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Abstract. Teichmuller theory for super Riemann surfaces is rigorously deve-
loped using the supermanifold theory of Rogers. In the case of trivial topology
in the soul directions, relevant for superstring applications, the following results
are proven. The super Teichmuller space is a complex super-orbifold whose
body is the ordinary Teichmuller space of the associated Riemann surfaces with
spin structure. For genus g > 1 it has 30-3 complex even and 2g-2 complex
odd dimensions. The super modular group which reduces super Teichmuller
space to super moduli space is the ordinary modular group; there are no new
discrete modular transformations in the odd directions. The boundary of super
Teichmuller space contains not only super Riemann surfaces with pinched
bodies, but Rogers supermanifolds having nontrivial topology in the odd
dimensions as well. We also prove the uniformization theorem for super
Riemann surfaces and discuss their representation by discrete supergroups of
Fuchsian and Schottky type and by Beltrami differentials. Finally we present
partial results for the more difficult problem of classifying super Riemann
surfaces of arbitrary topology.

1. Introduction

Polyakov's bosonic string theory [1] is a theory of maps from a two-dimensional
surface Σ into (Euclidean) spacetime, with action

X:Σ^R26. (1.1)

The world sheet metric gab is an auxiliary field which permits the action to be
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expressed in local form. Quantization involves functional integration over the fields
gab and Xμ. In addition to reparametrization invariance, the action (1.1) has a Weyl
invariance under conformal rescalings of the metric

gab-*Ωga\ (1.2)

with Ω a positive scalar function on Σ. To define the functional integral we pick
a gauge-fixing slice transverse to the orbits of the Weyl and diffeomorphism groups
in the space of metrics. This slice is a realization of the space of conformal equivalence
classes of metrics modulo diffeomorphisms on Σ, which is also the moduli space
of Riemann surface structures on Σ. Hence the amplitudes of the bosonic string
theory can be expressed as integrals of various functional determinants over moduli
space [2,3]. Such a representation of the amplitudes allows the use of powerful
techniques of algebraic geometry to study their holomorphic structure, investigate
their finiteness, and even compute them in terms of theta functions via the Selberg
trace formula [2,4]. Unfortunately, they are divergent.

It is generally believed that the superstring does not suffer from the divergences
of the bosonic string and may provide a realistic and predictive theory of all
fundamental interactions. Accordingly, there is great interest in generalizing the
algebraic geometry of moduli space to the superstring context. Several authors
have computed the dimension of the gauge-fixing slice for the superconformal
symmetries of 2D supergravity using index theorems [5,6]. This only gives local
information about the "super moduli space." The object of this paper is to study
the space of super moduli in a global way, as done in the Teichmύller theory of
Riemann surfaces. We provide a rigorous foundation for the theory of super
Riemann surfaces, proving all the basic results necessary for applications to
superstrings.

Teichmύller theory constructs a certain covering space of the moduli space of
all complex structures on Σ. In the course of the construction it is shown that
complex structures are in 1-1 correspondence with conformal equivalence classes
of metrics. The construction of Teichmϋller space proceeds via a passage to the
universal covering space of Σ, which is shown to be the Riemann sphere, complex
plane, or upper half plane by the uniformization theorem. The complex structures
on Σ are then parametrized by representing each generator of π1 (Σ) by a PSL(2, C)
transformation acting on the covering space. The parameters of the PSL(2, C)
elements give coordinates on Teichmϋller space. The moduli space is obtained as
the quotient by the modular group which acts by changing the choice of generators
ofπ^Σ).

Using Friedan's global definition of a super Riemann surface [7] we are able
to repeat this entire construction. This is one of the few applications of superspace
in physics which seems to require a rigorous mathematical theory of supermanifolds
rather than just an intuitive manipulation of anticommuting variables. By
employing Rogers' theory of supermanifolds [8-10] we maintain full rigor while
staying close to our intuitive notion of superspace. In Sect. 2 we define super
Riemann surfaces, specifying in particular their global topology, and describe the
supergroup which generalizes PSL(2,C). In Sect. 3 we construct the super
Teichmϋller space by the procedure outlined above. We show that it is the quotient
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of a real supermanifold by a Z2 symmetry with fixed points, hence a super-orbifold,
and compute its dimension, which agrees with the result from 2D supergravity.
The description of supertori in terms of superlattices is worked out explicitly with
attention to the dependence of the results on spin structure. Some technical aspects
of the uniformization theorem are postponed to Sect. 4. In Sect. 5 we show how
to describe super Riemann surfaces in terms of Beltrami differentials, deriving the
super Beltrami equations and discussing the uniqueness of their solutions. This
machinery allows us to embed the double cover of super Teichmύller space in a
space of superdifferentials of weight 3/2, thereby exhibiting its complex structure;
to represent super Riemann surfaces by Schottky supergroups; and to define a
universal super Teichmύller space. It should make possible deeper studies of the
geometry of super moduli space as well. Some of our results have been announced
by other authors [7,11,12], but without the rigorous proofs provided here. In
Sect. 6 we briefly consider super Riemann surfaces with nontrivial topology in the
anticommuting directions. We sketch arguments for a uniformization conjecture
for them and explain why they do not contribute to the superstring path integral.
Section 7 contains our conclusions.

2. Definitions

We adopt Friedan's definition of a super Riemann surface (SRS) [7], which we
make rigorous by combining it with Rogers' general theory of supermanifolds
[8-10]. Thus, a SRS will be a complex supermanifold of dimension (1, 1) whose
transition functions are superconformal maps. We now explain this definition in
detail.

In each coordinate chart of a SRS there will be one complex even coordinate
z and one complex odd coordinate θ. These coordinates take their values in a fixed
Grassmann algebra BL having L anticommuting generators vl9v2,...,vL. Thus,

(2.1)

where vr denotes the product of all the vt whose subscripts appear in the sequence
jΓ, and υ0 = 1. The coefficients zr,θr are ordinary complex numbers. Sometimes
we will use Z to denote either or both of z and θ. The complex number z0 is called
the body of z, while the remainder z — z0 is its soul; θ has no body and is pure
soul. A SRS can always be viewed as an ordinary complex manifold of dimension
2L by using the ZΓ as complex coordinates. This is a major advantage of Rogers'
theory: topological properties of SRS's are as well defined as those of ordinary
manifolds.

The transition functions relating coordinates in overlapping charts on the SRS
are required to be both complex analytic and superanalytic, meaning that they
take the form,

3=ψ(z) + θg(z). (2.2)
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Furthermore the component functions /, £, ψ, g have Taylor expansions in powers
of the soul of z, for example

/(z) = /(z0) + (z-z0)/'(z0)+ .., (2.3)

with /(z0) analytic. This series always terminates because z — z0 is nilpotent, so
the component functions are uniquely specified once known for soulless values of z.

