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Quantization of the Kepler Manifold

Bruno Cordani

Dipartimento di Matematica dell'Universita, via Saldini 50, 1-20133 Milano, Italy

Abstract. A representation of S0(2, rc-f-1), the maximal finite dimensional
dynamical group of the ^-dimensional Kepler problem, is obtained by means of
(pseudo) differential operators acting on L2(Sn). This representation is unitary
when restricted to SO(2)®SO(n+l\ i.e. to the physically relevant subgroup.

1. Introduction

A great number of works have been devoted to the Kepler Problem (KP) but the
last word is yet to be said, especially with regard to quantization in the sense of
Kostant-Souriau [1-3]. We briefly explain the basic concepts (see e.g. [4-6] and
references quoted herein).

The rc-dimensional KP, n ̂  2, is the Hamiltonian system on the phase space
T*(R"-{0}) with the Hamiltonian

H(q,p)=l-p2--, (1.1)

qk and pk being canonical coordinates. Owing to the collision orbits the flow is not
complete. After regularization (that amounts to compactifying each cotangent
space to the configuration manifold by adding the point at infinity) and exchange
between coordinates and momenta, the phase space becomes symplectomorphic
to the so-called "Kepler manifold," i.e. T + Sn: = T*Sn - null section. This phase
space turns out to be a coadjoint orbit (more exactly: the most singular orbit) of the
dynamical group S0(2, n +1). For negative energy the maximal compact subgroup
SO(2)®SO(n+1) of the dynamical group is physically relevant: its generators are
to be identified respectively with the Hamiltonian and the other constant of
motion, i.e. angular momentum and Runge-Lenz-Laplace vector.

This analysis at "classical level" allows us to define in an unambiguous way
what we mean for "quantization" of the Kepler manifold: an Almost-Unitary
Irreducible Representation (AUIR) of S0(2, π+1) through (pseudo) differential
operators acting on L2 functions on the ^-dimensional sphere Sn. We do not
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require the full unitarity, since we are content with the unitarity of the
representation of the maximal compact subgroup alone. Unfortunately this
program is not easy to realize, because the natural polarization of the coadjoint
orbit is not invariant under the action of the dynamical group; or, in other words,
because Sn does not carry an effective action of this group.

To escape this difficulty and follow the analysis pursued at classical level in [7],
we consider the manifold S1 x Sn, which is a homogeneous space for 5Ό(2, n+1).
The cotangent bundle T^(S1 x Sn) is a union of five homogeneous components
under the action of the same group, two of which are the Kepler manifold. But now
we can easily construct an AUR of the complementary series that, for a judicious
choice of the real parameter, is reducible, while the carrier space of two of the
irreducible components is isomorphic to the space of the L2 functions on Sn.

In Sect. 2 we review and complete the analysis at classical level of [7]. In Sect. 3
we pursue the quantization of the Kepler manifold. In Sect. 4 we add some final
comments and remarks, and a comparison with preceding works.

In the sequel, the range of the indices is

h,k= 1, . . . ,n.

2. The Classical Case

Let ηAB = diag( (-...+) be the metric tensor of R2'"+1. Define

(SΌ0(2,n+l) n even;

[S00(2,n+l)/Γ n o d d ,

where Γ: = (1, — 1}. Thus G is the identity connected component of the conformal
group of the Minkowski space 1R1'". Define M as the manifold of unoriented
generators of the null cone K in R2 '"+ 1. Let XA be the points of R2 '"+ 1 that satisfy
the relations

^β=-ι (11)

Thus XA E K parametrize the manifold M of oriented generators of K. M is
obviously homeomorphic to S1 x Sn. Consider the mapping Mt—><Cn+1 given by

α vv-ί v"0 iV~l\ /Ό O\Z —.Λ {A. — I Λ ). \^L.Δj

{za} is homeomorphic to M, but also to S1 x Sn. Since M is connected, it is a double
covering of M, i.e. M = M/Γ, and both have the same topology as S1 x S".

Let H0 be the analytic subgroup of G with Lie algebra Jtf: =
where

^ = Lie algebra of the Lorentz group SO(l,n),
j/ = Lie algebra of the dilation group,
Jf = Lie algebra of the conformal translation group.
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Let H be the subgroup of SΌ0(2, n + 1) that leaves invariant a point of M. It is
well known, and easy to check, that H0CH. Moreover, since the reflection in the
origin XA\-^ — XA leaves M invariant and is connected with the identity of
S00(2,« + l) for n odd, we have

#o neven

H0®Γ π odd.

Therefore M = SO$(2, n + l)/H = G/H0. M is also referred to as "the conformal
compactification of R1'"," since it is identified with the Minkowski space with a
null cone at infinity adjoined [8]. If we define G as the double covering of G, i.e. if

~ _ f Spin0(2, n + 1) n even
:~ (S00(2,/7 + l) rcodd,

we have M = G/H0.
H is a non-minimal parabolic subgroup of G and ffl a parabolic subalgebra of

*§ (Lie algebra of G). Parabolic subalgebras are important since they give a
polarization of coadjoint orbits, and, as shown by Kostant and Kirillov [2, 9-11],
polarizations are a fundamental tool to construct UIRs of Lie groups. Let for a
moment G be an arbitrary Lie group, ̂  and ̂ * the corresponding Lie algebra and
dual algebra respectively.

