoupling process (3.2.9) (or (3.2.12)). Then one would have some
difficulties in the estimation of the norm of K Λ . We believe that, in order to derive
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the integral equation (3.3.1) and to control the operator K Λ in (3.3.1) simultaneously,
it seems that the use of the recoupling identity (3.1.10) is unavoidable.

Let us start to derive an integral equation for g Λ. For any ΓOE^, let [/"Ό] be
the family of external contour systems defined by

[Γ0] = (Γe^:dist(suppΓ0, V(Γ))^\}. (3.3.2)

Then, from the definition of Z(B) in (3.1.4) it is easy to check that for any given
Γ0e<f(B),

= Z((B\7(Γ0))uIntΓ0)+ £ £ ldωldωe-H(Γud''>ω\ (3.3.3)

and

Z((B\7(Γ0))uIntΓ0)= £ \d
σe£'((β\7(Γ0))uIntΓ0) c

= X \dω\dωe-mί''jί" 0>}. (3.3.4)

5"e<?(IntΓ0)

For a finite B a Zv and Γ0e^(£), write

Z(β\7(Γ0))Z(InlΓ0) = [Z(ΰ\7(Γ0))Z(IntΓo)-Z((β\K(Γ0))uIntΓo)]

+ Z((β\F(Γ0))uIntΓ0). (3.3.5)

We will estimate the first in the right-hand side in the above by using the recoupling
identity (3.1.10).

Let BaZv and Γ0e£(B). For given dί = {Γ1,Γ2,...9Γn}eff(lntΓ0) and
d\e<ί(B\V(Γ0)), denote

" Π g(Γ\Γ^ω)\ (3.3.6)

where in the sum it can be happen that dΓιπδΓ.^ φ. Then, using the recoupling
identity (3.1.10) and (3.1.9) we obtain that for any 5"e^(IntΓ0), d'e£(B\V(Γ0)),

I__e-φ2(d',e",ω)= ^ ^ Htf^dΊ oήe-W*6"-5^. (3.3.7)
φ φ c ̂ cc Γ ^ C Ί C

We use (3.3.4), (3.3.7) and the fact that H(d"\ώ) = H(d1) + H(d" - 3J +
Φ2(<31?3" — d1;ω) by (3.1.3), and we then write d' = d\^jd"l and sum over d'[
to obtain

Z(B\7(Γ0))Z(IntΓ0)-Z((β\7(Γ0))uIntΓ0)

= Σ ί ί dωe~H(^(jήe-H(d"> ω)[l - e-* '̂>]
d'e(f(B\V(Γ0))c c"
o"e^(lntΓ0)

= Σ Σ Σ J d ω ί J d ω H ^ . a ^ ω)
07έc"p^(IntΓ0) ̂ ^ίj c=r'; C^G^B^ΓQ)) c" c1 c\

.e-m^e-Φ^-f^ J^v(rβS" _ δ^uδΊ ω), (3.3.8)
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where

fB\V(Γ)((d" — dl)ud'1'9ω)= £ J dωe'H((o -d^c^°^ω\ (3.3.9)

Let us denote

G(d^d2\ω)= [] g(dl9Γ2;ω). (3.3.10)

Then by the decoupling identity (3.1.8)

,-Φ2(S^2;oή_ V KM ^.ω^ (3.3.11)

where the term corresponding to d'2 = φ equals to 1. Substituting (3.3.11) with
d2 — d" — di into (3.3.8), writing d" — β1 = 5'2 u δ^ and summing over d'2 we obtain
from (3.3.8) (and the expression of /β(δ;ω) in (3.2.1)) that

Z(B\7(Γ0))Z(Int Γ0) - Z((B\V(Γ0)) u Int Γ0)

= £ X j dω J Jω j dω

jj^u^ ω), (3.3.12)

where the case for d'2 = φ is allowed.
Next, from the definition of fB(d,ω) in (3.2.1) it follows that

a'2;ω). (3.3.13)
Γe[Γ0]

Using (3.2.12) (with Λ = B\V(dι)) and (3.3.13) we obtain the following relation:

Σ
Γe[Γ0] δ'e

). (3-3.14)

One notices that

0*^)01 ̂  δ'2 u 3')Z(B\ K(5J) = Z(B\ Πδ! u B\ u 3'2 u 3')) Π, z(Int Γλ
Fed -i uθovjβ '

(3.3.15)

by the definition of 0^(5) in (3.2.8).
We are now ready to derive an integral equation for gΛ(d). Let / be a function

defined on the set of finite external g-contour systems $ in Zv. Such functions form
a Banach space ̂  ' ξ :

ao}, (3.3.16)
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where ξ > 0 and \ d \ = Σ I Γ \ . Let 1 be the function in 3F'ξ defined by
Γeδ

1(0) = 1, 1(5) = 0 if d^φ.

