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Abstract. We give an alternative construction of the reparametrization
invariant "non-local" conserved charges of the Nambu-Goto theory which
elucidates their geometric nature and their completeness property.

I. Introduction

In a series of publications [1-3] the present authors have shown that the classical
Nambu-Goto string theory possesses infinitely many independent, reparametri-
zation invariant, "non-local" conserved charges ^^(K\N, which serve as in-
finitesimal generators of active symmetry transformations. The Poisson algebra of
these "invariant charges" ^^(K}

μN has been analyzed in great detail [2, 4].
In the present article we shall give a geometric interpretation of the invariant

charges of the Nambu-Goto string in its Euclidean version. In particular, we shall
address the question to what extent a given choice of values for the invariant
charges fixes the "trajectory" surface of the string in d-dimensional Euclidean
space Rd.

The geometric interpretation will be formulated in terms of homology and
cohomology classes: A given complete minimal ("trajectory") surface Σ can be
complexified to a Riemann surface in <Cd. This surface can be described by a d-tuple

of multi-valued analytic functions wμ = wμ(z) such that w'μ(z) = — wμ(z) are single-

valued analytic functions in a canonical region Ω satisfying the complex constraint
equation Σ ^μ(z) = 0 for z e ί2 [5]. The summation extends from μ = 1 to μ = d. The

μ
canonical region Ω typically has the form of an annulus 1 < z\ <eλl minus (n — 2)
concentric circular (two-sided) slits along a connected part of: \z\ = eλl,
i = 2 , . . . ,n- l ;^ 1 >A 2 ^A 3 ^. . .^^ I I _ 1 >0;n = 2,3 J . . . ,oo [6, 7]. The values of the
invariant charges for the given minimal surface are periods of certain analytic
differentials - constructed from the d-tuple of analytic functions - along a closed
curve y in the canonical region (corresponding to a closed curve ̂  on the minimal
surface Σ in IRd). As such they depend on the curve γ only via its homology class [y].
This is the Euclidean version of the statement that in Minkowski space the charges
in question are reparametrization invariant and conserved.
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In general, to one and the same minimal surface several different value sets for
the collection of the invariant charges are assigned depending on the choice of the
homology class [y]. In Minkowski space the necessity to distinguish different
homology classes reflects the fact that the trajectory surface may branch and merge
(except trajectories which are the Minkowski counterparts of catenoids). What
locally looks like a one string state may globally be just a part of a scattering
configuration.

We have considered two important types of situations. In the first instance we
have considered the class J> of (complete) minimal surfaces Σ for which it is
possible to find a branch Σ' C Σ of the type of an annulus and a family of parallel
hyperplanes Eh = {xε1Rd\x e = h} for some unit vector e and some interval
hl<h<h2 such that all curves <&h of intersection of Σ' with Eh are Jordan curves
[5]. The curve y was chosen from the homology class of the "trace" yh of ̂  in Ω. In
this case we were able to show that the complete set of values of the invariant
charges determines the (complete) minimal surface uniquely up to global
translations in IRA

In this context let us remind the reader of the situation in classical mechanics:
An (autonomous) integrable Hamiltonian system with a finite number / of degrees
of freedom possesses at most (2/— 1) independent constants of motion. By fixing
their values within the allowed range, the trajectory curve of the system is uniquely
determined. Only / independent constants of motion are in involution. Their
values determine the invariant tori. Thus the totality of invariant charges of the
Nambu-Goto theory corresponds to the above set of (If— 1) independent
constants of motion (taking into account the fact that the invariant charges do not
involve the absolute position of the string). It is the maximal abelian subalgebra of
invariant charges identified in [4] which determines the invariant tori for a string.

In the second instance we have considered the following situation: A smooth
Jordan curve ̂  forms the boundary of a simply connected part Σ' (of the type of a
disc) of a minimal surface Σ. Let y be the smooth Jordan curve in parameter space
corresponding to *$. In this case all invariant charges vanish, and certainly with
their help one cannot distinguish among different (complete) minimal surfaces.
Under some assumptions which we believe to be purely technical we can show that
also the converse holds: The vanishing of all invariant charges implies that ^6
effectively does not wrap around (a branch of) the minimal surface Σ but rather
resides in a simply connected region of Σ.