Definition [10]. A real invariant polarization ffl of /e ̂ * is a subalgebra of ̂  such
that

2)
3) ffl is Ad (Gf)-m variant, where Gf is the isotropy subgroup of G with respect

to/

In our case Jf satisfies the even more stringent conditions of the following
theorem, due to Wolf [12].

Theorem 1. Let H0 be a closed subgroup of G with Lie algebra J^ such that

1) as above in the Definition,
2') </,Jf> = 0,
3') GfcH0.

Then the coadjoint orbit (9 f of G through f is equivariantly dijfeomorphic to an
open G-orbit in T*(G/H0).

If, as in the present case, ^/Jf7 is an abelian, and not only a nilpotent
subalgebra, we have an equivariant symplectomorphism between &f) equipped with
the Kirillov form

ω/u, v) : = </, [w, ι>]> , u,υe&9

and T*(G///0), equipped with the canonical symplectic form.
Identify ^ and ^* by means of the Cartan-Killing form. Let /_ and /+ be a

conformal translation of timelike and spacelike type respectively. By Theorem 1
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we have (^ means "is symplectomorphic to")

i) &f_~ T*M with timelike co vectors future pointing,
ii) &(_f }~T*M with timelike covectors past pointing,

iii) &f+ ~T*M with spacelike covectors.

These orbits are (2n + 2)-dimensional. We now come to the (two) 2n-
dimensional orbit(s) considered by Onofri [13] and called the "Kepler manifold."

Theorem 2. Let /0 : = /_+/+ be a null conformed translation; then $(+/o) are
symplectomorphic to T + Sn, endowed with the canonical symplectic form.

For the proof see [7]. Let N+ be the submanifold of null non- vanishing
covectors in T*M pointing into the past and into the future respectively. Since the
null cone in R1'", the cotangent space to a point of M, is diffeomorphic to R" — {0},
we have

iv) 0 (_ / o )~tf_./(SVn,
v) 0(+/0)~N+/(svr).

The reduction T*M\-^>T + Sn may be interpreted as the reduction of the
extended phase space of a mechanical system to the phase space by means of the
pseudo-energy integral. In fact, let us consider the geodesic motion in T*M, where
the metric of S1 x Sn is the usual pseudo-Riemannian: restriction to N is equivalent
to fixing the pseudo-energy and dividing by S1 to dividing out by the flow.

Choose in T*M the canonical coordinates {xμ,yv}, where x° is an angle that
parametrizes S1, and xk local coordinates on Sn obtained through stereographic
projection. Restriction to N+ reads as

The right-hand member of (2.3) is the Hamiltonian of the geodesic flow on Sn. Let
us consider the canonical transformation ̂

(2 4a)

-, (2.4b)
JO

Po= (2 4d)
ZJO

^ may be viewed as the composition of three canonical transformations: a) that
given by exchanging coordinates and momenta: b) that given by (2.4a, b),
equivalent to an "energy rescaling;" c) that given by (2.4d). Note that (2.4c) is
forced by requiring canonicity. Now the restriction to N+ reads as

) = 0, (2.5)

where
2 + . (2.6)
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This approach permits us to handle the KP for every sign of the energy and to
introduce the regularization parameter x° without postulating it (see [7] for more
details).

3. The Quantization of the Kepler Manifold

Our starting point is the induced representation Rλ: = Ind#0(l ® eλ® 1), where the
representation is unitary for λ pure imaginary. Notice that this is not the usual
parabolic-induced, since the parabolic subgroup corresponding to 2tf is #0(x)Γ. So
we expect that Rλ is fully reducible and the direct sum of two components indexed
by Γ. But, as we shall see, for λ = — 1 this is not the whole story.

Let us explicitly construct the representation Rλ. Let JAB — —JβA be a basis for

( d \the Lie algebra ^ and vv

ABdv with 8V = —^ I the corresponding conformal vector
field on R1 '".If V dx '

X l= .0

= smx°,

2x>.k

x2-1

and

then

v\Bdv = XBΫA-XAΎB. (3.3)

We are mainly interested in the non-compact generators Jx_1±iJa0. Equation
(3.3) gives the corresponding vector field as

v± = -e±^Ϋa + i^ad0]. (3.4)

Let {r, xv) be coordinates on the null cone K. The linear action of a e SO0(2, n+1)
on R2'"+1 sends {r,xv} into {V, x/v}, with r' = μ(a,x)r, where μ(a,x) is a so-called
multiplier [14]. Defining the infinitesimal multiplier [14] as

a
)L = e ? (3.5)AB'~daAB

we easily obtain

(3.6)



654 B. Cordani

whereas, for a belonging to the compact subgroup,

τ_ =0 = τ , (3.7)

since r' = r. Thus the infinitesimal representation corresponding to Rλ is given by

(3.8)
2

These operators, acting on functions φ: M i—»C, are skew-hermitian with respect to
the natural Riemannian measure of M, when λ is purely imaginary. Notice that Rλ,
when restricted to the maximal compact subgroup, is skew-hermitian for each λ.