We are assuming the Grassmann algebra BL to be finite-dimensional in order
to avoid questions of convergence. However, this assumption creates its own
technical difficulties stemming from the fact that the derivative d/dθ does not obey
the Leibniz rule in a finite-dimensional algebra. To see the problem, consider
d(θv12...L)/dθ. If the Leibniz rule were valid, this derivative would have to be t;12...L,
but the function being differentiated is identically zero! Since we will need the
Leibniz rule on several occasions, such as Eq. (2.4) below, we handle this problem
by the method suggested recently by Rogers [13]. We restrict the components
/(z0), C(z0) of all superanalytic functions F(z, θ) = /(z) + θζ(z) to take values in the
subalgebra BL_1 generated by ι;1,ι;2,...,ι;L_1. Then the components cannot
contain any term proportional to vl2...L

 and the problem is resolved. The results
to be obtained in this paper will hold for all finite values of L and in the limit L-» oo.

We must now impose the condition that the transition functions (2.2) be
superconformal [7, 14, 15]. In each chart there is a derivative operator

which transforms according to

D = (DΘ)D + (Dz - ΘD Θ)D2. (2.5)

By analogy with the behavior of d/dz on a Riemann surface, we demand that D
transform homogeneously, so that D = (DΘ}D. This imposes the constraint

Dz = ΘD θ, (2.6)

which becomes explicitly

t = gψ, g2 = f' + ψψ'. (2.7)

Thus, a general superconformal map takes the form,

\lsψf. (2.8)

It is specified by the two £L_ rvalued analytic functions /(z0) and ψ(z0).
There is an equivalent definition of a superconformal map which we will find

more useful. Requiring the 1-form dz + θdθ to transform homogeneously leads to
the same conditions (2.7) and the transformation law

dz + θdθ = (D θ)2 (dz + θd θ). (2.9)

(Our convention for 1-forms is that dθ commutes with itself but anticommutes
with dz and with θ.) This works because dz + θdθ and dθ constitute the basis of
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1-forms dual to the basis D, D2 of vector fields. The object dZ defined by Friedan
[7] via its transformation law dZ = (DΘ}dZ can be viewed as a square root of
dz + θdθ in the sense of half-forms.

So far we have defined a Rogers SRS whose global topology may be very
complicated: in particular, nontrivial topology in the θ dimensions is possible [9,10].
For applications to superstrings the more restricted topology of a DeWitt
supermanifold [16] is appropriate. To implement this restriction we require that
each coordinate chart of the SRS may not be an arbitrary open set but instead
must be the Cartesian product of an open set in the z0 plane with the entire complex
planes of the other coordinates ZΓ. This effectively trivializes the topology in all
but the z0 dimension. From now on the unqualified term "SRS" will imply this
DeWitt topology. When we discuss Rogers SRS's we will explicitly identify them
as such.

To every (DeWitt) SRS M there is associated a corresponding Riemann surface
MO, called the body of M, with a particular spin structure. The charts on M0 are
the projections on the z0 plane of the charts on M, and its transition functions
are the bodies /0(z0). Then the /Ό(z0) are the transition functions of the tangent
bundle of M0, and a choice of square roots of these functions defines a spin structure
[17]. Since the square root of a Grassmann number can be found as an expansion
about the square root of its body in powers of its soul, such a choice of square
roots is implicit in Eqs. (2.8). M is a fiber bundle over M0 having a vector space
as fiber, but it is not strictly speaking a vector bundle because the transition
functions need not be linear in the fiber coordinates. Conversely, given a Riemann
surface M0 with spin structure, there is a canonical SRS M whose body is M0.
The charts on M are the Cartesian products of the charts on M0 with the entire
complex planes in the soul coordinates, and its transition functions have /(z0)
equal to the transition functions of M0, and ψ(z0) = Q, with the square roots in
Eqs. (2.8) defined via the given spin structure. An important question which will
be answered (in the negative) by the Teichmύller theory we will develop is whether
every SRS is equivalent to one of these canonical ones.

Because the plane C, the Riemann sphere C*, and the upper half-plane U are
simply connected, they have unique spin structures. Therefore there are unique
canonical SRS's over these Riemann surfaces, which we denote by SC, SC*, and
SU. The group of superconformal automorphisms of SC* is the natural generaliz-
ation of the group of fractional linear transformations and will play a central role
in our work [7,14,15]. We now determine this group, which Friedan calls SL2

and which we will denote as SPL(2, C). Each element of the group is specified by
functions /(z0) and φ(z0). Certainly the body of /(z0) must be a Mobius
transformation,

f (7 \ - aozo + bo n ι mJ o l z o J — ~T- (2.LO)
C0z0 + d0

At first it seems that there are no constraints on φ(z0) or on the soul of /(z0),
because a superanalytic map is invertible whenever its body is: the inverse can be
found as an expansion about the inverse of the body in powers of the soul [16].
However the situation is more subtle because of the pole in Eq. (2.10). Certainly
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an expansion in powers of the soul is not valid if the soul has a pole at a point
where the body is finite. The soul may have poles where the body does, but they
cannot be poles of arbitrarily high order or again the expansion fails. Indeed, in
the neighborhood of a pole we use the transition functions of SC* to replace
(z, θ) by ( — 1/f , θ/z)9 which must make the soul as well as the body finite. The most
general functions satisfying these conditions are

-, ad -be = I,
cz0 -t-

depending on three independent even parameters in BL_1 and two odd ones. Thus
we obtain the general group element

Z cz + d + θ(cz + d}2'

z_yz + δ θ
cz + d cz + d

(2.12)

The group SPL(2, C) so defined is obtained by exponentiating the subalgebra of
the Neveu-Schwarz algebra generated by L _ 1 , L0 , Ll , G _ 1/2 , and G1/2 . If any other
generators are included, all others are produced by commutation, leading to poles
of arbitrarily high order, which is unacceptable.

Given three points of SC*, there are exactly two SPL(2, C) transformations
which send two of them, as well as the even coordinate of the third, to specified
values. For example, the points (z, 0) = (0,0), (1,0) and the even coordinate of
(oo,0) are fixed by both the identity and the fermionic inversion I:z = z, θ = —θ.
The fact that / cannot be distinguished from the identity by its action on these
points will lead to a fundamental Z2 ambiguity in the Teichmϋller theory in Sects. 3
and 5. An element of SPL(2, C) can be characterized in terms of its fixed points
and multiplier, just as is true for ordinary Mobius transformations [12].

Associated to any subgroup G of SPL(2, C) is the group G0 of fractional linear
transformations which are the bodies (2.10) of the elements of G. If G acts on some
SRS M, then G0 acts on M0. Specifically, if x0 is a point of M0 and q0 an element
of G0, take any point x in the fiber of M lying over x0 and any element q of G
with body q0. Then define q0x0 to be the body of qx, which does not depend on
the choice of x and q.

3. Uniformization

In this section we will prove the uniformization theorem for SRS's, which states
that any "metrizable" SRS is SC* or a quotient of SC or SU by a subgroup of
SPL(2,C). As a corollary we learn that the super Teichmiiller space is a real
super-orbifold and determine its dimension and its body. As an illustration we
explicitly work out the groups representing super tori. This genus 1 case is
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exceptional in that the dimension of the super Teichmύller space depends on spin
structure.

