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Abstract. We study the method of polynomial deformations that is used in the
physics literature to determine the Hodge numbers of Calabi-Yau manifolds as
well as the related Yukawa couplings. We show that the argument generally
presented in the literature in support of these computations is seriously
misleading, give a correct proof which applies to all the cases we found in the
literature, and present examples which show that the method is not universally
valid. We present a general analysis which applies to all Calabi-Yau manifolds
embedded as complete intersections in products of complex projective spaces,
yields sufficient conditions for the validity of the polynomial deformation
method, and provides an alternative computation of all the Hodge numbers in
many cases in which the polynomial method fails.

1. Introduction

Compact Kahler Ricci-flat (usually called Calabi-Yau) manifolds, of complex
dimension 3 {JίCγ\ w e r e recently proposed [1, 2] for compactification of certain
superstring theories [3]. In this way, one can obtain aniV=l locally supersym-
metric grand-unified model (hereafter "effective model") in 4-dimensional Min-
kowski space-time, with the gauge group being a subgroup of E6 x E8 and the
matter superfields coming in a chiral representation in general.

The massless superfields of the effective model can be represented by harmonic
exterior forms on the internal JiQΎ [1, 2, 4]1 and consequently the couplings in the
effective model are related [6] by certain integrals of products of forms over JiCΎ,
and possibly its nontrivial submanifolds (see also [4, 7]). These integrals, in
general, depend on the complex structure and the cohomology class of the Kahler
form and are often calculable. Moreover, their relative values and, in particular,
the identical vanishing of some of them can be deduced by applying the Wigner-
Eckart theorem, noting that the superfields (i.e. the corresponding forms on JtCΎ)

1 There does, however, exist a class of superfields, invariant under the Yang-Mills gauge group,
that escapes this classification [4, 5], but this is irrelevant for the purpose of our present paper
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transform, in general, nontrivially under the (discrete) groups of symmetries of
JiCΎ.

A method for computation of transformation properties of harmonic (2,1)-
forms (which are of most interest for phenomenological applications) was
proposed in [2] and applied [2,8] to the cases of some relatively simplee/#cγ. We
shall refer to it as the Polynomial Deformation Method (PDM for short), since it is
presented in the physics literature as an application of the theory of deformations
of the complex structure of complex manifolds as developed by K. Kodaira and
D.C. Spencer [9]. In the cases mentioned PDM seems to be quite powerful and in
accord with other means of computation.

We shall show in this paper that PDM really depends not on the Kodaira-
Spencer deformation theory but on a simple cohomology computation which is
however not universally valid. We shall also establish that PDM is valid for all the
cases we found in the literature [2, 8] (see Corollary to Theorem 2), and by
presenting a more complicated analysis involving spectral sequences, which is the
correct generalization of PDM to all configurations, establish some general
criteria for the validity of PDM.

In Sect. 2 we describe our notation, which is an extension of the notation of
[4,10]. We then briefly review the main steps of PDM and then analyze it from a
general standpoint in Sect. 3. In Sect. 4 we review the general technique of spectral
sequences. In Sects. 5 and 6 we construct the relevant spectral sequences and
present the analysis which generalizes PDM and applies to all configurations. We
summarize our conclusions in Sect. 7. Several simple, yet non-trivial, examples are
given in Appendices A and B, to serve as a practical guide for further application of
our method, and Appendix C, to illustrate some obstructions to completing the
computation of the Hodge numbers.

2. Configurations and Diagrams

A configuration matrix is a pair consisting of an m-dimensional positive integer
valued column vector n and an m x /z-dimensional non-negative integer valued
matrix q. It is intended to represent the degrees of homogeneity of h homogeneous
polynomial constraints defining an embedded variety of codimension h in

m

Y[ CPn

r

r. A configuration is defined to be an equivalence class of configurations
r = 1

matrices with respect to column exchange of q and row exchange of (n || q).
We proved in [10] that the variety corresponding to a generic choice of

constraint polynomials is a non-singular complex manifold. Each such manifold is
said to belong to the configuration, which in turn is said to represent the manifold.

We call a configuration (n || q) minimal if the set of varieties belonging to it is not
m

contained in the set belonging to any other configuration (n' \\ qr) with N: = £ nr
1

Since we will be interested in minimal configurations representing non-
negative manifolds (i.e. manifolds with non-negative first Chern class), we require:

Σ qr

a^nr + ί for all r, and £ qr

a^2 for all a. (1)
ί 1
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A configuration is called decomposable if it contains a configuration of the
form (n \\ q) with q in a block-diagonal form with more than one block; otherwise it
is called indecomposable.

We note that a configuration defines Calabi-Yau manifolds of dimension 3 if

N-h = 3, and £ qr

a = nr+l for all r.
a= 1

We will also find it useful to introduce a diagramatic representation of the
classes of embeddings represented by our configurations:

For every CPn we introduce a hollow circle with n + 1 legs. For every constraint
we introduce a dot. We connect some of the free ends of the legs to the dots,
requiring that each dot has at least two legs connected to it.

There is an obvious 1-1 correspondence between the class of diagrams defined
above and the class of configurations satisfying Rel. (1). Note that decomposable
configurations correspond to disconnected diagrams. A diagram represents
Calabi-Yau manifolds if and only if no legs are left with free ends. The dimension of
the manifold represented by the diagram is / — m — /z, where / is the number of legs,
m the number of circles and h the number of dots. We will also refer to this number
as the dimension of the diagram. It is always non-negative since / ^ 2m and / ^ 2h.

There is a well-known algorithm (see ref. [4, 10]) for computing the Euler
Character χE of the non-singular complex manifolds belonging to each configu-
ration. We define in [10] a class of favourable configurations for which b2, and
therefore all the Hodge numbers, can be computed as well by iterating the
Lefeschetz Hyperplane Theorem. The methods of the present paper will compute
the Hodge numbers of the manifolds represented by many unfavourable
configurations.

It will turn out to be useful to consider a special class of connected diagrams.
They are characterized by the fact that they have at least one dot by deletion of
which the diagram becomes disconnected. We shall refer to these diagrams as one-
dot-decomposable (1DD).

Proposition 1. The complement of a decomposing dot, in a minimal diagram of
dimension n, has two components which represent manifolds of positive dimension the
sum of which is n +1.

Proof In each component we have:

l^2m and l>2k=>2l>2(m + k).

Therefore / — m — k>0 for both components. •

We choose to index a decomposing dot by these dimensions and refer to it as a
x — y-dot, where x and y are the dimensions of the manifolds defined by the
components of the complement of the decomposing dot.

A connected diagram is called 1-leg-decomposable (1LD) if the complement of
a single leg is disconnected. Clearly, every 1 LD diagram is also 1 DD, since the
decomposing leg must be connected to a dot, the removal of which disconnects the
diagram as well.

The complement of a decomposing leg in a minimal diagram representing an
rc-fold has two components containing, respectively, the dot and the circle incident
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with the deleted leg. We shall refer to these respectively as the dot-complement and
the circle-complement of the leg in question. We write ίd5 md and kd for the number
of legs, circles and dots in the dot-complement, and lc, mc and kc for the
corresponding numbers in the circle-complement. We index the leg by ld — md — kd.