General Euclidean situations will be neither of the first nor of the second type.
However, the first type of situation is of considerable interest in view of the original
Minkowski version of the Nambu-Goto string with the initial data given on some
plane t = x° = const (or rather on some space-like surface) and the energy-
momentum density restricted to the forward light-cone. The second type of
situation has a bearing on the symmetry and uniqueness of the ground state of the
string theory [3].

II. The Construction and Interpretation of the Invariant Charges

Our first goal is the construction of the analytic differentials mentioned in the
introduction. For that we start from the d-tuple of multi-valued analytic functions

wμ = wμ(z) = φμ(z) + iψμ(z), z E Ω,
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describing the Riemann surface in <Cd. To make contact with the data of the
Nambu-Goto theory, in particular with the formalism of [1-4], choose a (regular)
point y on Σ and a unit tangent vector of Σ passing through it. Then draw a smooth
curve ̂  passing through the given point in the given direction. In parameter space
this corresponds to the choice of a point ζ e Ώ, a direction in the complex plane and
a smooth curve ycΩ:z = z(σ) passing through ζ in the chosen direction when σ
takes the value zero.

<# Xμ = φμ(z(σ)), yμ = φμ(z(0)).

By covering a neighbourhood U of the point y on the minimal surface Σ by curves
^τ which do not intersect themselves nor their alikes ((g? = (^τ = 0) and which
correspond to curves yτcΩ\z = z(τ,σ) with similar properties (7 = 7τ = 0) and a
positive orientation of the zweibein field <5τz, dσz, the differentials dwμ along an
infinitesimal arc of the curve 7 near ζ are related to the string degrees of freedom as
follows

^W/i = ~Γ~ ^Z(T' σ) = \ T^ Xμ(τ > σ) + 1WT> σ) ί ̂ σ

^ z = z(τ fσ) l3θΓ J

with τ = σ = 0. (The string tension parameter M2 has been set equal to 1.)
Next, we define complex functions Wμι ...μjv(() on Ω by fixing a homology class

[70] and choosing for each ζεΩ an oriented closed parametrized curve (c£2)
through C 7ζ^[7o] Let the parametrization be given by some periodic function
z = zζ(σ), 0 ̂  σ ̂  2π, such that

Let
2π σι σN-ι N Γ ffz,(σ) Ί

J dσ2 ... J ^ Π <W)~P -
o o ί = ι L " dσ σ = σ jo

It is rather easy to verify that Wμ^^μN(ζ) is independent of
i) the specific parametrization;

ii) the specific choice of a curve yr from [y0] passing through
= W[yo] ίΠγvμί...μN\(sh

and that W^°\μN(ζ) is a single- valued analytic function on Ω. Actually, the
function W^0^^) is identical with the tensor component ^μι...μjv(τ, 0) of
[1-4]. Hence we know from our previous analysis [2] that

= dw (z\ W[yo] ίz) — W[yo]
aw\L)VV...\Δ' γy . . . μN -

This equation implies that a cyclic permutation of the tensor indices changes the
analytic differential dwμι(z)W^y

2

o] ,μN(z) by a total differential. In other words, a
cohomology class contains along with dwμι(z)Wμ

y

2

o] ,μN(z] all those analytic
differentials which can be obtained from the latter by cyclic permutations of the
tensor indices. The invariant charges ^μι...μιv are just the periods

^ =(v dw W[y] )=(M\v (z}W[γ] (z)~£μ1...μN \/>uvvμ1

yyμ2...μN' 7 L{ wμι\*) yyμ2 μN^' '

As such they depend on the cycles y and cocycles dwμιW^]

 μN only via the
corresponding homology class [7] and cohomology class [dw^W^]_^], respec-
tively. In particular, they codify information about the topological properties of
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the Riemann surface in <Cd and thereby [5] of the minimal surface Σ in IRA A charge
different from zero signals a non-trivial topology.