Let M be an arbitrary SRS and M0 its body. Since M is a bundle over M0

with contractible fibers, its universal covering space M is also such a bundle over
M0, the universal cover of M0. M can be given a SRS structure such that the
covering group acts by superconformal transformations and the body is M0. By
the uniformization theorem for Riemann surfaces we know that M0 is C, C*, or
U [18,19]. In the next section we will use sheaf cohomology methods to prove
that the canonical SRS's SC, SC*, and SU are in fact the only SRS's over these
Riemann surfaces. This will show that any SRS is a quotient of SC, SC*, or SU
by a group G of superconformal automorphisms. Furthermore, G is isomorphic
to the fundamental group π^M). Since M is a fiber bundle with a vector space as
fiber, this in turn is isomorphic to π^Mo), a discrete group. Hence G is known to
be discrete.

In order for the quotient space M/G to be a manifold, G must act properly
discontinuously: each point of M must have an open neighborhood which does
not intersect any of its images under group transformations (other than the identity).
If the open neighborhoods in this definition can be arbitrary, then the quotient
space in general will be a Rogers SRS. To ensure that the quotient is a DeWitt
SRS, the neighborhoods satisfying the above condition must be open in the DeWitt
sense: they must be cylinders over open sets in M0. This in turn is possible iff the
associated Mόbius group G0 acts properly discontinuously on the body M0. A
simple example illustrating these points is provided by supersymmetry. The group
G generated by

z = z + θδ, θ = 0 + δ (3.1)

for some fixed δ acts properly discontinuously on SC, but G0 consists of the identity
map alone. The body is actually fixed by the transformation, and taking the quotient
SC/G renders the fibers nonsimply connected while leaving the body unchanged [9].

Since no Mόbius transformation acts properly discontinuously on the body
C* of SC*, no new SRS's can be obtained as quotients of SC*. So we know that
any SRS is either SC* or a quotient of SC or SU by a group of superconformal
automorphisms which acts properly discontinuously on the body. Unfortunately,
it is not true that all superconformal automorphisms of SC and SU belong to
SPL(2, C). Since C and U do not contain the point at infinity, we no longer have
the constraints on the behavior of superconformal maps at their poles which gave
us the group SPL(2, C) for the Riemann sphere. A superconformal automorphism
of SC or SU need only have a fractional linear transformation as its body—its
soul is unrestricted. For example, the superconformal transformation

z - z + 1 + Θηzn

9 θ = θ + ηzn, (3.2)

does not belong to SPL(2, C) for n > 1, but it is nevertheless an automorphism of SC.
For applications to superstrings, however, more than just a SRS structure is

required. There must be enough geometric structure to construct an integration
measure and invariant Lagrangian for world sheet supergravity. For Riemann
surfaces the existence of a metric is automatic, but not every SRS admits a metric
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generalizing the metric on its body. For physical applications, then, we must restrict
ourselves to "metrizable" SRS's. For example, on SU there is a generalization of
the Poincare metric,

ds = (Imz + $ΘΘΓ1\dz + θdθ\, (3.3)

which is invariant under SPL(2, R) but not under larger superconformal groups
[11]. Here SPL(2,R) is the subgroup of SPL(2, C) for which the even parameters
are all real (α = α, etc.) and the odd parameters are restricted by y — iy, etc. This
restriction ensures that the product of two odd parameters will be a real even
parameter. Heuristically, one can think of SPL(2, R) as the subgroup of SPL(2, C)
which fixes the "superboundary" SR of SU, namely the set z = z, 0 = iθ. The
superboundary is not the boundary of SU as a manifold because it has half the
dimension oϊSU rather than the dimension minus one, but unlike the true boundary
SR is a supermanifold. Similarly the metric

ds = \dz + θdθ\ (3.4)

on SC is only invariant under a subgroup of SPL(2, C). Thus the uniformization
theorem which is needed for physical applications states that any metrizable SRS
is either SC* or a quotient of SC or SU by a discrete subgroup of SPL(2, C). This
subgroup is isomorphic to the fundamental group of the body and is unique up
to conjugation.

It is not quite clear that the physical requirement for superstring applications
is the existence of the metrics described above, because 2D supergravity is not a
Riemannian supergeometry based on a metric but instead involves covariant
derivatives with torsion. The metrics above also cannot be directly relevant to the
heterotic string because they depend on θ as well as θ. However, in 2D supergravity
one does make use of a frame on the SRS which is constructed from a metric (or
the associated zweibein) on its body as well as a gravitino field which can be locally
gauged away. Therefore the constant curvature metric on the body must extend
to a function of z which is invariant under the bosonic parts of the superconformal
automorphisms. The fermionic parts mix this metric with the gravitino. This
certainly restricts the bosonic parts of the automorphisms to be those of SPL(2, C)
elements, but it restricts the fermionic parts as well since the fermionic parts of
two group elements contribute to the bosonic part of their product. In this way
one is again led to the metrizability condition. The same is true in "heterotic
geometry" [20], although this is a somewhat different construction in which only
the bosonic parts of superconformal maps are used as transition functions of the
SRS while the fermionic parts act in the tangent space.

In addition to this general argument, a specific one can be given for the 2D
supergravity describing the nonchiral spinning string. In this case the "metrics" ds
above should be reinterpreted as the norms of the even component of the frame
field Ez = dZMEz

M on SU and SC. Invariance of the "metric" translates into
invariance of Ez up to a phase, which is invariance up to a rotation by the tangent
space group (7(1) in two dimensions. This is certainly necessary for the SRS to
inherit a supergravity frame field from its covering space. It is also sufficient, since
an odd component Eθ can be found such that the complete frame is invariant up
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to a 17(1) rotation. The complete frame fields are

Eθ = dθ, (3.5)

for SC; and

Ez = (Imz + %θθ)~l(dz + θdθ),

Eθ = (Im z + ̂ ΘΘΓl/2 dθ + %(iθ - θ)(Im z + £00)- 3/2(dz + θdθ), (3.6)

for SU.
Having proven the uniformization theorem, we can now describe the super

Teichmuller space for genus 0, STg. It is defined as the space of marked metrizable
SRS's M having compact bodies of genus 0, where a marking is a specific choice
of generators for π^M). Dropping the marking defines the super moduli space.
For genus g > 1, representing the SRS as a quotient oϊSU by a (Fuchsian) subgroup
G of SPL(2,R) having 2g generators q^fo. .fog provides 6g even and 40 odd
parameters. These parameters are not all independent, however, since there is the
freedom of an overall conjugation as well as a single relation among the generators
of the fundamental group. Indeed, by an SPL(2, R) conjugation we can move the
fixed points of q^ to (z,0) = (0,0), (oo,0) and specify the even coordinate of the
attractive fixed point ofq2. There are in fact two conjugations that do this, differing
by the inversion /. [In principle we are free to conjugate by superconformal
automorphisms of SU lying outside SPL(2,R) as well, but such a conjugation
would take the qt out of SPL(2, R).'] The group relation

fo fofolfol - fog- I fog fog"- 1 fog = 1 (3-7)

