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Abstract. In this paper the high-temperature phase of general mean-field spin
glass models, including the Sherrington-Kirkpatrick (SK) model, is analyzed.
The free energy in zero magnetic field is calculated explicitly for the SK model,
and uniform bounds on quenched susceptibilities are established. It is also
shown that, at high temperatures, mean-field spin glasses are limits of short-
range spin glasses, as the range of the interactions tends to infinity.

1. Introduction

In this note we comment on the high-temperature properties of a class of mean-
field spin glass models, including the Sherrington-Kirkpatrick (SK) model. Our
method of analysis is the one developed in [1]. In [2], Aizenman et al. present a
detailed analysis of the high-temperature behaviour of the SK model in zero
magnetic field *. They also prove some results on the behaviour of the free energy at
low temperatures and give bounds on the ground state energy density. While their
results prove that the SK model exhibits a phase transition in zero magnetic field,
as the temperature is lowered, a lot of work remains to be done to show that the
Parisi replica symmetry breaking solution [3] of the SK model is exact or, at least,
qualitatively correct. There is, however, a simpler mean-field type model, the Ising
spin glass on a Bethe tree [4] for which Chayes, Chayes, Sethna and Thouless have
been able to perform a rather complete analysis [5]. Their conclusions which are
mathematically rigorous are qualitatively similar to those obtained in the Parisi
solution. Heuristic analyses of the short-range Edwards-Anderson spin glass [6]
have been carried out in [7-9]. The picture that emerges is still somewhat
controversial, but some of the main features of the low-temperature phase of the
short-range Ising spin glass on a sufficiently high-dimensional lattice appear to be
reminiscent of the Parisi solution [7, 8]. (For example, the space of equilibrium
states, at small T and h = Q, appears to exhibit an ultrametric structure [8].)

* Permanent address: Theoretical Physics, ETH-Hόnggerberg, CH-8093 Zurich, Switzerland
1 We thank D. Ruelle for providing us with a copy of [2] prior to publication
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The point of our note is to show that the simple and rather generally applicable
methods developed in [1] suffice to understand the main properties of a class of
mean-field spin glass models of general n-vector spins (n = l52,3, ... n = l
corresponds to Ising spins) in an arbitrary magnetic field h, including the SK
model, provided the temperature is large enough. The analytic expression for the
free energy of the SK model at high temperature and in zero magnetic field,
obtained in [10] and rigorously established in [2] and in this paper, cannot be
correct at sufficiently low temperature, since it would violate the positivity of the
entropy. Therefore, in zero magnetic field, the SK model exhibits a phase
transition, as the temperature is lowered. This point is discussed in more detail in

[2].
For simplicity, we shall prove our results for Ising spins only, but the extension

to general n-vector spins is straightforward; see the second ref. quoted in [1].

2. Notations and Main Results

We consider an array of N points, j = 1, . . ., N, carrying a spin S7 , Sj = (Sj, . . ., S"\
with |S7 | = 1. The energy of a configuration {S7 } is given by a Hamilton function

HN=- Σ + gίs^-Λ Σ si, (2.1)
™

where g(Si9 Sj) is a bounded continuous function on the product space Sn-1xSn-1

of configurations of St and S7 . The precise choice of g is not important, but in our
proofs we shall, for simplicity, set

g(S,S') = S S'.

(Different choices of g are significant at low temperatures, but are quite immaterial
at high temperatures.) The exchange coupling J° is fixed, while the J^ 's are
independent, identically distributed random variables. Expectations in { J^ } are
denoted by E, and it is assumed that

£Jy = 0, EJfj = J2>09 EJ?f^(cJ)2*(2p)!, p > l , (2.2)

for some finite constant c. For simplicity, we also assume that E is even, but this is
unimportant. When E is the (5-distribution concentrated at Jί<7 = 0, for all (ij)
( = unordered pairs of sites, with i φ j) the Hamiltonian is denoted by H^. This is the
usual ferromagnetic (J°>0) or anti-ferromagnetic (J°<0) mean-field Hamil-
tonian. The standard spin glass Hamiltonian corresponds to the choice J° = 0, but
spin glass behaviour may be observed at low temperatures even when \J°\ >0 is
sufficiently small.