Proposition 2. The possible indices for a decomposing leg in a diagram representing

an n-fold are 0, l . . . n — 1 .

Proof. The dot-complement of a decomposing leg, without the dot incident with
the leg, is one of the two disconnected parts of the complement of this dot. By
Proposition 1, it represents a manifold of dimension 1, ...,n. With the dot, ld — md

— kd reduces by one. •

Proposition 3. A minimal configuration representing an n-fold has no decomposing

(n-l)-feg.

Proof If it had, the circle-complement of the (n — l)-leg together with the (n — l)-leg
would correspond to a positive 1-fold. This can only be a CP1, so the entire circle-
complement can be replaced by a single circle with a double leg connecting it to the
dot-complement instead of the (n — l)-leg. But then the configuration was not
minimal. •

Proposition 4. The dot-complement of a decomposing 0-leg in a minimal diagram is:

-O

Proof. We reverse the roles of the two complements in the previous argument. •

3. The Polynomial Deformation Method

For the purpose of PDM, we consider a compact complex manifold if. Let δ be a
vector bundle over if and v a section oiδ such that Ji: = v~ι(G) is a non-singular

m

submanifold of if. In terms of configurations, if=γ\ CPn

r

r and v is identified
with a set of constraint polynomials: r = 1

1
(2)

a=l,...,h

where α's e C, zμr is the μth homogeneous coordinate of CPn/' h = dim if * — 3 and the
configuration matrix q, represents the deformation class of ^ # C Y defined by Γ = 0.
(? is the direct sum of the line bundles determined by the degrees of homogeneity
of the constraints.

An appropriate quotient of the space of all sections of δ with non-singular
zero-set defines a space of manifolds Ji embedded in if on which the connected
component of the group of automorphisms of if acts. We define b{Ji, if) to be the
orbit space of this action.

PDM, as formulated in the physics literature [2, 8], relies on the assumption
that b(^#, if) is a complete effective space of deformations of Ji in the sense of [9].

In the case of Calabi-Yau manifolds there exists the bundle isomorphism:

ji \ — > Ω , (-3)
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where ε is the holomorphic 3-form, and the analogous one for the antiholomorphic
tangent bundle (in other words, a contravariant vector is isomorphic to the
antisymmetric product of two covariant ones.) Consequently, we have that 2 :

,Ω2^)='.H2'\JίCΎ). (4)

Thus, the number of deformations, η = dimb(JfCY, ΊV\ should equal bx 2 = b2Λ

= 772' \JίCΎ). For a JίCΎ, bp%q=\ if both p and q = 0 (mod 3), and bPί q = 0 if exactly
one of p,q = 0 (mod3). Since bίt2 = b2Λ and blΛ = b2t2 by duality, χE = 2(bίtl

— b12\ and so if bl2 is calculable, b1Λ is given as well.

To obtain a basis for the tangent space to b(Jίcγ, iV\ one considers variations
of the coefficients α in Eq. (2), and divides out the subspace generated by coordinate
transformations of Ψ* as well as by "rescalings" of each Ia by appropriate
combinations of 7b's. To clarify this procedure, we give a few simple, yet non-trivial
examples. Subscripts stand for χE and superscripts denote blΛ. We also show, for
purposes of illustration, the diagram corresponding to each configuration.

Let our first example be:
JO

2 2

1 IK 1 2 0

O

•

71 oi Jίγ is quadratic in the (four) homogeneous coordinates of CP3 and linear in
those of CP 2 , having thus (tτy)(ί) = 30 coefficients. Since the definition of JίCΎ

requires 71 =0, one of them can be rescaled to 1. 72 has, analoguously, (|τf) (fff)
— 1 = 59 coefficients, after the rescaling. However, the three terms zv2Ί

ι

(zv2eCP2), that vanish whenever I1 does, can be added to I2 multiplied by
appropriate constants to "absorb" three of the 59 coefficients (we refer to this as
"embedding" of 71 into I2. Finally, the 23-dimensional group of coordinate
transformations, PGL(4; C) x PGL(3; C), is used to rescale 23 of the coefficient to
1, leaving altogether 62 "effective deformations" [9] of b(J?ui^). This agrees
with b2Λ = bUί-^χE = 62.

In the second example,

1 1 2 2 o

3 1 1 2/_128- \ j | /

o
both I1 and I2 have (f)(f) —1 = 15 coefficients, but this time they can be
"embedded" into each other, reducing the number of coefficients in each of them to
14. / 3 has (γf|) (f^f) — 1 = 99 coefficients, but this time one can "embed" I1 into 73 in
16 ways (since zμlzv2 71—>/3 and μ, v = 05..., 3) reducing the number to 83. One
can, further, "embed" 72 into 73 as well, but this time there are only 15 terms, since
one linear combination of zμίzμ2 I2 terms will precisely match the embedding of 71

and would therefore be double-counted. Recollecting, we have so far 14+14 + 68
= 96 coefficients. 30 of these can be rescaled to 1 by PGL(4; C) x PGL(4; C)
coordinate transformations. This yields 66 "effective deformations" of b(^#2> ^i)->
matching bU2 = b1Λ-\χE.

; We shall denote and isomorphism by " « " and use " = " for an equivalence
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Consider now the following example:

3 1 1 ^ *
, G II ,

There are ( f ^ f ) - 1 + 3 (f f - 1 ) = 106 coefficients, but actually the latter three
can be "embedded" one into another to rescale 6 of them. Using the coordinate
transformations of CP5 x CP2, one rescales 43 more, yielding dimb(^#3, #" 3) = 57,
while using straightforward methods [4,10] one obtains the values for χE and bul

as displayed above, and thus bίt2 = 56. As a consequence of this overcounting,
PDM would yield a fake element for H2' 1(~#3). Fortunately, it is possible to refine
PDM by noting3 that the condition for the last three constraint equations to have
a non-trivial solution in CP2 is that

det{dIa/dzμ}=0, α = 2,3,4; zμeCP2. (5)

This is, however, a cubic holomorphic and homogeneous equation in the variables
of CP5 and can therefore be embedded into I1, leading to dimb(Jt3,if3) = 56,
which is the correct number. It should nevertheless be clear at this point that a
more detailed analysis is of PDM is desirable.

Finally, in the fourth example,
O

4 1

0 2/ - 168

o-
we find (I'.tl'.l- l) + (j-τ^;-ί) = 83 coefficients, 27 of which can be rescaled by
the coordinate transformations of CP4 x CP1. This yields dimb(^#4, if^) = 56 and
so PDM fails to parametrize 30 of the elements of//2' 1(^#4), since blt2 = 86. One
may hope that at least the 56 forms are parametrized irredundantly, but at this
point therre is no obvious way of checking that. Actually our explicit analysis of
this example, presented in the Appendix B, reveals that even this is not true; not
only does PDM give an incomplete parametrization, but it also yields fake
elements for H2Λ{JίA).