Apart from some elementary cases, e.g.

where the symbol &μ stands for the "energy-momentum" vector, the invariant
charges generate symmetry transformations in "phase space" and not just in
configuration space.

III. Minimal Surfaces of Class $ and Their Invariant Charges

In this section we shall study the problem to what extent the invariant charges,
evaluated along some fixed curve y of non-trivial homology, determine the
minimal surface Σ. By an explicit construction we shall establish the following
result: Given a complete set of values for the invariant charges &μι...μN,
μf = l,...,d, z = l,...,]V, JV = 1,2, ..., compatible with the periods of the analytic
differentials dwμιWμ

y

2

h]

 μN for some (complete) minimal surface Σ of class J*
evaluated along the "trace" yh of the Jordan curve ^h of intersection of an
appropriate branch Σ' of Σ with some hyperplane Eh. Then the given values for the
invariant charges determine the minimal surface Σ uniquely up to global
translations in Rd, and thus provide maximal observable information.

Proof. For simplicity we shall assume that the hyperplanes Eh are perpendicular to
TT

the d-axis of a Cartesian coordinate system in Rd and that h2= — hί = — >0.

This can certainly be arranged by an appropriate choice of the coordinate system
in IRA According to [5] there exist "isothermal" parameters ζ = eτ + ίσ which
parametrize the subsurface ΣH of Σ'cΣ\

ΣH= U «H
~H/2<h<H(2

on an annulus

with some modulus μ > 0 such that

Here z(ζ) is a holomorphic function for ζ e A mapping A on a two-fold connected
subregion of Ω. The isothermal property of the parameters τ and σ implies

pd(τ, σ) = dτxd(τ, σ) = H/μ ,

In A we expand dwμ(z(Q) in a Laurent series,

dwμ=
 +£ a"μζ

ndζ= 1° αJ
n= — oo

where α^/α^1 and afd = δnι0i(H/μ).
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Next, we shall compute the invariant charges along the circle τ = 0 in terms of
the Fourier coefficients αJJ. Due to the in variance of the charges under the
reparametrization ζ->λ - ζ, Ae(C\{0}, the result is left unchanged if we replace the
set an

μ by the set λ~nu,n

μ. Apart from this ambiguity, all coefficients α£ are determined
by the complete set of non-trivial values for the invariant charges.

First note:
i»d = $dwd = 2πα° - 2πί(H/μ] Φ 0 ,

Next, compute (;,fc = l,.. .,d

σi + 2π
ύΨ _ (rs°\N ~ 2 <LΛsτ f^d...djk — (ad) ίrασι J

^~^~2 σι

ί H\N~2 ( (2πϊN N-^ κ N~K

= (7) {(̂
where the symbol £' stands for summation over all integer values of m from — oo

m

to + oo with the exception of zero.
The term proportional to (2π)κ corresponds exactly to the charge ^(

d

κ\djk [2].
This can be seen by considering the effect of integrating p times around the circle
τ = 0. The effect is, on the one hand, a simple replacement of (In) by p - (2π) in the
above formula and, on the other hand, a replacement of the logarithm of the Lax
monodromy matrix In Φ [2] by In Φp = p In Φ. Finally, recall that ̂ (K} is generated
by trflnΦ)*. We conclude

o

In this sum, higher Fourier modes |m| > 1 are more and more suppressed as N
increases:

N even -*• oo

1im nπ\~2

™ 1Z7ΓJ
Nodd->oo

Subtracting the contributions to ^2).rfJ fc of the terms with |m| = 1, we find

= - lim
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and so forth. In this way, step by step we obtain all products α™α^m,

In a similar fashion, by taking appropriate limits of the invariant charges
^μ^}...μN with a fiχed set °f n indices, which range individually over the integers
between 1 and (d — \\ and (N — n) indices equal to d, it is possible to extract the
values of all products

In view of the constraint £ wj,2(z) = 0 which corresponds to the following equations
for the Fourier coefficients:

7=1 m = - oo

neither all Fourier coefficients αj1 with positive m nor all Fourier coefficients α™
with negative m vanish. Now, suppose for a minute that there exist indices k and /:
1 ^/c, f^(d-ί) such that α£ φO and α,"1 φO. Then from the knowledge of the
products

we can express α^ m and α/w in terms of αk

l and α^ \ respectively,

Finally, when we replace oς7 1 by its expression in terms of α^ :

α.-^C-i X with C-^ΦO,

we arrive at (m=l,2, ...)

m _ r^m, - 1,..., -1 ///^- 1, l\m-| . / l \m _ -i j 4 . m _ Aα j — L ^ j , ^,.. ., /f/w ί f . j t j J lαkJ 5 j — ι , . . . 5 f l — i , ttd — u,

α/""=c-"};i::::;i (α4

1)-», j=ι,. . . s d-ι ; ^m=o,

That is: All Fourier coefficients αj of dwμ(z(ζ))/dζ on the circle |(| = 1 are com-
pletely determined by the set of values of the invariant charges up to multiplica-
tion by Am, where λ is a common non-vanishing complex number. This statement
continues to hold also in the general case.

In general, when no indices k and / : 1 ̂  fe, f^(ά— 1) exist such that α^ Φ 0 and
α^ l φ 0, there are non-vanishing products
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such that m = mi-\- ... +mn assumes its smallest positive value mmin:

α$ = α£. . .α£Φθ, Pi+... + A, = mm i n>0, fcre{l, ...,d-l}, r = l , . . . ,α,

and such that m = m1+ ... +ww assumes its largest negative value mmax:

α$ = α f ; . . . α g Φ θ , q,+ ... + qb = mmΆX<0, / se {1, ...,</-!}, 5 = 1,. ..,6.

It turns out that

-^max^^min

because, if |mmax |>mmίn (|mmax <mmin), the product

fγ(p) . ,y(<2) — r/P i / y P α ' . /y^i ~<ϊb_|_Γ)
α(fc) αGO — αfcι ••' αfcα α«f l α<fb ^

 U

would furnish a counterexample against the maximality property of mmax

(minimality property of mmin).
For the case mmin = + 1, in order to arrive at the desired conclusion, all we have

to do is to replace α^ and α^ l in the previous argument by α^ and αf|j, respectively.
For the case mmin > 1 we observe that for all non-vanishing products α™1 . . . α™n,

j re{l, ...,d— 1}, r=l , ...,n, the sum m = (m! -f ... +mj is an integer multiple of
mmin. In particular, this is true for all non- vanishing Fourier coefficients α™ with
m φ 0 : m = ί - mmin . Thus all non- vanishing Fourier coefficients can be expressed as
follows:

with Vnnwn valiipQ fnrwiin Known values lor j,^),...,^)? woo? j, ( k ) , . . . , ( f e )
Finally, by setting ^ = (α^)

))1/fflmin (the branch of the root does not matter) again
we arrive at the desired conclusion.

As explained before, the ambiguity of multiplication by powers of λ corre-
sponds to a rotation and scale reparametrization of the annulus A. In any case, the
complete set of values of the invariant charges enables us to reconstruct up to
global translations the region of the minimal surface which has the annulus A as its
parameter set and, moreover, by analytic continuation the corresponding
complete minimal surface Σ.

IV. The Case When All Values of the Invariant Charges are Zero

Let a complete minimal surface Σ and an oriented smooth Jordan curve ̂  on Σ be
given. Assume that all invariant charges vanish when evaluated along #. In
particular, the vanishing of the linear momenta &μ = ̂ μ/ί when evaluated along ̂
implies that the smooth curve ^ conjugate to ̂  [3] on the conjugate minimal
surface Σ is closed. Let the minimal surface Σ in the neighbourhood of ^ be
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parametrized with the help of isothermal coordinates z = x + iy from a two-fold
connected domain D which contains the unit circle

x^ = φμ(z), z e D,

such that the unit circle of the complex z-plane z = eίθ, 0 rg $ rg 2πis mapped (strictly
monotonously) onto the curve C6. The complex Riemann surface Σ + iΣ over D is
described by

wμ = xμ + iyμ = φμ(z) + iιpμ(z) = wμ(z), z e D,

where the functions ψμ(z) up to d constants are defined by the Cauchy-Riemann
equations,

as single-valued harmonic functions,

Wμ(eίθ)ieίΘ = ̂  xμ(ln \z\ = 0, θ) + ipμ(ln \z\ = 0, θ) .