The free energy density, /, of the system is defined by

βf(βHN)=-~\ogμ°(e-^), (2.3)

where μ° is the product measure on (Sn _ i) x N coinciding with the uniform measure
on each factor. In particular, for Ising spins, μQ = 2~N x counting measure.
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Let μN be the equilibrium state given by

μN( ) = lμ°(e- ?"»)-] ~ 1 μQ(e'^ ) . (2.4)

We introduce the susceptibilities

χ$\β,h) = N-1 Σ \EμN(SrSjγ\, (2.5)
1 ̂  i < 7 ̂  N

S/)2, (2.6)

where

MS; S/ = MS; - Sj) - MS>) - MS;) . (2.7)

Let f(βHflf) be the usual mean-field free energy for the deterministic model,
^j.. = 0, for all (//)]. We are now prepared to state our main result.

Theorem A. (1) For all n= 1,2, 3, ... and arbitrary β and h,

(2) For all n = 1, 2, 3, . . ., arbitrary h and β small enough,

uniformly in N.
(3) For I sing spins (n = i\ with h = 0 and β small enough,

E(f(βHN) - Ef(βHN))2 = 0 . D

It is natural to ask whether the SK model may be obtained as the infinite range
limit of short range spin glasses on a finite-dimensional lattice. That such a result
ought to be true must have been part of the original motivation to introduce the
SK model. Thus we consider a spin glass on the d-dimensional hypercubic lattice
TLd with Hamilton function

Hi=- Σ JΐjSi Sj-hΣSt* (2-8)
(ij)CA ievl

where

Jϊj = (Λ //2 + J°yd) exp [ - γ \i -j\] , (2.9)

the /i/s are independent, identically distributed random variables with expec-
tation E satisfying (2.2), for some constants J and c. Let fΛ(β, h, y) be the free energy
and μγ

Λ the finite-volume equilibrium state of the model. In [1] we have shown that,
for β small enough, the thermodynamic limits of these quantities exist and are
unique, for all y>0; (for precise statements see [1]).

Our second main result is the following theorem.
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Theorem B. For I sing spins (n = 1), and for h = 0, β small enough, and for a suitable
choice of J° and E (given J° and E),

lim (lim fΛ(β,Q,y)\= lim f(βHN)= lim /(/?#£)-——.
Λ . \. A \ A y, TJd J yl ^' ' ' \ ΛT v _„ ^ x' JV 7 AT _^ _„ «/ v' J * 7 /I

N^C
/

f Tfte ίimiίs Λ/*Zd, N-+CO are understood in the sense of Lp, with respect to E, E,
respectively, 1 ̂ p< oo.J

Remark. This result is a special case of more general results relating thermody-
namic and correlation functions for the short-range models to the corresponding
quantities for the mean-field model, in the limit when y \ 0 ; see [11].

3. Proofs of Main Results

The proofs of Theorems A and B are straightforward adaptations of the arguments
in [1]. (While we feel the first paper quoted in [1] shows how simple and general
our techniques are, that simplicity was somewhat obscured in the second paper of
[1], because of a certain overemphasis of generality. In order not to fall into the
same trap, we here prove our main results in the simplest cases. The reader familiar
with [1] will easily understand how to recover the general case, but see also [11].)

Let

). (3.1)

By Jensen's inequality φ(βHN)^Q. Let μ% be the equilibrium state associated with
HH, and define δHN by

δHN=- Σ S i ' S j (3.2)
JV

By Jensen's inequality

φ(βHN) ^ φ(βH°N) --jϊjϊ Σ Jy/ί° (Sj Sj).
™ l ^ i < J ^ N

Hence, by (2.2)

Eφ(βHN)^φ(βH°N). (3.3)

Since

φ(βHN)=-βf(βHN), (3.4)

this proves the upper bound in Theorem A, (1). ΓWe shall see that, as JV-»oo, the

expectation E may be omitted, by the self-averaging property of lim f(βHN), for β

small enough.!