We wish to emphasize that it is indeed possible that there may exist an
altogether different embedding of this JίCΎ (constructed here as ^#4), such that
PDM yields a correct parametrization of H2Λ(Jicγ) but that is not the issue.
Rather, we shall provide an analysis of PDM which will apply to all configu-
rations, and will provide a correct computation in many cases when PDM is
invalid.

In the literature [2, 8] this construction is completed for some simple
configurations, identifying the basis of the tangent space to b ( ^ c γ , if) represented
(typically) by monomials in coordinates of if, with a basis of H2Λ\jiCΎ). In
addition, using the explicit form of {Γ}, discrete symmetries of {Γ} = 0 and thereby
of JίCΎ were found together with their action on the coordinates of if. This, in
turn, specifies the symmetry property of each particular monomial in b(^# c γ, if)
and thereby - provided b(^# c γ, if) is complete and effective for the case considered
- the symmetry property of each corresponding (2, l)-form. Thereupon, the

3 We are indebted to M. Cvetic and V. Kaplunovski for pointing this out to us
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Wigner-Eckart theorem can be used to determine relative values of the Yukawa
couplings, and in particular, if they vanish.

In order to see both the obstructions to validity of the computation we have
just outlined [i.e. the possible incompleteness or ineffectiveness of b(Jί, Ψ~)~] and its
essential independence of deformation theory, let us reformulate it:

We recall that the derivative of the section v is well defined [10] at each point
p E Jί since v(p) — 0, and gives a linear map, Dpv from Tp(Ψ*) to gp, the fibre oϊS at p.
Since v^fΌ) is non-singular at p, then \mDpv = $ and Dpv=Tp(Ji). This is
summarized by the short exact sequence:

0-Ij^Γ^Λ^^O, (6)

where j corresponds to Dpv.
This gives rise to the following cohomology diagram:

i ί
H°(je9 TM)^ H°(Jί9 7V) h H\Jί, S)^Hι (J(, TJ±> H\Jf, Ύw)±

Ό)
where the bottom row is exact and ρ is the map restricting iV-^Jt.

Clearly, δ induces a 1-map:

δ,: H°{J(9 ^)/U^H0(Jί, TΨ))-+H1(Jί, TJ, (8)

which is an isomorphism provided j^:Hι(,Jί, Tir)-+H1(J(,$) is 1-1.
The diagram also induces a map:

δ2 :QάH°(ir, <?))/{;„ oρ^(H°(ir, T^))nρ^(/ί o (^, g))} -+H\Jf, TM); (9)

the coset on the left-hand side being what is computed in PDM. Now we see that
what is commonly assumed in the considerations that we sketched in the first part
of this section is that H1(Jί, TM) may be parametrized by the domain of <52,
calculated by PDM, i.e. that δ2 is an isomorphism. This can fail to be true in three
ways:

1. Qψ- is not onto<^>^2 ^s n ° t 1~1> b(=/#, W) is ineffective;
2. QS is not onto => δ2 is not onto, b(^#, W) is incomplete;
3 j*'.H1{Jί,Tw)-*Hι{Jί,£) is not 1-1=>(52 is not onto, tyJί^W) is

incomplete.
Therefore, even if άimb(Ji,Ψ") = dimHl{Ji,TM\ there could be both

overcounting and undercounting. We note that only the interpretation in the last
column, which is essentially irrelevant to the computation, depends in any way on
the Kodaira-Spencer deformation theory.

4. The Spectral Sequences

It is clear that in order to carry the analysis of PDM beyond the point we
reached in the previous section, it is necessary to study the vertical maps ρ* of
diagram (7).

We begin by pointing out that by cohomology groups with coefficients in a
holomorphic bundle over a complex manifold we mean the cohomology with
values in the sheaf of germs of holomorphic sections of the given bundle. By the
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Dolbeault theorem, this is equivalent to the ̂ -cohomology which physicists
generally have in mind. In particular, if no coefficient bundle is specified, Hq(Jί)
means the cohomology of Jί with coefficients in the sheaf of germs of holomorphic
functions on Jt which is equivalent, by the Dolbeault theorem, to H°'q(Jί).

We consider the restriction ρ* : H*{if)-^H*(Ji). Recalling that v is the section
of S which defines Jί as its O-set (as described in the beginning of Sect. 3), we write
the sequence of sheaves:

SAδ^-^K-^&M—>o. (10)

Here &̂ (<f *) denotes the sheaf of germs of holomorphic sections of <f* over if
and Sψ and 9M denote respectively the sheaves of germs of holomorphic
functions on if and Jί. 9M may be interpreted as a sheaf over if by assigning to
each open set [/C?F5 the holomorphic functions on UnJί. The cohomology of
if with coefficients in this sheaf is the same as the sheaf cohomology of Jί in the
usual sense.

With this interpretation, (10) becomes a sequence of sheaves over if which is
exact at 9M and at S^. We shall hereafter use the same symbol for a vector bundle
and the corresponding sheaf [e.g. $ will stand for θ ^ (^) as well].

In order to motivate what will follow, let us temporarily restrict ourselves to
the case in which $ is one dimensional (i.e. there is only one constraint). In this case,
(10) can be extended to the short exact sequence:

We may also tensor with $ and Tw to obtain the short exact sequences:

0—>3^-*-><?-^><fL,—+0 (12)

and

0 — > S " ® T i i ί - ^ T w - ^ T w \ M — > Q , (13)

each of which may also be interpreted as a sequence of sheaves over if in the
manner explained above.

Since we are interested in Calabi-Yau manifolds, let us restrict further to the
case when if is a product of projective spaces of total dimension 4, and $* is the
canonical bundle, i.e. the bundle of (4,0) forms.

Then the sequence (11) yields the isomorphism:

H3(Jί)« H\if, £ *)« tf4' \if)« C,

and Hq(Jί) vanishes otherwise. This is easily seen from the long exact sequence of
cohomology groups, where one knows that Hq(if, $*) vanishes except for q = 4,
and that R\if) vanishes except for q = 0.

By similar arguments, sequence (12) tells us that ρs\H0{if,S)-^H°(Jί,S) is
onto since Hί(if)^HOΛ(if) = 0. It also provides an isomorphism: ϊl\ifj)
πHq(Jί,£\ q>0.

The analysis of sequence (13) requires some information about the coho-
mology of projective spaces [11], which we list here as:
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Bott Vanishing Theorem 1 [BVT1]. Hq(CPn, λk) vanishes except for the following
cases:

1. q = 0 and fc^O,
2. q = n and k< —n.

Bott Vanishing Theorem 2 [BVT2]. Hq(CP\ ξ®λk\ with ^ - ( n fl), vanishes
except for the following cases:

1. q = 0andk^-l,
2. q = n-ί and k= -(n+1).

Here λ is the Hopf bundle over CPn (i.e. the bundle the sections of which
correspond to homogeneous linear polynomials), and we abbreviate T(CPn) to ξ.