then imposes three more even and two odd conditions. Each point of STg can
therefore be described by 60-6 independent even parameters and 40-4 odd
ones, and this can be done in two different ways depending on which of the two
possible conjugations is chosen. Since conjugation by / changes the signs of the
odd parameters of an SPL(2, C) element while leaving the even ones unchanged,
the two descriptions are related by changing the signs of the odd parameters. This
means that STg has a double cover which is a real supermanifold of dimension
(60-6, 40-4). It is also a complex supermanifold, but we will not be able to prove
this until Sect. 5. The only restrictions on the values of the parameters come from
the requirement that the group act properly discontinuously on the body, which
affects only the bodies of the parameters. Thus the soul coordinates are unrestricted,
so the supermanifold is of the DeWitt type. STg itself is a super-orbifold, the singular
points being those whose odd parameters vanish. The body of STg is identified
with the equivalence classes of canonical SRS's, whose transition functions are
soulless. But these are in 1-1 correspondence with Riemann surfaces with spin
structure. Hence the body of STg is precisely the ordinary Teichmuller space of
Riemann surfaces with spin structure, which is a 22ί7-sheeted covering of the
Teichmuller space Tg. This incidentally implies that any metrizable SRS is a
deformation of a canonical one. This is the analogue of Rothstein's theorem that
any complex (Berezin-Leites-Kostant) supermanifold is a deformation of a vector
bundle [21].

In a previous version of this paper we indicated that by omitting metrizability
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from the definition of super Teichmuller space, one would obtain an object which
is infinite-dimensional and not a supermanifold. Recently, however, Hodgkin has
shown that metrizability is a superfluous assumption for SRS's having compact
bodies; precisely the same space STg is defined without including any metrizability
requirement [22]. This is surprising because infinitely many parameters should be
required to describe 2g superconformal automorphisms of SU representing the
generators of πί of an arbitrary SRS. The implication of Hodgkin's result is that
any set of 2g automorphisms obeying the relation (3.7) can in fact be brought into
SPL(2, R) by a conjugation.

Next we can discuss the reduction of STg to the super moduli space. In order
to obtain coordinates on STg we had to choose a specific set of generators for the
fundamental group of a SRS, then represent these generators by SPL(2, R) elements.
To pass to super moduli space we must eliminate the dependence on the choice
of generators. There will be infinitely many points of STg which describe the same
group in terms of different sets of generators. The transformations of STg which
take such points into one another form the super modular group, and super moduli
space is the quotient of STg by this group. Because the fundamental group of a
SRS is isomorphic to that of its body, changing the choice of generators of π1(M)
is equivalent to changing the choice of generators of πί(M0). Hence the super
modular group is isomorphic to the ordinary modular group for genus g. (This
does not mean that it acts trivially on the odd coordinates of STg. The groups are
isomorphic, but they act on different spaces.) No "super extension" of the modular
group appears for SRS's with the DeWitt topology, although it certainly would
for general Rogers SRS's. The body of super moduli space is again a 22^-sheeted
covering of the moduli space of the body, but is branched at points where the
Riemann surface has automorphisms taking one spin structure into another.

We have not yet discussed the super Teichmuller space in the genus 1 case.
We will now work it out explicitly as a concrete illustration of the above ideas.
The existence of a conformal Killing spinor for the trivial spin structure in this
case means that the corresponding sheet of ST1 will have a different dimension
than the other sheets.

A super torus is obtained as the quotient of SC by a subgroup of SPL(2, C)
having two generators of the form (2.12). This subgroup must act properly
discontinuously on the body C, which requires c0 = 0, a% = \, and b0 φ 0. If the
super torus is to be metrizable, then invariance of the metric (3.4) strengthens these
conditions to c = 0, a2 = 1, γ = 0, and b0 φ 0. SPL(2, Q elements with c = y = 0
take the form,

z = a2z + ab + a2θδ,

θ = a(θ + δ). (3.8)

We represent the two generators by the ordered triples (a,b,δ) and (a\b',δ'). The
choice of signs for a and a' determines the spin structure. The composition law
for the transformations (3.8) is

(a1,b',δ')(a,b,δ) = (a'a,α'fe + - + a'δδ'9δ+-}. (3.9)
V a a
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Next we need to determine how much the generators can be simplified by conju-
gation, and when such generators commute (π1 of the torus is Abelian). We find

( A , B 9 Δ Γ ί ( a , b , δ ) ( A 9 B 9 Δ ) = [a9bA-2 + (a+l)ΔδA-1

9(l-a)Δ + δA-1^ (3.10)
and

= [1, (ad + a + af- l)δδf, (1 - a')δ - (1 - a)<5'], (3.11)

where we have used a2 — a'2 = 1. Note that the commutator (3.11) is a pure soul
transformation. This means that if we dropped the requirement that the generators
commute the quotient space would be a Rogers SRS.

Consider first the case of a nontrivial spin structure, so that a and a' are not
both 1; for definiteness assume α= — 1. Then by a conjugation (3.10) we can set
b to unity and δ to zero, whereupon commutativity requires δ' = 0 as well. Hence
the generators can be chosen to be ( — 1,1,0) and (+ l,fc',0), with one complex
even parameter and no odd ones. The three sheets of ST1 describing nontrivial
spin structures are supermanifolds of complex dimension (1,0).

For the trivial spin structure a = a' — 1, the conjugation (3.10) can set b to unity
but cannot set δ to zero. This reflects the existence of the conformal Killing spinor.
Nevertheless, δ can be set to zero by conjugation with the SPL(2, C) element

z = z + θδz9 θ = θ + δz, (3.12)

without changing the form of the other generator. Commutativity imposes no
restriction on δ' in this case, so the generators can be chosen to be (1,1,0) and
(l,b'5 <5'), with one even and one odd complex parameter. However, this sheet of
ST1 is not quite a supermanifold of complex dimension (1, 1). Conjugation by the
inversion / shows that changing the sign of δ' does not change the super torus.
The trivial sheet of ST1 is obtained by identifying (&', δ') with (b\ — δ'} in the
parameter space. Since the points with δ' = 0 are fixed by this Z2 symmetry, the
result is a super-orbifold.

It is clear from the super torus example that small changes in the group
parameters of a DeWitt SRS can produce a Rogers SRS. The super Teichmύller
space sits inside a larger space of Rogers SRS's and its boundary contains Rogers
SRS's with nontrivial topology in soul directions. In general one can approach the
boundary by sending the group parameters toward values for which the action
on the body is not properly discontinuous. During this process one can always
adjust the souls of the parameters in such a way that the action on the entire
supermanifold remains properly discontinuous. The boundary point then repre-
sents a Rogers supermanifold. In effect, the souls of the group parameters can be
used to regulate the pinch singularity on the body, replacing it with a compacti-
fication in the soul dimensions. This type of nonsingular representation of pinched
surfaces may be convenient in some applications.