Suppose that there exists a linear combination of the functions wμ(z):

w(z) = X cμwμ(z) , cμ - const 6 (C ,
μ

such that the unit circle |z = 1 and a sufficiently small neighbourhood of |z| = 1 in D
are mapped one to one onto a Jordan curve K in the complex w-plane and
onto a twofold connected neighbourhood P of K, respectively. Then the minimal
surface Σ is a continuation of a simply connected minimal surface spanned by ,̂
in other words: the curve ^ has trivial homology on Σ.

Proof. It is not difficult to show by induction on the rank of the tensors W^^N(z)
(we apologize for the slight abuse of notation) that vanishing values for all
invariant charges «2f_ imply the triviality of all the analytic functions W^\^N(z):

Let z = z(w), weP, denote the inverse of the mapping z-»w = w(z). Then

is an isothermal parametrization of a neighbourhood of the Jordan curve "^
on I1 + L?. We find also in this parametrization that (abusing the notation once
more)

W£...μ» = 0, Λ e{l,. . . ,</} ; ί = l , . . . , J V ; ΛΓ = 1,2,... .

In particular, this implies

0= WWW Π H> (w), μ=l, ...,d; n = 0, 1, ... .

The single-valued analytic functions vvμ(w), weP, permit a Cauchy integral
representation

— w
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with A ~ / A X

, , .μ 2πι κ t w — w

Here K^ and X2 form the boundaries of the parameter region P, K± (K2) lying in
the interior (exterior) of the curve K.

By their defining integral representation, the functions w^2)(w) can be analyti-
cally continued into the interior of K. Hence, trivially

fdww"w^2)(w) = 0, μ = l, . . . ,d; n = 0,l,.. .,
k

so that the fact that all values of the invariant charges are zero implies

Again, by the defining integral representation, the functions wj/^vv) can be
analytically continued into the exterior of K. In particular, they can be analytically
continued to the outside |w — w0| ̂  R0 of the largest of the circles of convergence for
the Laurent expansions,

around a conveniently chosen point vv0 in the interior of K±. Hence

μ=l, . . . ,d; n = 0,l, . . . ; R>R0.

The vanishing of the integrals on the extreme left-hand side of the chain of
equations implies

Thus
wji }(w) = 0, μ=l, ...,d,

or equivalently,

and wμ(w) can be analytically continued into the interior of K. That is, the part of
the complete minimal surface Σ bounded by the curve ^ and corresponding to
points in the interior of K is simply connected, and it coincides with a minimal
surface spanned by the curve .̂

V. Conclusions

The preceding analysis shows that a given algebraic basis of the invariant charges
of the Nambu-Goto string theory [2] provides a complete description of the
minimal surfaces (of class J) in terms of conformally invariant parameters. In this
sense the invariant charges are natural candidates for physically relevant
operators in the quantum theory of strings. This view is corroborated by the
relative simplicity of the WKB-renormalization of these charges [3] and the fact
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that one and - as suggested by Sect. IV above - only one string state, the ground
state ψ(^) of [8], is invariant in WKB-approximation under the symmetry
transformations generated by the invariant charges.

If one compares the structure of the invariant charges in the original
Minkowski version of the Nambu-Goto theory with the structure of the higher
conserved local and non-local charges in the two-dimensional O(N) non-linear
σ-model [9], one might wonder whether it is possible to replace equivalently the
information contained in the values of (an algebraic basis of) the invariant charges
for some "intermediate" generic homology (initial data) of a trajectory surface Σ by
the sum of simpler information corresponding to more specific fixed subsets of the
invariant charges evaluated for appropriately many time-like asymptotic ho-
mologies of Σ. This is an open problem.
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