Now by writing iV = Π CPn

s% N: = £ ns = 4, and observing that T^ = 0 £s, we
s s

see that the cohomology of the middle term of sequence (13) vanishes except for
H°(iT, 7V)= @H°(CPn

s% ξs). Since g is in this case ®?gs+l\ we have:

r—\ Σγt~j

Ί
® (x) Hyicpn

s*,(λsy
{n*+ί)) . (14)

s = 1 J

Noting that:

Ί-Jns(C* Ώns 1 ~(ns + 1)\ TJns, ns(/^ r>ns\ ̂ ^ f<

we see that H^{if, Tw®^) has rankm, and U\Ψ, Tw®g* vanishes otherwise.
In particular,// 1^, 7V®(ί*) = 0,so that ρ*r://°(iT, Tw)-±H\Ji, T^) is onto.

Moreover, i ί 1 ^ , T^ ) = 0 and //2(#^, T^) has rankm.
This is sufficient to establish the validity of PDM for the case of a single

constraint. We note also that H2{iT, Tw)ttH2*2(Jί), so we have established that
oxl{Ji) = b2{J()=zO12(J()=-wi, which could also have been derived from the
Lefschetz Hyperplane Theorem in this case [10].

Returning to the general case of an indecomposable configuration representing
a Calabi-Yau 3-fold4, we wish to extend the exact sequence (10) to the left so that it
remains exact. Such an extension is called a resolution of the restriction ρ: #^->#^ ;

and is accomplished by writing:

0—• Λ ^ * - ^ . . . ^ Λ

2 ( ί * - ^ < ί * - ^ , V - ^ - > ^ — > 0 , (15)

where each map but the last is induced by the section v of i acting on the last factor
of Λk$*, and h is dimdf, the number of constraints. The sequence is clearly exact as
a sequence of bundles except along Jt. It gives an exact sequence of sheaves over
if since no non-empty open subset of 1V is contained in Jί.

4 With minor modifications, our present analysis actually applies in a much wider context. For the
sake of simplicity, we confine ourselves to the case of most immediate physical interest
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We analyze this situation by extracting the short exact sequences:

These sequences induce boundary operators:

d0: Hq(Ji)->HqJr \v{£ *)) and dk: H
q( Λk£*)-+Hq + 1(v( Ak

Observing now that kerdo = Imρ*, we write:

Thus ^kH
q{Ji)C^k+lH

q{Ji\ ^0H
q{Jf) = Imρ* and ̂ hE\M) = Hq{Jί). This

establishes an increasing filtration:

ρ[Hq(ir)~\ =:^QHq(Jί) Q ^xH
q{Ji) g ... g &hH\Jl): - #%ΛSO. (16)

The foregoing analysis clearly applies equally well if we tensor the entire
resolution (15) with any fixed holomorphic vector bundle V over Ψ\

We now describe a computational tool which is available for this kind of
situation:

Definition [12]. A spectral sequence is a sequence [Eb d^\ (i > 0) of bi-graded groups

E~ @E{k together with differentials
jk

such that Ei + ι=H*(Ei,dι), i.e. E{k

γ consists of the elements of Ejik that are dr

closed, modulo those that are rf-exact.

While Ei+ x is determined by Et and db di+ ί is not. In practice, as we shall see in
the sequel, spectral sequences are most useful when most of the differentials have
null domain or range, and the remaining ones can be deduced indirectly.

A spectral sequence is said to converge if for each j , k there exists a ί(/, k) so that

Just as in the case of (11), the exactness of (15) is preserved under the tensor
product with any vector bundle V over Hi, and induces a spectral sequence

i)} with the following properties (see Godement in [12]):
l. E{\r)=H\ir,r® Akδ*\ dλ .=v^
2. di\E{\ir)-*E{-i + 1'k-i{'r)\ =>dt = 0 for i>h9 and so Eh+ι(r) = Eoc(i^);
3. Hj(Jί,Ϋ~) has an increasing filtration such that:

Representing a spectral sequence by a chart is often very useful and the specific
one that we consider here is given in Fig. 1. The action of the differentials dt is
indicated by the arrows. This action maps the groups E{k with j — k = q, to which
we refer as "on the ^-diagonal", into those on the (g-hl)-diagonal.
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k i

Fig. I. The chart representing the spectral sequence

It should be noted that the various groups EqJ'k'k(iΛ) determine only the
successive quotients ^Hj(J/, τΓ)/#;_1jfir

 / (^,τΓ) 5 not &iH
j(J(,'V) themselves.

This is enough, however, to obtain:

dimHq(^,ir)= Σ (17)

which, in a sense, corresponds to collecting all the groups Ej^k on the ^-diagonal,

even though there is no natural isomorphism of Hq(Jί, nΓ) with 0
k = 0

In the case when, for some q, Eq^k'\i^) vanishes for all k>0, we have E%°{i^)
π^0H%Jί, r)^Hq{Ji, iT\ and thus ρ*[if«(τT, TΓ)] ^H\M, Ψ"). Similarly when,
for some q, E<£k'k vanishes for all but a single k = κ, Hq(Jί,ir)wEq^κ(Y'\

Further, since cohomology groups of negative dimension vanish identically,
one knows that E^(i^) vanish for j<k. Since E{k(i^) with j<k may not vanish,
this observation may be used to deduce some information about the d s.

Finally, if E{ik{V) vanish on every other diagonal, E^E^.
Let us now start with the simplest spectral sequence [Eb df}, the one induced by

the exact sequence of sheaves (15). We assume that we are dealing with a
configuration so that:

ψ-= Π CPn

s

a and S= Σ ® λf
s = l a= 1 s= 1

m

To compute EJ{k, we write 5£a for (x) λf and note that Λfc<f* can be
s= 1

decomposed into 0 (x) if*, where \A\ denotes the cardinality of A, a subset of
\A\=k cceA

indices a = l,...,h, so that 0 corresponds to the direct sum over all possible
\A\=k

choices of k constraints from the set (2). Thus:

0
\A\=k

r,

Finally, using that ΊV is a product of CPn

r\ one has:

E{ k= Θ Θ (18)
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Since vanishing of a (tensor) product is implied by the vanishing of any of its
factors, we use BVT1 to establish that very few summands in Eq. (18) do not
vanish. In particular, we recover the well-known theorem:

Theorem 1. For a Calabi-Yau 3-fold represented by an indecomposable
configuration:

1. bPtq = ί if p and q = 0(mod3);
2. bpq = 0 if exactly one of p, q = 0 (mod 3).

Proof In order for any subset A to make a non-zero contribution to the summation
(18) we must have, for each s:

either £ ^ = 0 or £ qs

a = ns+ί.
aeA aeA

lϊA is other than empty or the full index set, this induces a block decomposition
of the matrix {qs

a}. When A is empty, we get a contribution of rank 1 to E®'°. When
A is the full index set, we get a contribution of rank 1 to E^ \ Since N:= Σns = h + 3
(we deal with Calabi-Yau manifolds of dimension 3), there are no non-trivial
differentials in the spectral sequence and E1=EOO. Since E\Λ converges to
W~\Jl, 9J = H0J~k{Jί) in this case, it follows that bOtO = bOt 3 = \,bOtl=bOt 2 = 0.