4. Deformation of SRS Structure

In this section we will complete the proof of the uniformization theorem by showing
that SC*, SC, and SU are the unique SRS's having simply connected Riemann
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surfaces as bodies. Our method is essentially to treat an arbitrary SRS over C*,
C, or U as a deformation of the canonical one. We then use the standard sheaf
cohomology methods of deformation theory to show that the deformation is trivial.
This means that the transition functions of the SRS can be brought to the canonical
soulless form by redefining the coordinates in the charts. An excellent if lengthy
account of deformation theory for complex manifolds can be found in [23].

Let M be a SRS with simply connected body M0. If {U*} is an atlas of charts
for MO, then the cylinders over the Ua are charts on M. The structure of M is
completely characterized by the functions fΛβ(z^) and ^α/?(zo) which specify the
superconformal transformation from Zβ to Zα in the region above U"πUβ. Of
course, many different sets of functions describe the same SRS, because a
superconformal redefinition of coordinates in any chart will change the transition
functions but not the SRS structure. Hence a SRS corresponds to a collection of
transition functions modulo coordinate redefinitions.

The consistency condition satisfied by the transition functions on triple overlaps
(7α n Uβ n Uy is of crucial importance. Changing coordinates from Zy to Zβ and
then to Zα must give the same result as changing directly from Zy to Zα. This
imposes the "cocycle conditions,"

Γ = f*β(fβy)

\l/*β(fp7)ψ*β'(fβy).

The summation convention will not apply to the Greek indices in this and
subsequent equations. We expand the transition functions in the basis of BL and
consider separately their soul components fΛβ , \l/aβ , Γ / 0, showing by induction
on the length of the sequence Γ that they can all be set to zero by superconformal
coordinate redefinitions. This will show that M is equivalent to a canonical SRS.
(We need not consider the body component /Jf , since it is well known that M0

admits only one complex structure.)
Consider first Eq. (4.1b) for the leading terms ψf. It simplifies to

ιAΓ(4) = Mβ(zβo) + M7(zyo)JfΛoβ'(zβo), (4.2)

where we have used the fact that the /Jf are the transition functions for the body.
To see the significance of this equation, multiply both sides by eα, a local section
over L/α for the line bundle of spinors whose square is the tangent bundle to M0.
The transformation law of ea absorbs the square root in (4.2), and we obtain

W(z&) = e«ψf(zβ

0) + W(4). (4.3)

This shows that the eaφfβ define a cocycle in the first Cech cohomology group of
MO with coefficients in the sheaf of sections of the spin bundle. This cohomology
is known to be trivial when M0 is simply connected. For the sphere this follows
from the Riemann-Roch theorem, while for C and U it follows from the triviality of
holomorphic line bundles including the spin bundle [19]. Since the cohomology
is trivial, the cocycle is exact,

e«ψf = e

βηf-eaη<ϊ, (4.4)
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or

This relation implies that the leading terms ψf can be set to zero by the
superconformal redefinition of coordinates

zα = zα + Θaηfvί9

θα = 0*^/1 +η*η<j'vij +η*Vι. (4.6)

Of course, this redefinition may also alter the higher-order terms in the transition
functions, but these are dealt with at a later stage of our inductive argument.

The same type of reasoning applies to the leading soul terms of the even functions
/α/?. From Eq. (4.la) we have, using the fact that ψfβ has already been set to zero,

This shows that fffd/dzQ defines a cocycle in the first cohomology group of M0

with coefficients in the sheaf of holomorphic vector fields. Again the triviality of
this cohomology group means that the fff can all be set to zero by superconformal
coordinate redefinitions. The induction proceeds in this manner until the souls of
the transition functions have all been set to zero. Equations (4.2) and (4.7) continue
to hold at higher orders, so that no new cohomology groups appear. This completes
the proof of uniqueness of the canonical SRS's SC*, SC, and SU.

It is possible to generalize this analysis to SRS's whose bodies are nonsimply
connected. After all, the dimensions of the cohomology groups which appeared
are 60-6 and 4g-4 for genus g, which indicates that an alternative derivation of
the dimension of super Teichmuller space should be possible along these lines. It
was by carrying out such a derivation that Hodgkin determined the dimension and
structure of STg without making the metrizability assumption [22].

5. Super Beltrami Differentials

The representation of Riemann surfaces in terms of Beltrami differentials is an
extremely powerful technique which permits straightforward proofs of deep results
which are difficult to obtain by other methods [24]. It is therefore important to
develop the analogous representation for SRS's. Just as Beltrami differentials
characterize the various possible Riemann surface structures on a given smooth
2-manifold, super Beltrami differentials will describe different metrizable SRS
structures on a given smooth (G°°) supermanifold. The G°° structure of a SRS is
obtained by relaxing the requirements that the transition functions be complex
analytic and superconformal. They may instead be arbitrary functions of z, z, θ,
and θ which are polynomials in θ and θ with coefficients admitting Taylor
expansions in the souls of z and z. In this section we will derive the super Beltrami
equations and discuss their solution. We will then be able to exhibit the complex
structure of STg via a Bers embedding theorem, show that metrizable SRS's can
be represented by Schottky supergroups, and define the notion of universal super
Teichmuller space.

Let (z, θ) and (w, φ) be two sets of coordinates on SU, related by a G00 but not
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necessarily superconformal transformation

w = w(z,z,θ), φ = φ(z,z,θ). (5.1)

Then the invariant metric which appears in one set of coordinates as

(Im\v + ±φφΓ1\dw + φdφ\ (5.2)

will appear in the other set as

λ(z, z- θ, θ}\dz + μ(z9 z- θ)dz + v(z, z, θ)dθ\. (5.3)

Conversely, if the two Beltrami coefficients μ,v are given then the map which
reduces (5.3) to the standard form (5.2) satisfies the super Beltrami equations,

wf + φφ- = μ(wz + φφz\ - wθ + φφθ = v(\vz + φφz\ (5.4)

where the subscripts indicate differentiation.
We write the super Beltrami equations in terms of components by expanding

(5.5)

We then obtain four component equations

wQi+ΦlΦl=μ°(y>ΐ + Φ*Φl\ (5.6a)

w* + φoφϊ- φlφ« = μ°(wz + φ«φl - φ1 φ°z) + μ>z° + φ^φll (5.6b)

- w1 + φlφ* = vV? + ΦlΦl\ (5 6c)

(Φ°)2 = v1(-w1

z + φ1 φ°z - φ°φ1

z) + v°(wz° + φ1 Φl\ (5.6d)

Since all the functions entering these equations are G°°, one need only solve for
their dependence on z0,z0 to determine them completely. Therefore one can read
ZQ for z everywhere in the equations. The unknowns are two even and two odd
BL-I -valued functions of z0,z0.

We will discuss the solution of the super Beltrami equations when the Beltrami
coefficients are specified in all oϊSC. If they are only known in SU, as above, some
extension into the rest of SC must be prescribed. In terms of the components
defined in Eqs. (5.5) the appropriate extension is

μ°(ί) = μ°(z), μi(z)=-ίμ1(z\

v°(f) = v0(z), v 1(2)=-iv 1(4 (5-7)

The symmetry of this extension implies that the solution in SC will fix the
superboundary SR and will map SU to itself.