We introduce the operator χΛ on ̂ ξ by

(3.3.17)

where χΛ(d) = 1 if dξ$(Λ] and χΛ(d) = 0 otherwise.
We next define some operators on 3F ^. For a given d£$ and a fixed

define operators K2 and K3 on J^ by

(K2/)(δ)= X Σ f ί ω f d ω j d ω
IntΓo): ̂ (ZVtf)) c\ δ'

φ

H(d^l\[ Z(IntΓ)

Γ0)u(51ua/

1ua/

2u^)), (3.3.18)
and

(K3/)(δ) - - X X J dω j dω J Jω

Σ Σ
Γe[Γ0]: cε$(I.v\V((< -ΓQ)^(c

(3.3.19)

Replacing 5 by Λ\K(δ-Γ 0 ) in (3.3.12) and (3.3.14), and using (3.3.15) and the
definitions in (3.3.18) and (3.3.19), it is not hard to check that

[{Z(yl\7(3))Z(IntΓ0)-Z((Λ\K(3))uIntΓ0)} Π Z(IntΓ)]/Z(Λ)
Γeδ-Γ0

= (XΛ^2XΛ9Λ)(S) + (lAK^AgA}(d\ (3.3.20)

holds for any deS(A) and a fixed Γ0ed.
We next consider the partition function Z(A\V(d - Γ0)). Replacing B by

A\V(d-ΓΌ) in (3.3.3) we have

Z(Λ\V(d-ΓQ))

= Z((Λ\7(3))uIntΓ0)+ Σ Σ ldω
Γe[Γ0] d'eS(Λ\V(c-Γ0)) Γ ?

= Z((/l\K(δ))υIntΓ0)+ X \dωfΛ,, V { S _ , Γ o ) ( { Γ } ;
•



202 Y. M. Park

0) + £ £ f
Γe[Γ0] S'εg(Λ\V(d-Γ0))Γ

-Γ0)). (3.3.21)

Here we have used (3.2.12) in the last step. We define an operator on OF ^ by

(K4/)(δ)=- X X μωΛ(3',(Γ;ω))/((3-Γ0)uΓud').
Γe[Γ0]c'e^(Zv\F(c-Γ0)) Γ

(3.3.22)

Then, from (3.2.8), (3.3.21) and the fact that

(3.3.23)

if follows that

~ O

(3.3.24)

Combining (3.3.20) and (3.3.24) together, we obtain that

gΛ(d - ΓQ) = gΛ(d) - (χΛ(K2 + K3 + K4)χΛ^Λ)(a). (3.3.25)

Finally, let

(K1/)(δ) = /(δ-Γ0), (3.3.26)
and let

- ((Ki + K2 + K3 + K4)/)(δ), (3.3.27)

if S Φ φ, and (Kf)(d) = 0 otherwise. Since g Λ(φ) — 1 by the definition in (3.2.8) we
obtain the following equation:

0 Λ = l + X Λ K χ Λ 0 Λ . (3-3.28)

The above relation is the integral equation of a Kirkwood-Salsburg type we were
looking for.

IV. Convergence of the Cluster Expansion

4.1. Statement of Main Results

We list our main results on the cluster expansion in this section. For any de<ί(/v),
denote

| d | = £ l Γ | , V ( d ) = ( J V ( Γ ) , I n t δ = U l n t Γ . (4.1.1)
ΓFC Tec Fed

Let δ be the metric introduced in Assumption 2.3.2 and for any Γ, Γ'e^ and xeZ v,
let

,Γ) = mm{δ(Γ,x):xeV(Γ)}. (4.1.2)

Without loss of generality one may assume that for any x, ye/ v,

δ(x9y)^\\x-y\\. (4.1.3)
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Otherwise one may replace δ(x, y) by || x — y \\ in (2.3.5). For any external g-contour
systems δ, δ'e^(Zv), denote

δ(d I d'} = max min (δ(Γ, x) }. (4.1 .4)
xeV(c') Γec

Note that δ(d\d') is not symmetric function on / x 6°.
The following are main results on the cluster expansion:

Theorem 4.1.1. Let a stable qeQ be chosen. Under Assumption 2.3.2, the following
results hold for sufficiently large τ:

(a) The cluster expansion (3.2.10} is summable absolutely, uniformly in A.
Furthermore the bound

holds for any de£(Λ\ uniformly in Λ.
(b) The infinite volume limit

P(8)=limpΛ(d),
Λ^ZV

exists for each 3e^(Zv). Furthermore the bound

,

also holds for each <9e^(Zv), where δ(d,Λc) = min{δ(x,y):xesuppd, yeΛc}.