The full statements of Theorem 1 follow by complex conjugation or Serre
duality. •

In the next two sections we shall employ the fact that the exactness of the
sequence (15) and therefore the existence of a corresponding spectral sequence is
preserved under the tensor product with any vector bundle over Hf. In particular,
we multiply the sequence (15) by Tψ or $, and analyze the corresponding spectral
sequences, hoping to determine H2' X{J^CΎ) a n < ^ H2' 2{JίCΎ\ and thus all bpq. (Note
that when this program can be carried out, χE is determined independently of the
straightforward computation [4] and can thus be checked.)

5. The Tangent Bundle Spectral Sequence

We now consider the tensor product of the sequence (15) and Tw. The spectral
sequence {E^T^d^ now has typical elements:

which converge to Hj~k(^, Tw) appearing in the bottom line of the diagram (7).
We again decompose Tw with respect to the CP"s's into £s's and obtain an

expansion generalizing that in Eq. (14):

\A\=kr=l

(19)
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In order for a pair A, r to make non-zero contribution to the summation (19), we
must have:

θ, 1 or nr+ί for s = r,

θ or n s + l for sφr.

If we have £ qr

a φ 1 then A is either empty, or the entire index set, just as in the
aeA

proof of Theorem 1. m

When A is empty, we get a contribution of £ H°(CPn

s% ξs) to £?'°(7V) which
s = l

corresponds to the usual subtraction of global reparametrizations of iV in PDM.
When A is the entire index set, we get a contribution of rank k (one for each

CPn) to £ ? ~ H This term is on the 2-diagonal and if it survives to EJT^), it
contributes to H2{J(, ΎΨ\

The case £ qr

a=ί can occur only if the configuration is 1LD. Each
aeA

decomposing leg contributes to Eπ + kdΛd(Tw) with rank [13]:

rank {H°(CPΐ% ξr®λ~ ι)} = nr+t. (20)

Here π = ld — md — kdis the index of the decomposing leg, CPn

r

r corresponds to the
hollow circle touching the leg, kd = \A\, and A is the set of constraints correspond-
ing to the dot-complement of the leg.

If there is no decomposing 1-leg, the entire E^Tψ) term is concentrated on the
0- and 2-diagonal and thus E1(Tir) = E00(TiV ). In particular, if there exists a
decomposing 0-leg but no decomposing 1-leg, ρ*: H°(W, Tw)-+HQ(Ji, ΎΨ) is not
onto and b(Jί, Ψ") is ineffective.

To summarize, we have proved:

Theorem 2. I. If a configuration representing a Calabi-Yau 3-fold is not 1LD, the
only non-vanishing terms of the Tw-spectral sequence are E^°(TW) and E^~ ίfh(Tifr),
where N = dim W and h is the number of constraints.

2. Ei=EO0 if there is no decomposing 1-leg.
3. h(Jί, iΓ) is ineffective for a 1LD configuration with at least one decomposing

0-leg and no decomposing 1-leg.

Remark. Incompleteness can, in fact, "mask" ineffectiveness so as to yield
d i m b ( ^ c γ , W)^dimH2ί 1{Jίcγ). As a matter of fact, we have found no counter-
example5 to this relation. The failure of PDM to provide an irredundant basis of
H2' ι{JiCΎ) for configurations of Theorem 2 however remains; some of the exterior
forms constructed by PDM represent the 0-element of H1Λ{i^). Examples of
Statement 3 of Theorem 2 are given in the Appendix B.

Corollary 1. If a configuration representing a Calabi-Yau 3-fold is not 1LD and
PDM yields the correct value for bγ 2, then PDM yields a valid parametrization of
H2' HJt\.

5 We thank P. Candelas et al. for providing us with the almost 8000 configurations and
corresponding Euler characters generated by computer to exhaust the family of minimal
configurations
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Among the examples we found in the literature [2, 8] not one has a
decomposing 0-leg, and so the map ρir in (7) indeed is 1-1. Thus PDM yields no
fake elements for Hι(Jίcγ, Ύjj) and since dimb(ey#, iV) = bγ 2 (as computed by
other, straightforward methods), b(Jί, if) is both effective and complete in these
cases.

For the case of a minimal configuration we can carry the analysis further.

Theorem 3. For a minimal configuration, E1(Tiίr) = Eo0(TΨ).

Proof. By Proposition 4, the contribution of a decomposing 0-leg to the tangent
bundle spectral sequence for a minimal configuration is to E}' 1{Tifr). Then, by the
remarks preceding Theorem 2 and Propositions 2 and 3, the only possible non-
vanishing components of E^T^) are E?'°(7V), E\Λ{T^\ E\ + ht\T^) and
E\+k'k(Tifr), Q<k<h, where h is the number of constraints. There are no possible
differentials connecting any of these. •

6. The Normal Bundle Spectral Sequence

Now we analyze the [E^S), dt) spectral sequence that is induced by the tensor
product of the exact sequence (15) with $ and converges to H*(Jf, $). In particular,

h Γ m Ί

E\>\δ) = H\ϋr,δ) = 0 0 H\CPn

s%λf) , (21)
b=l [_s=l J

which corresponds to the polynomial deformations in PDM. Similarly:

h

Θ
b=l

[ j | ίf°(CPJ )]} ® Ift© β© [ s | ) #°(CPs"s,λ^-^)J|. (22)

The first term has rank/z and corresponds to overall rescaling subtractions of
PDM, while the second one is accounted for in PDM by "embedding" the
constraints into each other as described in Sect. 3.

Other terms in EX{S) may be determined by writing:

© ® ® (23)
b= 1 \A\ = k \aeA J

Note that iϊbeA, we get a summand of Λk~ ι$*, and it follows from BVT1 that
H*(if, /\k~λ$*) vanishes for 0<fc — 1 </ι. The case k—\=h does not arise, and
the case k — 1 = 0 contributes to E°{ ι(S) which we have already dealt with. The case
|y4|=0 contributes only to £?'0(<f) which we have also discussed.

Thus we may confine our attention to the case bφA, \A\^1, i.e. to the
corresponding contribution of:

b=l Σγt = j μ |=fcLs=1
ίF-(CP; , (λf" - 9&)1, 1 < k < h (24)

to E{1
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For a pair A, b to contribute to a non-vanishing term to Ex{8\ we must have, by
BVT1,

either qs

b- Σ qs

a^0 or qs

b- Σ <fa=-(ns+\)
aeA aeA

h

for each s. If qs

b + 0, only the 1s t option is possible since Σ 41= Σ qs

a = ns-\r\. On
aeA a—1

the other hand, if qs

b = 0 we clearly must have Σ qs

a = 0 oτ ns + ί.
aeA

It follows that the constraint matrix {qs

a} can then be re-written in the form:

0 0 P 0

0 0 0 Q

B X Y Z

where the column B corresponds to the bih constraint and P and X are matrices
with non 0-columns. The set of columns of P and X (either of which may be empty),
correspond to the constraints of A, so that, row-by-row, the entry in B is not
smaller than the sum of entries in X and Y.

