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Abstract We complete and correct some proofs of an earlier paper on
distributional Borel summability and we add an application which can be useful
in the discussion of semiclassical problems.

1. Introduction

In this paper we give some required remarks for a better understanding of
Theorem 1 and Proposition 2 of our previous paper [3]. Moreover we suggest an
application giving an insight on the discussion of general methods for constructing
semiclassical solutions. Since this note is a complement of [3], we use the same
notations without repeating definitions and statements.

2. Remarks on References [3]

1) The method of distributional Borel summability described in [3], p. 164,
makes use of a Borel transform which in general is not necessarily a distribution, but
more precisely belongs to the wider class of hyperfunctions (see [5]). However, in the
criterion given in Theorem 1 of [3] we actually restrict ourselves to a class of Borel
transforms which are distributions. This justifies the name given to this kind of sum
under our assumptions.

2) We can also consider sums of different types, that is of the form fμ(z) =•
μΦ{z) -f (1 — μ)Φ(z), 0 ;§ μ :g 1. In particular fμ(z) becomes the "upper sum" and
the "lower sum" of the given asymptotic expansion for μ = 1 and μ = 0, respectively.
If the criterion, given in [3] for the distributional Borel sum (which corresponds
to the case μ = χ)? applies to a certain series, then it guarantees the existence of all
these different types of sums. As a matter of fact the criterion more directly refers
to the "upper sum" Φ(z).

3) In order to justify the last statement at the bottom of p. 166 of [3], we want to
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show that we can change the path of the integral R{χ}(t + ίηt) in (2.6) from Γτ/N to
Γτ/NtE, when ε = arctan(^) as indicated in the line after (2.10). The point is to estimate
the integral on an arcyό = {z = δei0/θί ^ θ rg θ2}, where θί = &rccos(δN/τ) and
Θ2 = ε — arccos (δN cos (ε)/τ) are determined so that the endpoints of the arc belong
to Γτ!N and Γτ/NίE respectively. In particular we need to prove that

Iδ = (2π/)~1 j exp((ί + ίηt)/z)(Φ(z) — Φ(z))z~ι dz->0 as <5->0.

First of all note that Vzey^, the term exp((r + /'>?ί)/2) = exp(|f + ίηt\cos(ε — θ)/δ)
is bounded by the value taken on at θ = θ2, where it can be estimated by
exp(JVί(l_+ η2)ιl2/τ), as in (2.11)—(2.12) of [3]. On the other hand, from (2.2) we have
I Φ(z) - Φ(z)| ̂  2coδc(θ + π/2) and, with the choice c(θ + π/2) = (0 + π/2)~ι made
at the beginning of the proof of Theorem 1 of [3], this implies

\Ib\ ^ δn~ ιc0 exp(iVί(l -h η2)1/2/τ) J (π/2 + θ)~{dθ
01

- π~V0(3exp(M(l + ^2)1 / 2/τ)(ln(^2 + π/2)

- In (0X + π/2)) - O((5 In (δ)\ as δ -> 0.

4) The proof of Proposition 2 of [3] needs the following corrected version.
Without loss of generality we may assume α(π/2)=l. By hypothesis,

setting g{z)\— d(z)exp(l/σez), \g(z)\ ̂ Qxp(i/σer) if R e z " 1 = r ~1 and \g(z)\ = O(exp
(l/σβ|z|)) as |z|->0 uniformly for R e z ' ^ r " 1 . Now we claim that \g(z)\^e,
forO < z < r. Indeed, for n =1,2 , . . . we can consider the interval [\/σe(n + 1), l/σerϊ]
and there use the n-th estimate: \d(z)\ ̂  (σnz)n obtained from the hypothesis in the
case ε = π/2. In any such interval, i.e. for z=l/σe(n + δ\ 0 ^ <5 ^ 1, \g(z)\ ^
(n/(n + <5))wexp((5) g β. This bound extends to the interval (l/σe,r], if (σ^)"1 < r
by monotonicity of exp(l/σez) for z > 0, and this proves the above claim. By
symmetry we can restrict ourselves to the case I m z ^ O . Then the function
Ω(w):=g([(iw)1/2 + r ~ 1 ] " 1 ) is analytic for Rew>0, it is uniformly 0(exp(|vv|1/2)
as I w| -> oo and it is bounded for Re (w) = 0. Thus, by a Phragmen-Lindelof theorem
([2], Theorem 1.4.1, p. 3), Ω(w) is bounded uniformly for Re(w)^0. Hence for
Re(z~1) ^ r" 1 , Iarg(z)| = — ε + π/2, n _• 1,

\d(z)\ ^ L|exp(l/σez)| ^ L(σe\z\)nnl(sinεΓn ^ σn(Mε~ι)nn\\z\\

for some L, M > 0.

3, Application of the Method

As an application of the method, we mention that the distributional Borel
summability of order α = 1/6 applies also to the expansion, for large argument, of the
Airy function Bί(x). It follows that the expansion presented in the best-known
handbooks, such as Abramowitz-Stegun [1] (p. 449, formula 10.4.63),

+ Σ ckβ-k) asz->co,
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where β = 2z3/2/3, ck = Γ(3fe + l/2)/{54kk\Γ(k + 1/2)), can be regarded not only as a
weak connection by asymptotism, but also as a one-to-one relationship by
distributional Borel summability of power series. It can thus be used for the
justification of the traditional JWKB method ([6], p. 2524), in order to connect the
solutions obtained in regions which are separated by turning points of the classical
motion, in particular we can overcome the difficulty of Borel summability of
semiclassical expansions on the Stokes lines as we prove in the linear potential case
([7], p. 252-(6.35), [6]) where the solutions are just Airy functions. Indeed we
consider the function

f{υ) = {πll2zιl^e'βBi(z) - \)/υ = (Φ(v) + Φ(v))/29

where

Φ(v) = (2π 1 / 2 (ze 2 ί π / 3 ) 1 / 4 £- βAi(ze2iπl*) - l)/v

- Γ(5/6)~ ιbυ'ι J exp ( - {t/v)6)(t/υ)5Γ '{(I - iO - t6/!)'116 - ί)dt
o

with v'6 = β = (2/3)z?>12 (see [1] formulas 10.4.6, 10.4.26 and [4], p. 19, 7.3(17)).
Thus it turns out, by direct inspection, that f(v) is the distributional Borel sum of
order a = 1/6 (see [3], Theorem 4) of the series

X c fci;6*-1 for R e ( ι Γ 6 ) > / r 6

5 i.e.Re(jS) > R~\ VK>0.
k= 1

Remarks, i) It is important to notice that, strictly speaking, the Borel sum is
defined on the positive real axis and is extended by analyticity to the region
Re(ι;~1/α) > jR~1/α, where α is the order of the Borel sum. This possibility of extension
is typical of Laplace transforms in v~llof.

ii) In this example we see that Φ(v) (and Φ(v)) is the ordinary Borel sum of its
expansion in complex directions: for 0 < arg (v) < π/3. Thus, for v on the positive real
axis, Φ(v) is the limit as ε—»0+ of the Borel sum of the series

£ (eίε(6k"y)ck)v6k~1 (and similarly Φ(ϋ) as ε->0~).
fe=l

Of course it is not always true that on the real axis Φ(v) is such a limit of Borel sums as
well as it is not always true that such a limit of Borel sums, if it exists, defines a
function of the type "upper sum." Of course, if both the limit from above and the
"upper sum" exist, then they coincide.
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