One easily checks that all solutions of the trivial super Beltrami equations with
μ = 0, v = θ are superconformal maps. It follows that the solution of the general
equations is unique up to composition with a superconformal automorphism of
SC. Here again we encounter the problem that SPL(2, C) is not the full group of
superconformal automorphisms of SC. We will deal with this by imposing strong
enough boundary conditions on the solutions at infinity to guarantee that
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solutions actually extend to SC*. Such solutions will be unique up to SPL(2, Q
transformations.

How does one actually solve the super Beltrami equations given the functions
μ(z,z,0) and v(z,z,0)? The general technique for solving algebraic or differential
equations involving Grassmann-valued functions is to solve the body of the
equation first and do perturbation theory in the souls of all functions. Since the
souls are nilpotent, the resulting perturbation series always terminate and give
the exact solution. The generators vt of the Grassmann algebra play the role
of the "small" parameters of the perturbation. To begin, the body of Eq. (5.6a) is

K)z- = μg(wg)z. (5.8)

This is an ordinary Beltrami equation which can be solved for wg provided that
|μg(z)| < 1 and given boundary conditions such as wg(0), wg(l), WQ(OO). Then the
body of Eq. (5.6d),

(0g)2 = vg(wg)Γ, (5.9)

is a purely algebraic equation determining φg. Provided that vg(z) does not vanish
there are two solutions differing in sign. The equations have now been solved to
zeroth order in the vt. To proceed to first order, solve the algebraic Eq. (5.6c) for
w1 and substitute into Eq. (5.6b), obtaining to first order

20g^- = (v>gz)f + μg[20g^-(v/

1<)z]+μ>gz. (5.10)

This is an inhomogeneous Beltrami equation which has a unique solution for φ\
given the boundary conditions φl(ϋ) = Φl(oo) = 0 [25]. Then w/ can be computed
algebraically from Eq. (5.6c). This procedure can be continued until the map W(Z)
is completely determined. At each order it requires the solution of one inhomo-
geneous Beltrami equation. There are precisely two solutions given the values of
w0(0), w0(l), and w0(oo), and the boundary conditions that the souls of w° and φ1

vanish at z = z0 = 0 and ao.IϊW = (w9 φ) is one solution, the other isIW = (w, — φ).
If we consider a family of Beltrami coefficients μ, v which are G°° functions of

some parameters, then the solutions of the super Beltrami equations also have G°°
dependence on the parameters. This can be seen by treating the parameters as
additional coordinates analogous to z and θ when solving the equations. By
expanding w, φ9 μ, and v in powers of the odd parameters as well as θ in Eqs. (5.5),
we obtain a set of equations similar to (5.6), whose solutions are determined when
known for soulless values of z and the even parameters. These solutions have
G°° dependence on z, 0, and all parameters.

For the applications below we will need to solve the super Beltrami equations
in cases where the Beltrami coefficients are discontinuous. Since w° and φ1 are
obtained by solving (inhomogeneous) Beltrami equations, they will be continuous
even when the Beltrami coefficients are not [25]. However, w1 and φ° are computed
from algebraic formulas and need not be continuous.

We will now use this machinery to exhibit the complex structure on super
Teichmϋller space. We follow a standard argument due to Bers which shows that
ordinary Teichmϋller space embeds as a bounded domain in a Banach space of
quadratic differentials [24,26]. This space has a natural complex structure. Our
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proof will show that the double covering supermanifold of the sheet of STg(g > 1)
corresponding to a particular spin structure embeds as a domain in a space of
superconformal fields of weight 3/2, which is naturally a complex supermanifold.

Let M and M' be two metrizable SRS's with bodies of genus g>\ and the same
spin structure. We represent them by uniformizations SU/G9 SU/G' with a specific
choice of generators for G and G'. We regard M as a fixed origin and M' as a
variable point in STg. For simplicity we will assume that M is canonical, so that
G=G0. Although M and M' may be different as SRS's, they are equivalent as G00

supermanifolds. This follows from Batchelor's theorem [27-29], according to which
a G°° supermanifold is completely characterized by its body and a vector bundle
over the body. It can also be proven by an extension of the deformation theory
of Sect. 4: since the transition functions f*β(zβ

0) and ψ a β ( z β

0 ) need no longer be
holomorphic but merely smooth, the relevant cohomology groups are trivial for
any genus [23]. Therefore any SRS can be reduced to canonical form by G°°
changes of coordinates. In particular there is a G00 diffeomorphism W:M-*Mf

which lifts to the covering space SU as a G00 map

W:(z, θ) -> [w(z, z, θ\ φ(z, z, θ)], (5.11)

which for the present we assume independent of θ. This map can be chosen to
have G°° dependence on the parameters of the group representing M'.

If we choose coordinates on SU so that the metric of M lifts to the standard
form (3.3), then the pullback to M via W of the metric of M' lifts to a Beltrami
differential (5.3) which is G-invariant, and the map W satisfies the super Beltrami
equations. We fix W up to the sign of φ by w0(0) = 0, w0(l) = 1, w0(oo) = oo, and
requiring the souls of w° and φl to vanish at z = z0 = 0, oo, which we will call
standard boundary conditions. If q is an element of G, the G-invariance of the
Beltrami differential means that Wq also solves the super Beltrami equations. There
is an 5PL(2, R) element p such that p~: Wq satisfies standard boundary conditions,
so by uniqueness p'1 Wq = W or IW. Then Wq W~l = p or p/, so WGW~1 is a
Fuchsian supergroup which represents M'. Redefining G' by conjugation if
necessary, we get G' = WGW'1.

Now we extend the Beltrami coefficients from SU to all of SC in a different
way by defining μ = 0, v = θ in the region SL above the lower half-plane L. Let
Wμv denote a solution to the super Beltrami equations with these new Beltrami
coefficients which obeys standard boundary conditions. Then Wμv is super-
conformal in SL and superconformally related to W in SU;W = HWμv\SU with
H superconformal. WμvGWμv~l is a subgroup of SPL(2, C) by the same uniqueness
argument that showed that WGW~l was a subgroup of SPL(2, R).

Since Wμv\SL is superconformal, it is reasonable to compute its super
Schwarzian derivative. This is defined for any superconformal map Z(Z) by [7]

D3ΘD2Θ
;Z) = W-

It obeys the composition law

(5.13)
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and it vanishes when Z(Z) belongs to SPL(2, C). These properties imply that
S(Z; Wμv)(dz + θdθ)3/2 defines a G-invariant odd superdifferential of weight 3/2 on
SL. If we expand S(Z; Wμ v) - Sx(z) + ΘS° (z), then the components S°(z0) and S1^)
are G0-invariant differentials on the lower half plane of orders 2 and 3/2 respectively.
Using the Riemann-Roch theorem we conclude that the space of all such
superdifferentials is naturally a complex supermanifold of dimension (30-3, 2g-2).