Theorem 4.1.2. Under the assumptions the same as those in Theorem 4.1.1, the cluster
property holds: For any d,dΈ$(Γ} with <3ud'e<ί(/v),

p(dvd')-p(d)p(d')-*Q9

as dist(F(3), V(d')) tends to infinity.
The main results (Theorem 2.3. 4(a) and Theorem 2.3. 4(b)) in Sect. 2.3. are just

consequences of the above results. The above results will be proved by using the
following results:

Proposition 4.1.3. Under the conditions as in Theorem 4.1.1, the infinite volume limit

g(d)= lim g A(d\
Λ - + Z V

exist for any ^e^(Zv). The integral equation

holds on the Banach space J^, ξ = exp( -f τ/8).

Proposition 4.1.4. Under the conditions as in Theorem 4. L I , the bound

holds for any finite A c Zv and any 3e^(Λ), where δ(d,Λc) is the distance between
suppd and Λc with respect to the metric δ.
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Proposition 4.1.4 will be also used to investigate the structure of phase diagram
in the sequel [13]. In the rest of the paper we will produce the proofs of our results.

4.2. Some Useful Estimates

In this section, we derive useful estimates which will be used to prove the main
results. We first state a Peierls type estimate from the reference [18].

Lemma 4.2.1. [Lemma 2.7 of [18]]. Let a = max{vln(2s + 1), In|ί2| + 3v}, where
s^l is the parameter used to define contours. Then

holds for each xeZ v.
In the rest of this paper we assume that Assumption 2.3.2 holds and that a

stable ground state qεQ is chosen. The results in the following proposition are
consequences of the regularity condition (Assumption 2.3.2).

Proposition 4.2.2. (a) Let B c Zv be a bounded region and let d,d'e$ such that
V(d) c B and V(d') c Bc. Then for any configuration ωfor which d^jd' is the external
q-boundary of ω, the bound

X X ^ ( Γ 'Γ ' ) |Φ2(Γ,Γ/;ω)|^min{τ|bd(F(a))|/48,τ|bd(5)|/48}, (4.2.1)
ΓecΓ'ec'

holds uniformly in ω, where bά(B) is the boundary of B.
(b) For any q — contour Γ9 the inequality

Σ sup|Φ2(Γ,Γ/;ω)|exp((5(Γ,Γ/)-τ|Γ/ |/48)gτ|bd(F(Γ))|/48, (4.2.2)
Γ'eVq(Zv\V(Γ)} ω

holds for sufficiently large τ
(c) Let B be a finite region in Zv. Then for any given de<f(Zv\£) the inequality

Σ Σ sup|Φ2(Γ,Γ /;ω)|exp(5(Γ ?Γ
/)-τ|Γ|/48)^τ|bd(β)|/48 ? (4.2.3)

holds for sufficiently large τ.
(d) For any finite region B in Zv, the inequality

Σ Σ sup|Φ2(Γ,Γ /;ω)|exp((5(Γ?Γ
/)-τ|ΓuΓΊ/48)^τ|bd(5)|/48,

Γe^(B) Γ'eWv\β) ω

(4.2.4)

holds for sufficiently large τ.
Since the method of the proof of the above proposition is somewhat lengthy

and is not used in other places, we postponed the proof to the appendix at the
end of this paper.

We next consider the contour functional g Λ(d) defined in (3.2.8). We have the
following uniform estimate:

Lemma 4.2.3. The bound

holds for any de$(Λ\ uniformly in A.
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Proof. For any given deff(Λ) it follows from (3.1.4) that

Z(Λ)£ Σ \dω\dωe'H(d'^"ϋ\
c £<H(Λ\V(d)} o c"

d"eff(Inld)

Writing H(d' u d" ω) - H(d' ω) + H(d" ω) + Φ2 (δ'9 d" ω), using (4.2. 1 ) and the fact
that \bd(V(d))\^\d\9 we have

Z(Λ) ^ Z(Λ\7(3))exp( - τ|δ|/48) Σ J dωe~H(d"'ω\ (4.2.5)
<3"e<f(Intc) c"

Let d = {Γ\ , Γ2, . . . , Γπ} and let d" = {d1 , δ2, . . . , <3n}, where 3^ (Int Γf). Write

We use (4.2.1) again (with 5 = F(δ)) to conclude that

Z(Int δ) - Σ I dωe-H(d"' ω) ̂  ( \\ Z(Int Γ) exp( - τ 1 3 1/48). (4.2.6)
5"e^ (Intδ)β" \Γec

The lemma follows from (3.2.8), (4.2.5) and (4.2.6).

Recall the definitions of K(d,d';ω) and δ(d\d') given in (3.2.7) and (4.1.4)
respectively.