In order to prove the lower bound in Theorem A, (1) we apply a Taylor
expansion in δHN with second order remainder. We order the pairs (ij)
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lexicographically and first expand in —^= Si S2. This yields
VN

,2 , S2; St - S2)|Si2 , (3.5)
-/V o o

where

μN(A; B) = μN(A . B)-μN(A)μN(B), S^βs^^ S\ j = βs'^J ^ , . . . , (3.6)

and

indicates the pth power of the expectation of a function F of {SjfL t in the state μN

defined in (2.4), but with Jtj replaced by zero, for all i e A, j e £, and with β Jtj

replaced by Sίj9 for all i e C and all j e D. This notation is extended to arbitrary sums
and products of expectations in μN.

We now iterate (3.5) by expanding φ(βHN)\Jl2 = 0 in J13 to second order, etc.
This yields

+ ]y2" Σ ί dstj J ds'tjJfjμ^Si-SpSt Sj)\cί., (3.7)

where Ctj is the constraint JΓ/ = 0, for all (i'j')-<(ij), < indicates the lexicographic
order relation, and Cf

tj is the constraint JίΊ, = 0, for all (i'j')<(ij\ and Jtj is replaced
by s'ijJij.

Taking expectations in E on both sides of (3.7), we obtain by using (2.2)

Eφ(βHN) = φ(βH°N) + -̂  Σ ί dstj 'f d^EJfjμ^S, S,-; S, S^)!^. (3.8)
JM (ίj) o o

Since

we obtain from (3.8) by simple calculations

•2 τ-2 / \ \

(3.10)

which completes the proof of Theorem A, (1).
The methods in [1] can be used to derive more detailed information on the

right-hand side of (3.8). [For this purpose one continues the expansion of the
second term on the right-hand side of (3.8) in {J^}.] Here we just note that, for Ising
spins (n = \\

(SΓS/ = 1, (3.11)
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and we obtain from (3.8),

Eφ(βHN) = φ(βH°H) + ̂ f (ί - -Q - ̂  J J dstj J ds'^EJ^μ^ Sj)\c,)
2 .

(3.12)

In order to prove Theorem A, (3) and a part of Theorem A, (2) (h = 0 and i = 2), it is
enough to prove a uniform upper bound on

JV^ΣA/^WSrS^)2, (3.13)
(ij)

where, for all ((/), λtj{J) is an even, positive function of { Jkl} with the properties
£A0<J)^L, Eλi3{J)Jkl = Q and Eλtj{J)J^^(cfJ)2p(2p)\9 for all p^l, with L and c'
independent of (ί/) and (fc/). If the exchange couplings compatible with the
constraint Ctj are denoted by Jmn, then

Jmn = a(mn,ίj)Jmn,

with a(mn, i/)e [0, 1], for each (mn). We set

and

We propose to prove now that, for β small enough,

, (3.14)

uniformly in N. For simplicity, we present a proof for Ising spins (n = 1) and h = 0
only, but the general case is handled by combining the present arguments with the
techniques of Sect. 3 of the second paper quoted in [1].

jO j

Let Ktj= -- h — ̂ = be the total exchange coupling constant between spins Sf

and Sj, and let Sίj = βsίjKij, 8'^ = βs'^K^. Let us denote a derivative with respect to
S$ by dtj. By a Taylor expansion in Ktj with remainder we obtain

;)k-, (3.15)

where #fj denotes the constraint which replaces Ktj by s'^K^. Since EλJ{j = Q, we
conclude that

(βj)2

with |α1|^2£λl, |α2|^2J~2£AJ5. In passing from (3.15) to (3.16) one calculates
d<fjl(χ\ίj)\<gι, α = l,2, explicitly, using Sf = 1; (for Ising spins; in general ^-vector
models, one still gets a uniform upper bound on \at\, z = l,2).
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Next, we Taylor-expand the first term on the right-hand side of (3.16) in Kik to
second order, where k is the smallest site φ i, j, then we expand the constant term in
Kik,, with k'>k, fc'φij, etc. (This is the method of [1].) This yields