Such an array contributes to £^ ( P ) ' | y 4 |(^), where JV(P) is the total dimension of
the CP"'s corresponding to the rows in the matrix P. Rewriting {q*} in all possible
ways in the above form completes the listing of non-vanishing contributions to
Eγ{£). Rather than attempting to formulate this algorithmically, we apply it to
several examples in the Appendices.

However, we can prove:

Theorem 4. For a minimal diagram representing an n-fold, E\+k'\S) vanishes for

Proof In the diagram corresponding to the above array, let us denote by F the part
containing the dots corresponding to the constraints in A and the circles and legs
corresponding to CPn's for which {qr

a} has non-zero entries only within P. F
denotes the rest of the diagram. For this array to yield a non-vanishing
contribution to E\+fc'\S) for q^n — 1, we need lF — mF — hF^n — l. But, since / — m
— h = n, lψ — mF~hψ^\. For the whole diagram to be connected, F must have at
least one leg with a free end (connecting into F) so lF — mF — hF must be at least 1.
But then F corresponds to a positive 1-fold which can only be a CP1 and thus can
be replaced by a single circle connected to F by a double leg; i.e. the original
configuration was not minimal (since F contained at least the constraint B). Q

Corollary 2. If a minimal diagram representing a Calabi-Yau 3-fold has no
decomposing 1-leg, Fίx{J(, Tψ) vanishes and the sequences:

are exact.

The first of these short exact sequences yields Hι(Ji, TM)
= {H°(Jί,£)/H0(J/,Tiir)} and allows to compute bίt2 = ra.nkH°(JΪ9£)
-mnkH°{Jί, 7>) while the second leads to bul=b2[2 = mnkH%Jί,S))

Jί, Tψ). For a minimal configuration this recovers the bound [10] bλ λ ^m.
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Corollary 3. // a diagram representing a Calabi-Yau 3-fold has no decomposing
ί-leg and if, in addition, E\^k'k{$) vanishes for all k, Hι{Jί,$) vanishes and
E\Jt,TJ^^U\Ji,Tiir), i.e. bίtί = b2,2 = r ank t t \J ( ,T w \

Corollary 4. The map d2 in Rel. (9) is onto if a diagram representing a Calabi- Yau
3-fold has no decomposing ί-leg and if in addition, Ek^i{S) vanishes for all k> 0. Then

Remark. If a configuration defining a 3-fold has a decomposing I-leg, our method
is, in general not guaranteed to compute b 1 2

 o r b x Λ. In such a case, however, note
that incident with the decomposing I-leg there is a decomposing 2-2-dot. It
follows that such a configuration can be studied as a hypersurface in the product of
two non-negative 2-folds; we hope to pursue such an analysis in a subsequent
paper [14].

7. Conclusion

To summarize, we have analyzed the method of polynomial deformations (PDM)
as a method of studying HU2(Jίcγ) of Calabi-Yau manifolds embedded as
algebraic varieties in products of complex projective spaces.

We find that PDM definitely provides a redundant parametrization for
Hι'2(JίCΎ) in the case of a 1LD configuration with at least one decomposing 0-leg
and no decomposing 1 -legs (see end of Sect. 4 for the description of the diagramatic
representation of configurations). We also note that the basis for H12(JίCγ), as
provided by PDM, is quite often incomplete, but we have not found a criterion
which is applicable by inspection.

As a generalization of PDM, we present a cohomology computation that relies
on three spectral sequences, and is applicable to all configurations. If the E^ terms
of the spectral sequences can be computed completely, they determine the ranks of
the cohomology groups Hq(JίCΎ, Tw) and Hq(JiCΎ, S) in the bottom row of the
diagram (7). Using now the exactness of this sequence and the results of Sect. 4, the
ranks of the groups Hq(JίCΎ, T^ c y ) are completely determined if, in addition, the
configuration has no decomposing ί-leg.

In the cases when the configuration does contain a decomposing 1-leg,
Uι[JίQΎ, Tψ) and Hι(JiCΎ, S) may not vanish and the bottom row of the diagram
(7) generally contains too many non-vanishing terms to yield a definite result. It
can however set bounds on bγΛ and bγ2 and combining these with an independent
computation of χE or b1Λ may give sufficient information to determine all the
relevant maps. Examples of this are given in Appendix C.

It is tempting to try to construct an explicit parametrization of HU2(Jί) and
HlΛ{Jί) using the information obtained by the spectral sequences. However, any
way of doing this will, in general, involve choices of isomorphisms realizing
Eq. (17) and it is not clear at this writing how such choices should be made.

Appendices

A. An Example in Full Detail

We present here several examples of the cohomology computation we discuss in
Sects. 4-6. Since the examples Jiγ and Jt2 do not carry any non-trivial
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information, let us start with Jt^:

0 1 1 V-ios" \ X

where the numbers beside the dots correspond to the indices of the corresponding
columns in the configuration matrix.

First of all, note that this configuration is not 1LD, and therefore, the
parametrization obtained by PDM is valid by Corollary 1, since it gives the correct
value of bί 2. We present here the spectral sequence computation to provide an
easy-to-follow example before we apply it to less trivial cases. The only non-
vanishing groups in {E^T^l dx) are EO^O(TW) and E\Λ{T^\ and thus E^T^)
= £ 0 0(Γ^ ). Following Eq. (19), they are:

E»ΛTW) = IH%CP5

U ξι)®H0(CPlft®lH0(CpS)®H°(CPl £2)] , (25)

which is just the set of holomorphic vector-fields on the CP"'s, i.e. the coordinate
transformations; the rank of this group is 43 and it provides the only contribution
t o H 0 ( ^ 3 , 7 V ) . Also:

^)-\, (26)

which is, by duality, equivalent to:

(27)

All of these cohomology groups are one-dimensional and so rank EfΛ(Tw) = 2.
This spectral sequence converges to H * ( ^ 3 , Tw) and guarantees that

H\Ji^ Tψ) vanishes for q = l,3 and is of dimension 43 and 2 for g = 0 a n d 2
respectively.

The group E°{°($) is easily seen from Eq. (21) to be:

© (28)
b=l

and counts the number of coefficients in the constraints. The rank of this group is
[(3)] + 3 [(1) (1)] = 110. Similarly, the only non-vanishing term in Eq. (22) is:

©
b- 1

θ θ φίH^CPlλl'^H^CPlλl-1)-], (29)
b = 2 α = 2

the rank of which is obviously 4 [1] + 3 2 [1] = 10.
There is one more non-vanishing group among E{\$\ found by Eq. (24):

El\S) = \_H\CPl λ\~3)®H2(VP\ λ~3)] . (30)

By duality, the second term is equivalent to H°(CP2, λ%\ which has rank 1, and so
the whole contribution is of rank 1.
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It is clear that £?• ι(S) maps into £?' °(S>) by the action of dl9 but note also that
d3 maps E\ 3(<ί) - E\ \S°) into E°3>V) = E? V)/£? ' V )• This latter map parallels
the "embedding of the determinant" Eq. (5). Thus the only non-vanishing group
Ej^{$) is the one with j = k = O, {\E\'°(β)IE°x

Λ(β)~\IE\'?>($)}, which is of rank
110-10-1. The normal bundle spectral sequence converges to Hq(JiCΎ,$) and
guarantees that it vanishes except for q = 0, when it is of dimension 99.