Lemma 42.4. For any de$ and for sufficiently large τ, the bound

Σ fdω sup \K(d,df;ω)\exp(δ(d\d')-τ\df\/l2)^e-τm.
φ φ d'eS(Zv\V(d)) c ωeΩ(d')

holds, where Ω(d'} = x Ω(Γ'\
Γ'ed'

Proof. Since max {δ(d, x) ̂  max {δ(d, Γ) + diam(Γ')}
xeV(c') Γ'ed'

(4.2.7)
Γ'ed'

From the definition of K(d,d'\ω) and (4.2.7) it follows that for τ/24 > 1 the
expression in Lemma 4.2.4 is bounded by

jdωK(d ω) sup ["] {|^(fl,Γ';ω)|^Γ/)-τ|Γ' l/24}. (4.2.8)
)) σ ωeΩ(d')Γfed'

A direct calculation yields

,,,j^m)1il
00

= Σ Γ Σ

^ 1 " \g(d,Γl;ω)\eiίa Γ^r'V24

n=: n\ , =ι

I0(a,r»|e*'r)-*i/24j-l.
(5)) J

(4.2.9)
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We note that

\g(d, Γ;ω)| = I Φ2(d, Γ;ω) J A?έΓ sφ2ίδ'Γ ω)| ̂  1 Φ2(<3, Γ; ω)|βτ|Γ|/48. (4.2.10)
o

Here we have used the fact that

sup|Φ2(δ,Γ;ω)|^ Σ sup|Φ2(Γ', Γ;ω)| ̂  τ|Γ|/48, (4.2.11)
ω Γ'eί ω

by (4.2.1). Using (4.2.10) and (4.2.2) we obtain that for sufficiently large τ

* Σ

Thus we conclude that

(4.2.9) ̂  eτlίi/48. (4.2.12)

On the other hand, we use (2.2.9), (4.2.1) and the stability condition in Definition
2.3.3 to obtain the bound

ldωK(dιω} = $dωe~H(e;ω]/l\Z(lntΓ)^exp(- 15τ|δ|/48). (4.2.13)
c c Γed

The lemma follows from (4.2.8), (4.2.9), (4.2.12) and (4.2.13).

We produce estimates which will be used in the proofs of the main result.

Proposition 4.2.5. (a) Let B c= Zv be finite and let H(d^d\ ω) be defined as in (3.3.6).
Then for sufficiently large τ, the bound

holds.
(b) For de<$(Γ] and d'e<$(Γ\V(d}\ let A(d';(d',ω)) be defined as in (3.2.11).

Then for sufficiently large τ, the bound,

X j d ω \ A ( d / ι ( d ; ω ) ) \ e δ ( d l d f } + τ ] d ' l β ^ e~τm.
φ^c^S\2v\V(c)} c

holds.

Proof, (a) From the definition of H(dl9d'l 9ώ) in (3.3.6) and from (4.2.7) it follows
that for τ/24 > 1,

^ Σ Σ Σ
»=l{Γ1,Γ2,...,ΓΛ}e<ί(B) {dι,...,dn}

v
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Σ - Σ Σ
« = 1 n

. (4.2.14)

In order to prove the proposition we use a finite interaetion method. As the first
step we define

We write δB = δ ua;,', where ̂  c δ f, and d'^S' Zv\ Bu v \J 3( . Let
i = l

n - 1 \Γe?' ' "'

%(ra) = Σ Σ ( Π l»(r,rπ;ω)|e^>

(4.2.17)

We decompose the sum over 5Π in (4.2.15) by

Σ = Σ „= Σ + Σ,Σ (4.2-18)
φ φ dn φ φ cn u c'ή Φ^cn φφ c"n cn

c"n = φ

They, by the definition of An(Γn) in (4.2.15) we have

An(Γn) = A'n(Γn) + A'ϊ(Γn). (4.2.19)

We will calculate A'n(Γn) and A'ή(Γn).
Let us first consider A'n(Γn). Using the relation (4.2.10) for d = {Γ} and (4.2.1)

we obtain that

^ eήr^\ (4.2.20)
Γec'n

We use the method employed in (4.2.9) and the above bound to obtain

g Σ
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Here we have used the first relation in (4.2.10), and (4.2.1) to get the second
inequality. And so (4.2.3) implies that

4,= Σ A'n(ΓΛ)ίτ\bd(B)\/4*. (4.2.21)
Γn^(B)

On the other hand, observe that by (4.2.20)

^ eτ|ΓJ/24. (4.2.22)

Here we have used (4.2.1) to get the last inequality. Using the above bound into
(4.2.17) we obtain

Writing S"n = ( Γ ' [ , Γ"2, ..., Γ"t], using (4.2.20) and (4.2.2) we obtain

Σ

£ exp Σ I φ2(Γ, Γn; ω)\eδ(Γ'
re'#(Bcl

Φ2(^^;ω)eί(Γ Γ" )- l | Γ | / 2 4e- τ | Γ l

and so by (4.2.4) and above inequality we obtain

<= Σ ^"(ΓB)g
ΓBε^(B)