?U/)k, = o = 0 Σ Eλ

oΣ ώ t t d ^ A + δ^ίwOk^ (3.17)

where Cijk sets Ky = 0 and Kik, = 0, for all K ̂  fc, and <#ijk sets Ky - 0 and Kik, = 0,
for all k' < k, and replaces βKik by S'ί/c. The constant term, I(N\iJ)\Kik=o, V / C Φ P on the
right-hand side of (3.1 7) vanishes, since μ°(St ) = 0. We also use that Eλ Jik = 0. Hence
(3.17) yields the bound

fcφi.j

+2 Σ i
iV fcφi.j o

Carrying out differentiations in S'ίk explicitly and using such sophisticated
inequalities as \a b\^^(a2 + b2), one shows that

lc] , (3.19)

for α = 1, 2. The condition C is arbitrary and K^ 12. Inequalities (3.18) and (3.19)
give

+ Σ *^4V^(4 2

-/V j t φ i . j o o

(3.20)
The bound (3.20) can now be iterated by replacing the terms proportional to
I(N\iJ)\ctJk

 an<i to I(N\ί>J)\viJk

 on ^e right-hand side of (3.20) by upper bounds
similar to (3.20), and so on. In order to estimate the resulting expansion, we
combine property (2.2) of E with the trivial fact that

... f ds(n}a=
o o o

More specifically, we define

T£\kJ)=supϊ%\kJ;C,p), (3.21)
C,p

where

(m«)

Eλ ( Π (^mJ'̂ MS, S.TIc.st,^. (3.22)
\(mn)
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Here p(mn) = 0,2,4,..., for all (mn\ C is an arbitrary constraint replacing Kmn by
Kc

mn = α(mn, C)Kmn, with α(mn, C) e [0,1], for all (mn), and S[p] indicates that βKc

mn is
replaced by S£<mw)] = βs^n}}Kc

mn. The steps from (3.15) to (3.20) can be repeated for
every T£\k, /; C, p), and (3.20) can then be iterated, as announced above. This yields
the bound

tfr). (3-23)

for some constants Kiίλ9 i=l,2,3,4, which are finite, for β small enough. This
inequality may obviously be iterated indefinitely, and we get

(3.24)

for some constants Altλ and A2tλ which are finite, for β small enough. This clearly
provides the uniform upper bound claimed in (3.13) and proves that

(3.25)

This inequality proves half of Theorem A, (2) (set i = 2), for h = 0. To prove (3.25) for
h φ 0 one must derive uniform bounds on

N" * Σ JWS*)2 and on N'1 Σ ^GMS, S/)2.
ί=l ί^i<j^N

This involves a straightforward extension of the method discussed above which is
described in very much detail for related models in the second paper quoted in [1].
There is no point in repeating those arguments here.

From (3.24), (3.12), and (3.4) we derive that

Ef(βHN) = f(βH») - - + 0 - , (3.26)

in particular,
2

(3.27)

for the usual SK model, provided β ̂  0 is small enough. This is the first half of
Theorem A, (3). In order to complete the proof of Theorem A, (3) we return to
Eq. (3.7) for φ(βHN). That equation reads

N3/2 fac

J j } 2 J i j ~ ~ N 2 J j ) ί Sίj I SίjJίjμN^ r ^ 'Ci'J ^ ' ^
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for Ising spins. In analyzing Eφ(βHN)2, the only terms that cannot be calculated

explicitly or shown to be O \ —^) by using (3.24) are terms proportional to
^N J

rS/Hc^MSfc S^Uo, (3.29)

where C(ij) = Cij9 or = C^ , ap = 1 or 2, and δp = 1 or 2, for p = 1,2. Such terms arise in
squaring the second or the fourth term on the right-hand side of (3.28), or as cross
terms between the second and the fourth term and then taking the expectation.
These terms can be analyzed with the help of expansions similar to that in
(3.15)-(3.24). The most dangerous terms are

£"* ijJ kl^N^i ' kj/ICij MΛΓVpfc Sz)|ckl ? (3.30)

with (ij) φ (fc/). The terms with (ij) = (kl) can be estimated by using (3.24) and make
L / i \ Ί

a total contribution 0 ( —^ 1. We now expand μN(Si - S7 )|Cίj. to first order in Jkl and

μN(Sk - Sz)|CkI to first order in Jtj. We then observe by using the Schwarz inequality
that what remains to estimate is

N

for some constraint (€. The analysis in the second paper quoted in [1] applies to
(3.31) and yields the bound

^^ const
(3.31)5 -Γ73-, (3.32)

for β sufficiently small.