As a basis for the representation space, we may assume functions of the type

\Z n even
with leZ+ and me < , . . Here /z/ is a harmonic homogeneous polynomial

(Z n odd
(h.h.p.) of degree /, i.e.

d d
ht(X) = 0 (harmonicity),

r dx«
a

(homogeneity).

It is well known that a h.h.p. of degree / restricted to Sn gives a spherical harmonic
of the same degree. Equation (3.8) gives

C/_ 1 0 =-δ 0 , (3.10a)

d ?\
(3.10b)

=
n^r +λ] x ]Z / J

Define J^m as the space of the functions of type (3.9): for every fixed couple (/, m) it is
the representation space of the maximal compact subgroup. Define 3F : = Θ/m^m.
The main result of the present work is the following

Theorem 3. For λ=—\ the two subspaces of 2F determined by the pairs (/, m*) and
(/,m*), with

m 4 : = / + " , m * : = - m * , (3.11)

are invariant under the action of the representation (3.10) and are manifestly
isomorphic to the space of the smooth functions on Sn.

Proof. Let us consider the case (/,mφ): the proof for the other case is similar. We
have

U; = -e-ίx° (3-12)
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Since d/dXa commutes with the Laplacian — ̂  — — , we have that dhJdX* is a
h.h.p. of degree (/-I). Therefore OX OXv

ίm..l9 V ί . (3.13)

Since XβXβ = l, we may write

I!? = -e>*° [(X'X,) JL -2/n X.] . (3.14)

It easy to check that if we apply the operator in the square brackets to a h.h.p. of
degree /, we obtain one of degree (7+1). Thus

u:&lm.C&l + ίm.+i, Vί (3.15)

and the theorem is proved.
Let us start with an arbitrary couple (/,w), with mφ +m*. Since Xaht(X) is

decomposable into spherical harmonics of degree ί+1, /— 1, / — 3, ..., we see that
the total space ̂  of the representation splits into two disjoint components. We
illustrate all that in the following figure.

0 0 9 0 9 4 9 4 9 0 9 0
1 9 0 9 4 9 0 9 4 9 0 9
2 0 9 4 9 0 9 0 9 4 9 0
3 9 4 9 0 9 0 9 0 9 4 <?

: 4 9 0 9 0 9 0 9 0 9 4

Every suit represents one of the spaces ^lm and like suits represent invariant
subspaces of J^: notice however that R_ i is fully reducible in the red suits, but only
reducible in the black suits (we might display this graphically by adjoining to every
black the corresponding red suit).

4. Some Remarks

a) We claim to have obtained an AUIR of G by means of pseudo differential
operators acting on L2(Sn). In fact, consider, for example, the energy operator

it/_ 10: the eigenvalues of iC/_ 10 acting on J^m* are ( / H —- I with multiplicity

2

and equal to those of / Δs*+ ( ) acting on L2(Sn).

(This result has been obtained also by Akyildiz [15].) The use of pseudo differential
operators is obviously due to the fact that our dynamical group does not act
effectively on Sn. Theorem 3 is the representation-theoretic analogue of the
reduction T*Mh-*T+Sn: in fact the two subspaces of the Theorem are annihilated
by the operators

and this is the "quantum" analogue of the "classical" equations (2.3).
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b) There are papers concerned with the computation of the spectrum and
multiplicity of the energy operator. We refer to [16] for the 3-dimensional case and
[17] for the rc-dimensional one. We stress however that in these works only the so-
called "pre-quantization" is carried out.

c) The representation (3.10) can be realized by means of differential operators
acting on 3Flm.. Taking into account the homogeneity property, we easily find the
representation of [18].

d) The philosophy of our approach is reminiscent of that of Onofri [13], but
differs in that while we start from a reducible representation of the supplementary
series, Onofri starts from the discrete series whose carrier space is the space of the
sections of a holomorphic line bundle over the Kaehler manifold
50(2, n+ l)/SO(2)®SO(n +1). To obtain, through a limit process, the supplemen-
tary from the discrete series is not an easy task which seems difficult to realize in a
rigorous way (in fact the choice / 0 = — 1, basically equivalent to our λ= — 1, is
made by Onofri in an heuristic way).

e) Since the representation (3.10) is unitary with respect to the natural pseudo-
Riemannian measure of S1 x Sn only when restricted to the maximal compact sub-
group, it is reasonable to ask if we can obtain an UIR by changing the scalar
product. The present author has not been able to give a definitive answer to this
problem. Lastly, note the following interesting fact: writing the Schrόdinger
equation for the KP in the momentum representation (as in the classical work of
Fock [19]), the potential term gives rise to a convolution integral of the type

J
Φ(p')dnp'

\p-p' ι n - 1

But this looks exactly like the interwining operator entering in the study of the
representations of the supplementary series. We hope to clarify this link (if any)
elsewhere.
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