Combining (4.2.19), (4.2,21) and (4.2.23) we conclude that

Using the above procedure fl-times in (4.2.14) we prove that the expression in
(4.2.14) is bounded by

/!=!"!

n - β

τ|bd(β)i/?4

This proves the part (a) of the proposition completely.
(b) From the definition of A(d',(d;ω)) in (3.2.11), and from the fact that

IM *
i = l /

Σ f<MΛ(δ',(3;ω))|ew')+τ|ί!'l/8
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(4.2.24)

g Σ

The inequality (4.2.13), Lemma 4.2.4 and the fact that \Γ\ ^ 4 for any ΓeΉ yield

sup

Using the above procedure (and Lemma 4.2.4) n-times and the definition
K(d, . . . , dw; ω) in (3.2.7) we conclude that (4.2.24) is bounded by

;ω)|ew^

This proves the part (b) of Proposition 4.2.5 completely.

4.3. Proof of Convergence

In this section we prove Theorem 4.1.1, Proposition 4.1.3 and Proposition 4.1.4.
The Proof of the cluster property is postponed to the next section.

Proof of Theorem 4.1.1 (under the assumption that Proposition 4.1.3 and
Proposition 4.1.4 hold).

(a) From (3.2.10), (4.2.13), Lemma 4.2.3 and Proposition 4.2.5(b) it follows that

pΛ(d) ^ K(d)e^l/24 + X ldω\A(d';(dιω))\eMl24 ^ e~^\
φ^ceSύ(Λ\V(c))c

for sufficiently large τ. This proves part (a).
(b) By part (a) of the theorem, the cluster expansion (3.2.14) is summable

absolutely and uniformly in Λ. Thus, the existence of the limit follows from (3.2.14)
and Proposition 4.1,3. Notice that - δ(d\d')- <5(duδ',Λ c ) ̂  - δ(d,Ac\ where
δ(d\d') is defined in (4.1.4). Since \pΛ(d) - ρ(S)\ ̂

g(dvd')\, the bound follows from Proposition 4.1.4 and Proposition 4.2.5(b).

•In order to show Proposition 4.1.3 and Proposition 4.1.4 we will use a
modification of the method used in [18]. For each finite subset W a Zvwe define
the norm || / 1 w of external boundary functional / defined on <ί(Zv) by

(4.3.1)
ceS

where

δ(d, Wc) = min δ ( V ( Γ ) , Wc\ δ(φ, Wc) = sup δ(x, Wc). (4.3.2)
Γed xeW

It is easy to check that the above norm defines a Banach space

(4.3.3)
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of contour functionals. Notice that 3F 'φ = 2F , where 3F is the Banach space
introduced in (3.3.16) with ξ = exp(τ/8). In application we will choose W by A.
For any d,d'e<$ with δuδ'e^, it is easy to show that δ(d, Wc) ^δ(dudf; Wc} +
δ(d\d') has been defined in (4.1.4), and so

- δ(dvd'ι Wc) ^ - δ(d, Wc) + δ(d\d'\ (4.3.4)

for any d^deS* with δude<f, and any finite We. Zv.
Before proving Proposition 4.1.3 and Proposition 4.1.4 we need the following

result:

Proposition 4.3.1. Let K be the operator defined in (3.3.27). Then for sufficiently
large τ, H K H ^ ̂  exp( — τ|Γ0|/28), where \\K\\ w is the operator norm of K in the
Banach space 2FW.

Proof. Assume that \\f\\w ^ 1. Then from the definition of K! in (3.3.26) it follows
that

g exp( - δ(d; Wc] + τ | d |/8) exp( - τ | Γ0 1/8),

and so
τlΓol/S). (4.3.5)

We next consider K2 defined in (3.3.18). Let <3e<f(Zv) and Γ0<=d be given. For any
δ l Jδ

/

1,δ /

2,δ'e^(Z v) such that (d - Γ^ud^^ud^ud'etf and δ^δ
(4.3.4) and (4.1.4) simply

Since δ l93'2e<?(Int Γ0),

and so

— δ((d — ΓQ)u(dludf

lud2udf\ Wc) ^ — δ(δ, Wc) -f ^δJS'J

+ 5(311 d'2) + δ(d'1 u d'2 d'). (4.3.6)

We first show that for sufficiently large τ,

X X JdωK(5 ι ;ω)
σ1uδ'2e<f(IntΓ0). φ / c/

1eof(/v\F(Γ0)) c t

sup IH (δ!, d\ ω) G(δ!, d'2: ω)
3(d\ud'2)

d'ί) + δ ( d l \ d f

2 ) - τ \ d f

ί u d ' 2 \ / « ) ^ Q x p ( τ \ Γ 0 \ / ί 2 ) . (4.3.7)

Note that δ(d1\d'2)-τ\d'2\/8^ ^ {ί(δ1;Γ')- τ|Γ'|/24} for τ/12>l . From
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(4.2.9), (4.2.12) and the definition of G(d l 9d'2;ω) in (3.3.10), it follows that

(4.3.8)
4 ω

and so by (4.2.13) and Proposition 4.2.5(a) the expression in (4.3.7) is bounded by

e<f (ZV\F(Γ0)) O j

Γ0|/12).