This construction does not quite succeed in associating a superdifferential of
weight 3/2 with each Beltrami differential (μ, v), because of the nonuniqueness of
the solution of the super Beltrami equations. There are in fact four solutions
satisfying standard boundary conditions, because the sign of φ° can be chosen
independently in SU and SL. If Wμv is one solution, the others are: Wμv in SU and
Wμvl in SL;IWμv; and IWμv in SU and IWμvI in SL. Since multiplication by / on
the left does not affect the super Schwarzian derivative, these four solutions produce
two distinct super Schwarzian derivatives, namely S(Z; Wμv) = S1 + ΘS° and
S(Z; Wμvl) = - S1 + ΘS°. Thus each Beltrami differential is associated to a pair of
3/2-superdifferentials differing in the sign of the odd component. As we will show,
this association defines an embedding of the given sheet of STg in the space of
superdifferentials mod Z2. The embedding is G°° because the Beltrami coefficients
can be chosen to have G°° dependence on the parameters of the group representing
M', whereupon the solution Wμv and its super Schwarzian derivative will also have
such dependence. This embedding defines the complex super-orbifold structure of
STg. The image of the embedding has as its body the bounded domain in C3^~3

which represents the ordinary Teichmϋller space. It is unbounded in the soul
directions, since we already know that the double cover of STg is a supermanifold
with the DeWitt topology.

First we claim that the same pair of super Schwarzian derivatives is associated
to all Beltrami coefficients representing the same point of STg. If W and W are
two G°° maps representing M' as in (5.11), with corresponding Beltrami coefficients
(μ, v) and (μ, v), then we have

WGW~l=qG'q-1 (5.14)

for some q in SPL(2, R). Combining these equations yields

G, (5.15)

so that conjugation by the map W~1q~1W takes G into itself. Since the fixed
points of the elements of the Fuchsian group G = G0 are dense on the real axis
z = z0 = z0, θ = 0, we know that the map W~lq~lW must fix every point on the
real axis R. Therefore on SR it takes the form,

W-1q-1W\SR:z = z + θζ(z), θ = θg(z). (5.16)

Since W9 W, and (5.16) all obey standard boundary conditions, so does q, so q can
only be the identity or /.

Now define a map ω on SC by

ω=WμvW~1q-ίW in SU, ω = Wμv in SL. (5.17)

Then ω obeys standard boundary conditions, is superconformal in SL, and is
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superconformally related to W in SU; and its $ = 0 components are continuous
across the real axis. Therefore ω solves the super Beltrami equations defining Wμv

and must be one of the four solutions of these equations with standard boundary
conditions. This implies that the super Schwarzian derivatives of Wμv and Wμv in
SL agree up to the sign of the odd components as claimed.

Next we must verify that the map from a sheet of STg to super Schwarzian
derivatives modZ2 is invertible. Given a function S(z,θ) one can reconstruct the
superconformal map whose super Schwarzian derivative it is by solving the
differential equation [14]

D3F=-SF. (5.18)

This equation has two independent even solutions and one odd one. If ε is the
odd solution and x an even one, then direct calculation shows that θ = ε/x is the
odd part of a superconformal map with super Schwarzian derivative S. Thus, given
S(Z\ Wμv) in SL one can reconstruct Wμv\SL up to an SPL(2,C) element which
in turn is fixed up to composition with I by the standard boundary conditions on
Wμ\ So let Wμv and W^ be such that Wμv = qW& in SL, with q the identity or /.
What can be inferred about the relation between W and Wl Define a map p on
SUbγ

p = (WWμv~ί)q(Wμ*W-1). (5.19)

Then p is superconformal and obeys standard boundary conditions. It also fixes
the superboundary, because it sends the curve W(R) in SR to the curve W(R) in
SR, and a superconformal map is determined up to a choice of sign by its values
on such a curve transverse to the soul fibers. So p must be the identity or /. Now
consider the rearranged equation

W~lpW=Wμv'lqWμ" (5.20)

on the real axis. The right side is the identity because Wμv agrees with qWμv there.
Therefore W = pW on R. But the knowledge of these maps on the real axis is
sufficient to determine the conjugations WGW~l and WGW~l, since all the fixed
points of elements of G lie on R. Therefore these conjugations do produce equivalent
groups G' representing the same point of STg. Starting from a superdifferential of
weight 3/2 we have succeeded in reconstructing uniquely a point of STg. This
completes the proof.

There is one loophole in this argument: we have not been able to justify our
assumption that Mf can be related to M by a G°° map (5.11) with no θ dependence,
although we believe this is true. Fortunately the argument can be repeated allowing
for the possibility of such dependence. The invariant metric (5.3) is generalized to

(5.21)

leading to the extended super Beltrami equations

ws+φφz = μ(wz + φφz),

- wθ + φφθ = v(wz + φφz),

-w&+φφe = σ(wz + φφ,). (5.22)
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These equations can be solved order by order in the vt just as above, and the entire
proof goes through with no change. Note however that when Eqs. (5.22) are
written out in components there will be 12 component equations for only 8
unknowns, namely the components of w and φ. This means that not every set of
functions μ, v, σ can be the Beltrami coefficients of a SRS; they are constrained by
4 consistency conditions which allow the solutions of Eqs. (5.22). This redundancy
in the description is our main reason for believing that a map with no θ dependence
can always be found.

The Schottky uniformization theorem for Riemann surfaces can also be proved
using Beltrami differentials and will therefore extend to SRS's [30]. A Schottky
supergroup is a subgroup of SPL(2, C) having g generators whose fundamental
region in SC* has as its body C* minus the interiors of 2g nonoverlapping circles.
This fundamental region represents the SRS after its body has been cut open along
g of the 2g generating curves of π^Mo). If these g cycles are fixed in advance, not
all spin structures can be represented, since the g generators of the Schottky
supergroup allow only g choices of signs rather than the 2g choices needed.
However, if the choice of cycles can vary with the spin structure, then all spin
structures and all SRS's of genus g>l can be represented by Schottky supergroups.

Using the ordinary Beltrami equation, one can define a universal Teichmuller
space which contains the Teichmuller space for every genus g>l [24]. The relation
between this space and the universal moduli space which has been proposed as a
setting for string field theory [31] is unclear. Nevertheless, the analogous definition
of universal super Teichmuller space may be relevant to the ultimate formulation
of superstring field theory. It is the space of all quasisuperconformal maps (maps
obeying the super Beltrami equations with some choice of Beltrami coefficients)
of SU to itself, fixing the superboundary, with two maps considered equivalent if
they agree on the real axis. This infinite-dimensional space contains each sheet of
STg for every g>\. We do not know whether it is a supermanifold or what other
geometric structure it may possess.

6. Toward a Uniformization Theorem for Rogers SRS's

We have seen that the quotient of SC or S U by a Kleinian supergroup can be a
SRS of Rogers type representing a boundary point of super moduli space. It is of
interest to try to characterize the Rogers SRS's which can arise in this way. This
should lead to an improved picture of the super moduli space and perhaps a more
general uniformization theorem for SRS's. We will present a uniformization
conjecture in this section and sketch some plausibility arguments for it. In this
section the term SRS will be used in the general Rogers sense.