Remark. If Λ Φ O (3.31)rg 2 , and we shall only be able to prove that

E(φ(βHN) - Eφ(βHN))2 = θ(~\
v/V,

By (3.32) and (3.28), the terms in Eφ(βHN)2 proportional to (3.30) are bounded by

β2 const ^ β2 const t^^

for β small enough.
Other terms of the form (3.29) contributing to Eφ(βHN)2 - (Eφ(βHN))2 are dealt

with in a similar way. The method of analysis is the one in the second paper quoted
in [1] see also [1 1]. The proof of (3.32) and of other related estimates is not entirely
a trivial matter. However, it follows closely arguments in [1] which we need not
reproduce here.

Remark. By using the methods of [1] one can prove estimates

E(φ(βHN) - Eφ(βHN))2? = 0 (£) ,

p = 1,2, ... for general π-vector models with /ι^0, provided β is small enough.
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In order to complete the proof of Theorem A, we must finally prove an upper
bound on χ$\ for β small enough. We shall again only consider the simplest case,
Ising spins and h = 0, but the general case can be studied by applying the methods
developed in the second paper quoted in [1]; see also [11].

Let
) = μN(Si SJ^ (3.34)

J° J
The couplings compatible with # are denoted by Kmn, with Kmn= -̂  +

where JQ

mn = a0(mn^} J° and Jmn =
shall establish an upper bound on

Jmn, n,*), φw,<f)e[0, 1]. We

which is uniform in /, j, N and in the condition <% imposed on the exchange
couplings. To this end we apply a Taylor expansion with second order remainder
in K^ to 41}0j). This yields

/ω(U)|^|£7U)(u)K_o|+̂ !fl , W
N Kτj 0 ^ 1 N

Thus it is enough to show that, for β small enough,

. = 0|g; const —,3 N

7ΪΓ (3-35)

(3.36)

kΦίj N lfc N ' CίJ*

d4£ ΊΓΓ
1,70 ό V^V i/JV

for a constant independent off,;, N, and #. For symmetric distributions μ°(h =
and £, we have

(3.37)

with Cj7 ft, ̂ ^ defined as in (3.17). One verifies easily that, for Ising spins,

d /(1)(ί i) = I(l\k /) — /(1)(ί ;)/(1)(fc A (3.38)

and, by definition of I(^\

Hence

β Σ.Edikm,j)\Cτjl N fcφij

N /c Φ i, j
(3.40)

The second term on the right-hand side of (3.40) is bounded above by
(3.24).

β2 const

TV
see
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Next, we study the second term on the right-hand side of (3.37). For Ising spins,
we have

W(ί, /c))2 . (3.41)

The right-hand side of (3.41) is bounded from above in terms of J^} by using
inequalities like (3.39). The resulting upper bound is further estimated by using
(3.24). By (3.35) and (3.40), this yields the bound

, (3.42)

where the constants cx and c2 are finite and independent of zj, N, and <£, for β small
enough. Inequality (3.42) can be iterated, and we obtain

. (3.43,

where

and c'1? c'2 are finite constants independent of i,j, and JV, for β small enough.
Inequality (3.43) proves Theorem A, (2), for i = 1. This completes our proof of

Theorem A, for Ising spins and with h = 0. The extension of Theorem A, (1) and (2)
to general n- vector spins and h φ 0 is quite straightforward, given the techniques in
Sect. 3 of the second paper quoted in [1]; see also [11].

Next, we turn to a sketch of the proof of Theorem B. Our starting point is the
Taylor expansion of the free energy with second order remainder given in (3.7), but
for the models introduced in (2.8), (2.9).