This proves the bound in (4.3.7).
From the definition of K2 in (3.3.18) and the relation in (4.3.6) it follows that

'K(d1'9ω)\H(dί9d'1:>ώ)G(dl9d'2;ω)\

|S'2) + δ(3Ί u3'2|3'))

uδ ' l /S-τ Γ0|/8). (4.3.9)

We now use Proposition 4.2.5(b) and the bound in (4.3.7) (in that order) to obtain
from (4.3.9) that

| |K 2 | |^^exp(τ|Γ 0 |/12-τ|Γ 0 |/8)gexp(~τ|Γ 0 |/24), (4.3.10)

for sufficiently large τ.
We next consider K3 defined in (3.3.19). Employing the method similar to that

used to obtain (4.3.10), and Lemma 4.2.1 (and the method similar to that to obtain
(4.3.13) below), it is not hard to check that

||K3||^ Σ exp(-τ |Γ 0 i/24-τ |Γ |/8)
^[Γ0]

^ Γ0 |exp(-τ|Γ0 |/24)^exp(-τ|Γ0i/25), (43.11)

for sufficiently large τ. Here we have used the fact that card({JΓe[.Γ0]:|.Γ| = n}) ̂
(\ΓQ I 4- n)exp(αn) by Lemma 4.2.1 and the definition of [T0] in (3.3.2).

Finally, consider K4 defined in (3.3.22). Note that for JΓe[ΓT

0],

\Wc)^ - δ(d, Wc)

^ - δ(d, Wc) + \Γ\ + δ(Γ\df). (4.3.12)

Using (4.3.12), Proposition 4.2.5(b) and Lemma 4.2.1, it is easy to check that

| |K4 | |^^exp(-τ|Γ0 |/26), (4.3.13)

for sufficiently large τ. Combining (4.3.5), (4.3.10), (4.3.11) and (4.3.13) we proved
the Proposition completely.
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We are now ready to show Proposition 4.1.3 and Proposition 4.1.4. We will
use a method similar to that used in the proof of Proposition 2.1 in Sect. 8 of
Chapter 2 in [18].

Proof of Proposition 4.1.3. It is obvious that Proposition 4.1.3 is a consequence of
Proposition 4.1.4.

Proof of Proposition 4.1.4. To prove the proposition, first we consider K as an
operator on the Banach space J^ = J^'w=φ. Since | |K| |^ < 1 by Proposition 4.3.1.
and || 11| φ = 1, 0 is defined as the solution of the equation

0 = 1+K0. (4.3.14)

That is,

9= £*"!. (4.3.15)
n = 0

On the other hand

# Λ = l + χΛKχΛ#Λ, (4.3.16)

by (3.3.28), and

9-9A=9~lAd + lA9- QA- (4.3.17)

From (4.3.14) and (4.3.16) it follows that

lA9 - 9A = XΛ^(9 ~ XΛ9) + XΛ*(XΛ9 ~ 9Λ) (4.3-18)

Thus χΛg — g Λ is again a fixed point and

XΛβ-βΛ=Σ(XΛ^fnΛ, (4.3.19)
11 = 0

where
(4-3.20)

By Proposition 4.3.1 the series in (4.3.19) converges in any of the Banach space
J^Λ is finite.

We next estimate ηΛ. Observe that

δΊ £ r*'(*l (4-3.21)

If d"φδ(A\ then there exist at least one contour Γ'Έd" such that d(Γ",Ac}^ 1,
which implies δ(Γ\Λc] ^ 1. Write

* l A ( S ) = t * l A , i , riA,i = XAKi(9-XA9)> i = 1,2,3,4. (4.3.22)
i = l

From the definition of K1 in (3.3.26), and (4.3.21), it follows that for any de/(Λ\

lΛ,ίW = (3-XΛ9)(8-Γ0) = Q. (4.3.23)

Next, we consider ηΛf2(^)- We write

, (4.3.24)
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where d" = 31u5iu5 /

2u3 /,(3 — Γ0)ud"φ$(Λ) and the kernel K2(d;3") is defined
according to the expression in (3.3.18). Since (d — Γ0)vd"φ$(Λ)9δ((d — Γ0)v
d",Λ c )<l, and so by (4.3.6),

- 1 < - δ(d,Λc] + δ(dί\d'1) + δ(dl \d'2) + δ(dt

1udt

2\dr). (4.3.25)

Thus by (4.3.24) and (4.3.25) ηAt2 is bounded by

^Λt)+1 Σ K2(a;S")|
c" = o1vd\vdf2ud'

4 δ(d^\d'2] + δ(df

1uδf

2\δf) -τ\δ"ud\/S).