By Corollary 4, blt2

 = dimt)(J?3,if
r

3\ since E\Λ(TW) = Φ, and by Corollary 3,
bλl=2. This can also be seen from the exact sequence in the bottom row of the
diagram (7), which falls apart into:

d i m - 4 3 dim = 99 bU2

 ( 3 1 )

and an even simpler part:

0 -> H V 4 , TJ - H2{.Jί,, TΨ) -> 0.

b, , d.m = 2 ( 3 2 )

From the first sequence we conclude that H ^ J 3 , T J = H°( J 3 , ^)/H°( J 3 , T#)
and has dimension 56, while the second provides an isomorphism and therefore

B. Examples Where PDM is Invalid

Here we consider several examples for which PDM, as described in Sect. 3, would
fail to detect some of the harmonic (1,2)-forms, and also provide some fake ones.
Consider MΛ\

4 1

0 2/

O

where the number below the decomposing leg denotes its index.
The ranks of £?• \«\ E\ \S\ E\ °(TW) and E\- 2(TW) are easily computed much

the same as in Appendix A, and are 85, 2, 27 and 2 respectively. The first three of
these correspond to the number of coefficients in the constraints, the two obvious
rescalings of the two constraints and the coordinate transformations of C P 4 x CF 1

respectively. Corresponding to the decomposing 0-leg5 E\'l(Tw) and E\Λ($) are
also non-vanishing (since the dot-complement of the decomposing leg has ld — md

= 1). By Eq. (19), one obtains:

El 1(T^) = [H°(CPί ,ξ 1 ®λΓ 1 )®H 1 (CPiλ 2 - 2 ) ] , (33)

where the second factor is, by duality, equivalent to H°(CP\, λ°) and has rank 1. By
Eq. (20), E\Λ(TW) has rank 5, but for sake of completeness, we present a
computation of the rank of the first factor: consider the exact sequence:

where λ is the Hopf bundle of CPncCn + ι. The dual of this sequence is:
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since TCpn = λ®{Cn+ι/λ}* [13]. The last exact sequence induces the long exact
sequence of cohomologies:

where ~ 1 ) vanishes; hence:

Tcpn®λ~ί) = n + l. (34)

Using this result, we obtain rank Eι{ ι{TiV) = 5. This completes the computation of
E{ *(7V) for M± and by Theorem 2, Eλ{Tw) = Eao{Tw). By Eq. (17), dimtf oμf4, Tw)
= 27 + 5 = 32, and we see that b(^#4, W4) is ineffective as described in Sect. 5. One
also obtains that H\Jί4, Tw) and #%Jf4, TΨ) vanish, while U\Jί^ Tw) is two-
dimensional.

The non-vanishing element of E{k(S:) corresponding to the 0-leg is also the only
remaining one and by Eq. (24) it is :

E\Λ{£) = ίH°{CP\,λ\-ι)®H\CPlλϊ2)-\, (35)

the rank of which is [ Q (1)] = 35. (This corresponds to b = 1 and ,4 = {2}.) Since
there are no more non-vanishing groups in Eγ(S\ and in particular on the
1 -diagonal, by Corollary 3,b1Λ = 2. Using that χE = — 168, b ί Λ = 8 6. The same can
be derived just from the spectral sequences by observing that the only non-
vanishing differential is dί:E°>ί($)->E®'°($) and it must be effective, yielding
E%0(£>) = E0

1'
0(£>)/E0

1

Λ(&), E°2

Λ(S)) = (I) and EJi\S) = E{k{S) otherwise. Hence E2(S)

= EJ£) and by Eq. (17): dimif °(Λ?4 (?) - 83 + 35 = 118 and H\M^ i) vanish for
q > 0. This shows that b(,y#4, #4) is incomplete.

By Corollary 2:

0 -> if °(ur4, r^) -* i/°(.#4, ^) -> H j (^ 4, r^) -> 0,
dim = 118 b 1 2

0 0,

2ί2

dim = 2

yielding bί 2 = 86 and i>2 2 = 2 in accord with the straightforward computation
[4,10].

Next we consider:

since one can compute only χE = — 56 by straightforward methods and PDM leads
to b1 2 = 23, predicting thus bι Λ = — 5, and is thus manifestly incorrect, while on
the other side our Theorem also states that b(^#5, W5) is ineffective.

£?'°(T^), E\Λ(TΨ\ £?• V ) a n d £?' H^) are computed as before and yield their
ranks to be 27,4, 54 and 4 respectively. By the standard argument, E2'

 ι{$) vanishes
and E^ V ) = £? V ) / £ ? V ) and has rank 50.

Next we find the contributions corresponding to the 0-leg:

) = [H°(CP2

U ξx

ι)®H°(CPi
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which is of rank 4 and is not accounted for by PDM, and by Theorem 2, £L(7V)
= E^(TW). Collecting the groups on the diagonals (corresponding to the filtration
in Eq. (16)) we obtain that Hq(Jί5, Tψ) vanishes for q = 1,3 and is of rank 30 and 4
for q = 0 and 2 respectively.

Now we find the remaining non-vanishing groups E{k(δ). There are two non-
vanishing terms in Eq. (22) and we list then with the subscripts and superscripts on
the square brackets denoting the values of b and A in the direct sum:

£i. \δ) = IH°(CP2, λ°)®H°(CPi λ2)®H°(CPl λ^H'iCPl λl 2 ) ] ^ 1 }

φ tH°{CPl λ\)®H°{CP2

2, λ°2)®H°{CPl λ\)®H\CP\, λl 2 ) ] ^ 1 } (36)

with rank£}' x(δ) = [(2)] -I- [(?)] = 9. There is only one more non-vanishing group,
for |A| = 2;

\,λι

2)®H0(CPlλ0

3)

\ (37)

with rank 3. Therefore, b(^#5, iΓs) is incomplete and PDM fails to supply 9 + 3 = 12
harmonic (1,2)-forms. Since there are no more non-vanishing groups in the normal
bundle spectral sequence, all differentials must vanish. Thus, as before, E2(δ)
= E^) and we obtain that Hq(Jί5, S) vanishes for q > 0 and is of rank 62 for q = 0.

The long exact sequence in the bottom line of (7) now yields:

0

dim-30

0->H2L

• H°{Jί5, δ)

dim = 62

K2 dim = 4

Hence {Ji5) = H°{Ji5,S)IH0{Jί5Jiir) and ί>1>2 = 325 ί > l f l = 4 . (The latter two
results could again have been obtained by Corollary 3 and using that χE= —56.)