There is no complete structure theory for SRS's, but elsewhere we have obtained
several results in this direction [9,10]. The major complication is that a SRS need
not be a bundle over any associated Riemann surface; indeed a general SRS
need not have a body at all. Instead of a bundle structure, a general SRS has an
extensive nested set of foliations. The surfaces of constant z0 in the charts fit
together smoothly to give the leaves of a global foliation, called the soul foliation.
Additional foliations are obtained by fixing additional coordinates, for example z0
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and 0 f, but they will not be important here. The space of leaves of the soul foliation
is a topological space, but not generally a smooth manifold or even Hausdorff. We
call this space the body of the SRS only when it is a smooth manifold. We have
shown that the universal covering space of any leaf of the soul foliation immerses
in the vector space Cfe, k = 2L — 1.

An important notion is that of completeness of the leaves. Intuitively a complete
leaf contains no holes. The most suitable rigorous definition seems to be that a
leaf is complete iff any smooth path of finite coordinate length in the leaf can be
smoothly extended. Because the transition functions of a SRS are polynomial along
the leaves, "finite coordinate length" is defined independent of the choice of charts.
The universal cover of a complete leaf must be all of Ck. If a SRS is obtained as
the quotient of SC, SC*, or SU by a discrete supergroup, all its leaves will
be complete. The strongest uniformization conjecture is simply the converse of
this fact.

Conjecture. Any SRS M whose leaves are all complete is covered by SC, SC*, or SU.

Corollary. The Teichmύller theory of Sects. 3-5 classifies all metrίzable SRS's with
complete leaves.

We can only offer suggestions and plausibility arguments toward the proof of
this conjecture. We immediately pass to the universal cover M of M, which is also
a SRS with complete leaves. First one must prove that M has a body. We have
no argument for this, but we know no example of a simply connected supermanifold
with complete leaves which fails to have a body. Next it must be shown that the
leaves of M are all diffeomorphic. Since each leaf is covered by Cfc, its topology is
completely characterized by its fundamental group π x . One way in which the
topology of the leaves can change is for a particular leaf to be diffeomorphic to a
neighboring leaf minus one or more points. This possibility is ruled out by
completeness. Another possibility involves limit cycles: a particular leaf may contain
a circle representing a nontrivial element of π l 5 with the corresponding curve on
a neighboring leaf being trivial in π± and represented by a spiral asymptotic to
the circle [32]. But this contradicts the existence of a body, since the space of
leaves is not Hausdorff if one leaf is asymptotic to another. It seems plausible that
all possibilities for topology change can be similarly ruled out using completeness,
existence of a body, and complex analyticity. If a body B exists and every leaf is
diffeomorphic to a manifold F, then M should be a fiber bundle with fiber F over
B. The homotopy exact sequence of this fibration reads [33]

•'•^π2(F)^π2(M)-+π2(B)^π1(F)-+π1(M)-+π1(B)-+Q. (6.1)

Since n1(M) = 0, π^B) = 0 also and B is a simply connected Riemann surface. If
B is C or £7, then π2(B) = 0 so π^F) = 0. Then M is a SRS whose body is B and
whose fiber is Cfc, so M must be SC or SU.

The case £ = C* is more complicated. Since π2(C*) = Z, (6.1) implies that
πί (F) = 0, Z or Zp. Zp is ruled out because it has no fixed-point-free action on Ck,
so the only exceptional case has F homotopic to a circle and the fibration homotopic
to the Hopf fibration. We have not been able to exclude this possibility or to
construct an example of such a SRS. We think it likely that a proof of our conjecture
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can be constructed along these lines, possibly with the Hopf fibration as an
exceptional case.

Finally we would like to discuss the physical relevance of SRS's of Rogers type.
If our conjecture is true, then metrizable Rogers SRS's can be represented by
Fuchsian supergroups and the super Teichmϋller space can be enlarged to include
them. Should such SRS's be included in the Polyakov path integral for superstrings?
In the absence of a proof of our conjecture, or some alternative characterization,
we cannot rule out this possibility, but we can argue against it. Typically a Rogers
SRS differs from a DeWitt SRS in that some leaves of some foliations are either
compact or dense. We have shown elsewhere that any G00 function on a
supermanifold must be constant along compact leaves [9,10]. In particular, the
G°° map Xμ(z, θ) of the superstring world sheet into the ten-dimensional bosonic
superspace with coordinates Xμ must send such leaves to points. Similarly, at least
the body of a G°° function is constant on any dense leaf, hence it is constant on the
entire SRS by continuity. In either case the map Xμ cannot be an immersion, so
there is no sensible theory of a Rogers superstring moving in ten dimensions. This
is the physical explanation for the choice of the DeWitt topology: to ensure that
the SRS represents a superstring moving in spacetime.

7. Conclusions

In this paper we have provided a rigorous foundation for the mathematical theory
of super Riemann surfaces and for their physical applications. All the standard
results of Teichmϋller theory were generalized to super Riemann surfaces: unifor-
mization, representation by Fuchsian and Schottky groups and by Beltrami
differentials, and the Bers embedding of STg in a space of invariant superdifferentials
which defines its complex structure. The super Beltrami equations in particular
should provide a powerful tool for the deeper study of the geometry of super
moduli space. A proof of our conjecture that the Beltrami coefficients can always
be chosen independent of θ would simplify this study. It should not be difficult to
generalize such tools as Poincare series, theta functions, and the Selberg trace
formula to super Riemann surfaces. A proof of our uniformization conjecture for
Rogers SRS's is also an interesting mathematical problem, but probably has little
physical importance.

Throughout our work we made use of Rogers' theory of supermanifolds to
make rigorous statements about topology and analysis in superspace. Many of
our results have also been obtained in the supermanifold formalism of Berezin-
Leites-Kostant (BLK) [34-36]. Although the two formalisms are mathematically
equivalent for SRS's with the DeWitt topology, the translation between them is
not straightforward, and Rogers' theory is closer to the physicist's notion of
superspace. In particular, in the BLK theory there is no concept of a SRS with
specific nonzero values of the odd supermoduli parameters. There is instead the
notion of a family of SRS's with the odd supermoduli being coordinates on the
parameter space of the family. Therefore some statements which apply to individual
SRS's in Rogers' theory must be translated into statements about families of BLK
SRS's.
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Ultimately one wants to use super Riemann surfaces to discover the most
elegant and transparent geometric formulation of superstrings. Of course, super-
string theory can always be expressed in terms of ordinary Riemann surfaces, just
as supergravity can be expressed in terms of component fields. But we have learned
that the superspace formulation of supergravity simplifies calculations, exposes the
geometric content of the theory, and reveals the origin of "miraculous" divergence
cancellations. The same should be true of the superstring. The proof of finiteness
of superstring amplitudes should be simplified by working directly*with super
Riemann surfaces. One obstacle to such a proof is that finiteness depends on
cancellations between the contributions of different spin structures, which cor-
respond to different sheets of super moduli space. It is clearly desirable to relate
the geometries of the various sheets. This may involve a deeper understanding of
the action of the modular group on the sheets and particularly in the neighborhood
of the branch points.
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