Compare the above expression with that in (4.3.9). Thus repeating the argument
that gave the result in (4.3.10), we obtain

(4.3.26)

Employing the method similar to that used above and repeating the arguments
used to obtain (4.3.11) and (4.3.13) one may obtain

\nΛ,m + \nΛ^\^e~δ(dΛC]+τm (4-3.27)

Thus for sufficiently large τ, (4.3.23), (4.3.26) and (4.3.27) imply

\\IA\\ Λ<*-*Γ°W (4-3.28)

and so by (4.3.19) and Proposition 4.3.1 we concluded that

for sufficiently large τ. The above bound, (4.3.17) and (4.3.21) imply the proposition
directly.

4.4. Sketch of the Proof of Cluster Property

Because of notational complications involved, the detailed proof of Theorem 4.1.2
would be very lengthy. Thus we will give an outline of the proof and leave technical
details to the reader.

We first describe the procedure of the proof we follow. For any 3,δ'e^(Zv)
with <9u3'e<f(Zv), let

) = lίm PΛ\vtf)(8)> 0zV(δ')(β) = lim 0/ιW')(5) (4.4.1)

The existence of the above limit follows from the method used in the proofs of
Theorem 4.1.1 and Proposition 4.1.3. Assume that for any d,d'e$ with

0, (4.4.2)
and

O, (4.4.3)

as d(dίd')-^ co(δ(d,d')->oo). Then it follows that

p(d u d') - p(d)p(δ') = ~~ ~ P^v(d'}(Λ(d') + [pz
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as δ(d,d')->ao. Hence, in order to show Theorem 4.1.2 it suffices to show (4.4.2)
and (4.4.3).

Let us denote that for any B a Zv,

)^l}. (4.4.4)

From (3.2.12) and (4.4.1) it follows that

p(d)= Σ $dcoA(d",(dio)))g(dvd"),
d"eg(z.v\v(d)) d

PzV(a')(d)= Σ fdωΛ(S",(S;ω))0zW)(δuδ''). (4.4.5)

Thus

lp(d)-PzW)(3)l< Σ $dω\A(d''9(d 9ω))\g(dυd'f)
5"e[K(3')] 3

+ Σ j dω I 4(δ", (δ; ω)) \\g(dυ d"} - g^V(&](d u d") \ .
S"e<f(Zv\P(dud')) d

(4.4.6)

We note that the summands in (4.4.6) are summable over δ"e<ί(Zv) (by Theorem
4.1.1). Thus the first term in the right-hand side of (4.4.6) tends to zero as δ(d, d"') -» oo.
In fact, using Lemma 4.2.3 and Proposition 4.2.5(b) one may show that the first
term in (4.4.6) is bounded by cexp( — <5(θ,δ')). Thus in order to proof (4.4.2) one
need to show that for any given

HO, (4.4.7)

as <5(<9, d')—* oo.
To show (4.4.7) we use the method similar to that used in the proof of

Proposition 4.1.4. Following the steps in (4.3.14)-(4.3.20) one may show that (4.4.7)
holds if

holds. Using the fact that

JO if deδ(Έ>\V(d')
(g-χ^\^gm-{g(S) if δe[7(3')],

and the method similar to that used to obtain (4.3.28), one can show that (4.4.8)
holds. This proves (4.4.7) and so (4.4.2).

Finally we consider (4.4.3). For a given d'e$(Λ), denote

Z(Λ;d')= Σ Jdωjdω^ , (4 4 9)
de£(Λ\V(d')) d d'

and

§Λj(d) = ίZ(Λ\V(d)'9 d'} Π Z(Int Γ)]/Z(Λ; 5'). (4.4.10)
Fed

Using the method to derive the cluster expansion (3.2.10) (and (4.4.5)) we obtain
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+ £ \dωA(d",(δ ω))
d" eS(A\V(d}}: d

ίZ(Λ\V(d) ,d'\d") Π Z(IntΓ)]/Z(Λ;3') (4-4-11)
Γeδu(δ'V')

Again it is easy to check that the summands in the above expression are absolutely
summable over δ"e<ί(Zv), uniformly in A. Thus the second term in the right-hand
side of (4.4.1 1) tends to zero uniformly in A as δ(d, 3') -» oo. In fact, it can be shown
that the second term is bounded by cexp(- δ(d,d')). By comparing the second
expression of (4.4.5) and the first term of (4.4.11) (in the limit as Λ-»ZV) one
concludes that (4.4.3) holds if for any given de£(lv\V(d)),