We give one more example where b(^#, W) is both ineffective and incomplete,
and straightforward methods only compute χE:

O

-O =

2

e 2

1

0

1

2

3\

2

°l

3

-144

O

*

The spectral sequences are computed just as above and we obtain the following
non-vanishing groups:

h1 yώ) hι \e>)

2 30
group

rank 19 69

One readily concludes that again Eί(Tiίr) = Eo0(Tiir), and that the only non-
vanishing differential in the normal bundle spectral sequence is the E°λ

A(S)
->£?• V ) one. The latter guarantees that £§• V ) = E? W ^ i f l ( A which is of
rank67, and that E°2

Λ{$) vanishes. Since E^k{δ) = E^{δ) for other (j,k), E2{£)
= EJδ).
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Thus Hq(Jf6, Tw) vanishes for ^ = 1,3 and is of rank 22 and 3 for q = 0 and 2
respectively, while H\Jίβ,$) vanishes for q>0 and is of rank97 for q^O.
b(~#6, #"6) is both ineffective and incomplete.

Again, the long exact sequence in (7) now splits into:

0 H°(Jl6, Ίw

dim = 22

0 -> H\

H°(Jί6, S) -> H\Jl6, TM)

dim = 97 bU2

0,

TM 0.

Hence ) = Ho(

b2

6,£)/Ho{

dim = 3

6,Tir) and & lp2 =
We now give an example where EJβ) cannot be computed straightforwardly,

yet bίt2(Jf) and b1Λ(Jί) can. We take:

/

\

3

1

1

1

2

1

1

0

1

1

0

0

1

0

1

2
- 8 0

Since there is no decomposing leg, Ex{Ύi¥) = E^T^), where we readily compute the
rank of £?'°(T^) to be 24 and rank£^'3(7V) = 4. This yields dirnH%Jί, T*) = 24,0,
4 and 0 for q = 0,1,2 and 3 respectively. Since Rγ{M, Tw) vanishes, Corollary 2
implies that H\Jί, TM) = H\Jί,S)IH\Jί, Tw\

£ | ' 0 ( ^ ) is readily computed to have rank 72, which corresponds to the usual
polynomial deformations of PDM. Further, Eq. (22) tells us that E°{1{£) has
rank 11 (corresponding to the overall rescalings and embedding the second
constraint into the first one). Equation (24) further yields a rank 8 contribution:

l λ\ ~ l λ\ -[H°(CPl λ\ )®H{CPl λ\ )®H(CPl λ\

to E\Λ{S\ and a rank 1 contribution to E\\S)\

[H°(CPl

These could not have been found by PDM as described in Sect. 3.
Now it is manifest that E° °{δ) = £?' V)/E?' \S) has rank 72 — 11 =61 because

of the action oidv However, it is not clear whether dx maps E\'2(S>) into E\Λ(S)
reducing its rank to 8 — 1 = 7, or Dλ vanishes here, E\- 2(β) = E[' 2(S>) and is mapped
by d2 into E2' °{β) reducing its rank to 61 - 1 = 60. Thus EJβ) cannot be computed
straightforwardly. However, by Corollary 3, b 1 } 1 = 4 and using χE= — 80 one has
t h a t b ι > 2 = 44.

The same could have been obtained from the spectral sequences alone, even
though E^S) is not computable, since whatever be the case E[' 2(S>) cannot survive
to £oo(<f) and therefore must contribute a subtraction of 1 to the sum of ranks in
Eq. (17). This assures the vanishing of Hq{Jί,δ) except for q = 0, when it has
rank 68.
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As noted already, the long exact sequences in (7) again fall apart:

0 -> R\JίΊ, TV) -» R\MΊ, g) -+ R\Jίη, Tjt) -» 0,

dim = 24 dim = 68 bU2

0 -* E\MΊ, TM) -> H 2 ( ^ / 7 , ΎiV) -> 0.

fo2 2 dim = 4

Hence bi2 = 44, b22 = blΛ = 4 .

C. Limitations on the Method

Our next example is a 1 L D configuration with a 1-leg, which illustrates the
limitation of our, method in as much it does not compute bl2 and bίΛ

independently of the straightforward methods [4, 10]:

o 3;_5 4-
o — • -

The computation described above yields this time:

group E^°{TΨ) E\Λ{Tir) E\\ΎiV) E\*\g) E\Λ{$) E\Λ{£)

rank 23 4 2 60 2 10

We again have E1(Tw) = EOD(Tir) and that the only non-trivial differential in the
normal bundle spectral sequence is the E\Λ(g)-*E\'°(g) one. Hence EJg)
= E2(g), which is the same as Eγ(g) except for E°2

1(£) = φ and E°2°{S)
= Eo

ί>
o{g)/E°ι>

1(g), which has rank58.
This ensures that dimHq(Jί8, T^) = 23, 4, 2 and 0 for q = 0,1,2 and 3

respectively, as well as that dimHq(Jί8,g) = 58, 10, 0 and 0 for q = 0,1,2 and 3
respectively. This time the long exact sequence in (7) does not split up but remains:

dim = 23 dim = 58 bU2 dim = 4

>/* v I J I / ^ / /0\ d . 11/2/ / / T \ ^ IJ'2/ /ί// πr \ C\

dim=10 bίΛ dim = 2

and all it provides is that 3 5 ^ 6 1 2 ^ 3 9 and &^bitl^i2. Computing the Euler
character fixes only their difference, thus one needs to obtain bγ Λ or b1 2 by an
independent method. Note that b(,#8, #"8) is not ineffective since the configuration
has no 0-leg, but we have no general enough criterion to detect incompleteness.
Fortunately, the Lefschetz Hyperplane Theorem applies [10] and yields bltl = S,
hence fc1>2 = 35. Since the lower bound of the spectral sequence computation of
bγ ? 2 is what PDM predicts (corresponding to i^ = 0 in dimension 1), PDM is valid
in this case.

There are, however, 1LD configurations with a decomposing 1-leg where one
can compute only the Euler character since the Lefschetz Hyperplane Theorem
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does not apply. A rather peculiar example of this kind is:

O O

The fact that χE = 0 might give rise to the suspicion that M9 is just an embedding of

T2 x K3 or T2 xT2 x T2. This however is not true, and can be straightforwardly

proven by the fact that the Hodge numbers of the latter manifolds do not agree

with those of Ji9 computed by Theorem 1.

Computing the groups in the other two spectral sequences we obtain:

group E? °(7V) E\\ΎΨ) E^2^) E\>°{δ) E\Λ{δ) E\>\δ)
rank 19 4 3 40 2 20

Much the same as before: E^T^) = EJTW); and b ( ^ 9 , 1T9) is effective. Also, E2(δ)

= EJδ) and E{k(S) = E{k{δ) except for (j,k) = (O,O) and (0,1) when Eji\S) is of

rank 38 and 0 respectively. The long exact sequence in the diagram (7) lets us now

to conclude that I 9 ^ f c 1 ? 2 ^ 2 3 and 3^έ>1? l ^23 . Even after using that χE = 2(b1Λ

— bi2) we have still only the bounds \9^biΛ~bx 2^23.
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