Let WA be as in (2.8), (2.9), and define

Hγ

Λ=~ Σ 7?jSιSj-hΣSi9(ίβ C Λ ieΛ

where St = ± 1 are Ising spins, and

j£=

see (2.9). We define φ(βHA) by

Ml

As in (3.7), successive Taylor expansions in

see (2.9), with second order remainders yield the identity

1 SiJ i 2

(ij)CΛ 0 0 IJ

with Cy and Cy as in (3.7).
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Equation (3.44) and the result of [1] yield an analogue of the last part of
Theorem A, (3). More precisely, one can show that, for all γ > 0,

lim φ(βH%= lim Eφ(βH^A)9 (3.45)

in the sense that φ(βHΛ) — Eφ(βHΛ)-*Q, as Λ / TLά, in Lp with respect to E, for all p
with 1 ̂ p < oo. It is therefore enough to study the behaviour of lim Eφ(βHΛ), as

γ \ 0, in order to prove Theorem B. Λ*πd

In taking the expectation E of both sides of Eq. (3.44) we use the fact that

since EJ^ = 0 and μ^SiSj)^.. is independent of J}p by the definition of Ctj. We then
obtain

+2- Σ J ds^ ds^(jy2[l -μW/k] (3.46)
\Λ\ (ij)cΛ 0 0

We have used that (SiSJ)
2 = l, i.e.

but our analysis could be extended to general n- vector spins. Next, we note that

2y|i-;|]. (3.47)

Moreover, the results in [1] show that if — β0 < β < β0, for some β0 > 0 independent

of γ,

EWμΆ Sj)2\c^Kjydexp[_-4y\i-j\-] , (3.48)

for some finite constant K. The point is that β0 and K are independent of γ. This may
not be obvious to the reader, but follows readily from [1] and the bound

X ydexp[-2y[/|]^<a), (3.49)
j*o

uniformly in γ > 0. In fact, the bound (3.48) holds for general n- vector spins and an
arbitrary magnetic field ft. [Of course,

^ for Λ = 0.]

Hence

Σ /exp[-2y|ϊ-j|]
( ί j ) c A

4y|i-j|]. (3.50)

Clearly

11111 \ Λ\ L* v ^ΛFL ^/μ J\Δ-
ΛSTL* \Λ\ (ίj)cΛ

for all y>0. Moreover,

lim bv =



Sherrington-Kirkpatrick Model of Spin Glasses 565

and

\A\(ifcAf ^L " "J- OφteZ-

Hence

lim Eφ(βJK)==.lim 4 ~?

It is easy to show, using the techniques developed above (see also [1,11]), that

lim φ(βHy

Λ)= lim φ(βH%) + 0(yd),

for a suitable choice of J°. Hence

βJ2 βJ2

lim / lim 'fΛ(β,h = Q,y)\ = lim f(βH^) b0= lim f(βH^) ,
7^0 \Λs7Ld J N-+<x> 4 #-»αo 4

if J is chosen such that J2b0 = J2.
This completes our proof of Theorem B.

Remark. It should be emphasized that the techniques developed in this paper and
in [1] enable us to prove much more general results relating the short-range
models to the mean-field models, as γ \ 0. We can prove an analogue of Theorem B
for general n-vector models with h φ 0 and have results concerning the suscepti-
bilities χ(1), χ(2), etc.

4. Conclusions

In this paper we have given a fairly detailed analysis of the high-temperature
behaviour of general mean-field spin glass models, including the SK-model. The
spins can be n-vectors, n = 1,2,3,..., and the magnetic field h need not vanish for
our techniques to be applicable. Furthermore, we have related the mean-field
models to short-range spin glasses in the limit where the range of the exchange
couplings tends to oo, in a way specified in (2.9).

For the SK-model with h = Q, our results suffice to conclude the existence of a
phase transition as the temperature is lowered, as pointed out already in [10,2]. In
situations where the techniques of [2] apply they give more precise information
and better bounds on the transition temperature than ours, but their scope appears
to be considerably more limited.

Acknowledgements. We thank D. Ruelle for a copy of [2] and for describing their results to us. J.F.
thanks the I.H.E.S. for hospitality during the period when this paper was completed.
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