M3)-0zW)(3)->0, (4.4.12)

as δ(d, d'} -» oo, where

The above limit exists by the method used in the proof of Proposition 4.1.3.
To prove (4.4.12), one uses the method in Sect. 3.3. to develop an integral

equation for gΛj to obtain

(4.4.13)

where gλ d is a functional in J^ bounded by

and K,K = K2 -f K3 + K4, is an operator obtained from the definitions of K2,K3

and K4 by replacing the sum over d'l^S(A\V(d)) by the sum over d'le^(A\V(d))
with the restriction d\ n d1 φ φ. Thus it can be shown that

| |K| |n a γ<oo,

and so

(lΛKzAgAj}(d}-+^ (4.4.14)

uniformly in A as δ(d,d')-+ oo. Since by (4.4.13)

(4.4.14) and (4.4.15) imply (4.4.12). Thus we have proved (4.4.3). We leave the
technical details to the reader.

Appendix. Proof of Proposition 4.2.2

Proof of Proposition 4.2.2. In this Appendix we prove Proposition 4.2.2.
(a) As before we denote that for any given B c Zv

Bs = {xeB: dist(x, Bc) > 5}, (Bc)s = {xeBc: dist(x, B) > s}. (A.I)
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Then from the definition of contours in Sect. 2.1 and the regularity assumption in
assumption 2.3.2 it follows that

Γ'>|Φ2(Γ,Γ';co)|^2 £ J(| |x-y| |), (A.2)
xeV(Γ)s

and so the expression in (4.2.1) is bounded by

2 Σ Σ J(\\χ-y\\)
Σ Σ

ΓedΓ'ed'

^S^(B^, ίA3)

2 Σ Σ J(\\χ-y\\)
xe(F(θ)s) ye(V(8)c)s

Let us estimate the first expression in (A. 3). The number of sites in Bs having
distance n from bd(Bs) in less than \bά(Bs)\. Thus the first expression in (A. 3) is
bounded by

n+ \\y\\). (A.4)

Similarly the second expression in (A.3) is bounded by

00

2|bd(7(δ)s)| Σ ΣJ(2s + *+\\y\\)> (A.5)

(A.4) and (A.5) and (2.3.7) imply part (a) of the proposition.
(b) By the regularity condition (2.3.5) the expression in (4.2.2) is bounded by

2 Σ Σ J(\\x-y\\)e-τlΓ'l/4ί. (A.6)

For a given site xeF(Γ)s, let y(Γ) be the site in V(Γ'\ with H x -
dist(x, V(Γ'}S\ Then it follows that for given xeV(Γ)s and Γ'e<#(Zv\V(Γ)),

Σ J(\\x-y\\)£\V(Γ)\J(\\x-y(Γ)\\). (A.7)
yeV(Γ)s

For given xeB c Zv, let

}: dist(x,

Then by (A.7) and Lemma 4.2.1 the expression in (A.6) is bounded by

2 Σ Σ f (\\χ-y\\) Σ
xeF(Γ)s)>ε(K(/r)s ί"'ε®Λ

^2 Σ Σ A l l x - y l l )

for sufficiently large τ. Thus by (2.3.7) and the above bound we proved the part
(b) of the proposition.



Extension of Pirogov-Sinai Theory. I 217

(c) By (2.3.5) the expression in (4.2.3) is bounded by

2 Σ Σ Σ J(\\x-y\\)e-^ϊ2 Σ Σ Σ J(\\x-y\\)e~τίΓl/4S.
'eδ *eF( Γ)s ΓeV(B) xeV( Γ)s ye(Bc)s

(A.8)

For a given finite B a Zv, let

<2)r = {Γe%(B): dist(F(Γ), bd(£)) ̂  r}

Then by Lemma 4.2.1, the expression in (A.8) is bounded by

2 £ £ J(2s + r + H j l l ) £ ^tίΓ|/48|Γ ^2 f £ 7(2s + r -
r = 0 ygjv 7"e^ r = Q yg2v

Part (c) of the proposition follows from (2.3.7) and the above bound,
(d) Again by (2.3.5) the expression in (4.3.4) is bounded by

2 Σ Σ Σ ./(llχ-yll)^Γ' l /48

\B) xeV(Πs
yeV(Γ)s

\r\e -τ|Γ|/48 V Λ - τ | ^ l / 4 8

for sufficiently large τ. Here we have used Lemma 4.2.1 to get the last inequality.
The part (d) of the proposition follows from (2.3.7) and the above bound. This
proved Proposition 4.2.2 completely.
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Note added in proof. It has been realized that one has to multiply the factor l/(\lΓ0]nc'\ + 1) to the
summand in the second term in the right hand side of (3.3.3). Thus each summand appeared in the

summations £ £ in Section 3.3 must also be multiplied by the above factor. Since the factor is
Γe[Γ0] ff

bounded by 1, no changes are needed in the rest of the paper.




