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Abstract. Quantization of solitons in terms of Euclidean region functional
integrals is developed, and Osterwalder-Schrader reconstruction is extended to
theories with topological solitons. The quantization method is applied to several
lattice field theories with solitons, and the particle structure in the soliton sectors
of such theories is analyzed. A construction of magnetic monopoles in the four-
dimensional, compact t/(l)-model, in the QED phase, is indicated as well.

1. Introduction

In this paper we present a Euclidean method for the quantization of solitons and
give an outline of the particle structure analysis on soliton sectors in massive lattice
field theories. A discussion of monopoles and charged states in massless, abelian
field theories has been presented in a separate paper [1], but the main findings
related to monopoles are reviewed in Sect. 6. While the main ideas also apply to
continuum theories, we restrict our attention, in the more technical sections, to the
lattice approximation, where our general approach can be implemented with
mathematical precision. Since we study low-energy behaviour of quantum field
theory, the presence of an ultraviolet cutoff, such as a lattice, can be expected to be
immaterial.

Our approach to soliton quantization is an elaboration of a proposal in [2] (see
also [3] for related ideas), combined with the particle structure analysis of [4]. The
basic idea is to construct Euclidean Green functions of soliton fields as expectations
of suitable disorder operators obtained by coupling the theory to a (generalized)
external gauge field whose curvature is concentrated in points. A similar approach
to soliton quantization in two-dimensional models has been discussed in [5].

The main purpose of our paper is to show that, in the Euclidean approach, a
unified analysis of quantum solitons, including their particle structure, can be
carried out for a large variety of models. Kinks, vortices and magnetic monopoles
are among the examples covered by our methods.
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LL General Characterization of Soliton Sectors. A classical soliton is a
topologically stable, finite-energy solution of the Hamiltonian equations of motion
of a classical field theory.

In quantum field theory, solitons appear as new superselection sectors, JFq, in
the Hubert space, ̂  of physical states, which are labelled by a topological charge
and are orthogonal to the vacuum sector, J^0. Thus

where q is the eigenvalue of the topological charge on tffq. All sectors, J^, are
invariant under an algebra of local observables which when applied to the vacuum
generates Jf0 . The quantized soliton field will turn out to be an operator which
maps the vacuum sector onto a soliton sector.

Soliton sectors carry a continuous unitary representation of space-time
translations, whose generators, P», satisfy the relativistic spectrum condition

specP°^0, specP^P^O, (1.1)

and, for q φ 0, 3?q does not contain any translation-invariant vectors, (i.e. there are
no vacua in ^). One cannot, in general, require a representation of the full
Poincare group on the soliton sectors, at least in massless theories. For example,
one may show that the Lorentz group cannot be unitarily implemented on the
monopole sectors of a four-dimensional gauge theory with an unbroken U(l) (even
if the continuum limit of its lattice approximation exists) [1]. This situation would
be met in the analysis of 't Hooft-Polyakov monopole sectors [5] in non-abelian
gauge theories.

The spectral condition (1.1) is, however, enough for a particle interpretation of
the states, as shown in [6].

If the theory is massive one expects that the state obtained by applying a soliton
operator of charge 1 to the vacuum is a stable one-particle state, and that soliton
sectors carry a unitary representation of the full Poincare group. We analyze the
particle structure of soliton sectors in the lattice approximation for several different
models in Sect. 4.

So far, the most detailed (heuristic) analysis of quantum solitons has been based
on semi-classical approximations, where the classical soliton appears as a local
minimum of the Hamiltonian, and one expands in quantum fluctuations around
the classical field configuration [7]. Our analysis does not involve any
approximations of this kind and is mathematically rigorous.

A different mathematically precise construction of soliton sectors has earlier
been proposed, for two-dimensional models, using the Hamiltonian approach to
quantum field theory and operator techniques in [8, 9]. In contrast, the methods
developed in this paper involve the study of Euclidean-region functional integrals.

7.2. Euclidean Construction of Solitons. Our approach to soliton quantization is
based on constructing Euclidean Green functions for soliton fields in terms of
functional expectations of order- and disorder-fields [10]. To fix ideas, we first
describe its main features for the simple example of the two-dimensional Ising
model. For this example, disorder fields have been introduced by Kadanoff and
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Ceva, [10]. In their paper the expectation value, <( )>, of a bi-local disorder field
D(x1,x2) is defined by

<!>(*„*,)> = *<|*>. (1.2)

Here Z is the partition function of the 2-D Ising model; CXιXz is a curve in the
dual lattice, joining the sites x1 and x2, and Z(CX^ is a modified partition function
given by

7(C \— Y Π ^~/?/2K-σ,)2

 v T~T ββ(aχ + σγ^\^xΛx2) — L 1 1 ^ Λ 11 ^

where σ is the spin field, and * denotes passage to the dual cells.
One can view Z(CXιXϊ) as the partition function of the Ising model coupled to

a 22-valued external gauge field, ω, with support on (C^)*, [5]. In the
representation of the Ising model in terms of Peierls contours, Z(CXιXz) is given by a
sum over configurations of contours which contain, besides the usual closed
contours, y f , an open contour, y X ι X 2 , joining xx to x2. Denoting the Boltzmann
weight of a configuration {7} of contours by Z({y}), we can write

(1.3)

This disorder correlation function turns out to be the Euclidean two-point function
of the soliton field operator in the 2-D Ising model. We now recall the different
possible behaviour of <D(x1,x2)>:

In the disordered phase, i.e. for small β, where Peierls contours condense,
<D(x1, x2)> is bounded away from zero, uniformly in x1 — x2 |, whereas in the
ordered phase, i.e. for large β, where the Peierls contours form a dilute gas,

</?(*!, *2)> „ _ , , _ ^ .0.

exponentially fast.
The spin σ is the usual "order parameter" for the Ising model, and the behaviour

of the two-spin correlation function, (σXι σX2>, is contrary to the one of^D(x1, x2)>
This motivates calling D(xl9x2) a disorder field.

Disorder fields can also be defined in the continuum limit and can be abstractly
characterized in terms of topological singularities in the joint expectation values of
order and disorder fields, as described in [2].

In this paper, we give an explicit construction of the disorder fields in a variety of
models, closely following the one sketched above for the 2-D Ising model. We then
show how expectation values of disorder fields are related to Green functions of
soliton fields.

Generally speaking, the expectation value of a disorder field, D(ω), is given by

(1.4)



346 J. Frδhlich and P. A. Marchetti

where ω is a singular generalized external gauge field with values in a discrete
abelian group, <2Γ; Z is the partition function of the theory, and Z(ω) denotes the
partition function of the model coupled to the external field ω.

If the support of the curvature, dω, of ω is a finite set of points, {xί , . . . , xn}, with
then

turns out to be the Euclidean Green function, Sn (x^ q1 , . . . , xn qn), of soliton fields of
charge {q{} located at {.xj, i — 1, 2, . . . , n.

In the Euclidean approach to the construction of vacuum sectors of a quantum
field theory (Q.F.T.), the Hubert space of states and the unitary representation of
the Poincare group are obtained by applying an Osterwalder-Schrader (O-S)
reconstruction theorem to the Euclidean Green (correlation) functions of the order
fields [11].

By applying an O-S reconstruction theorem to the entire set of Euclidean Green
functions of order and soliton fields (i.e. to all joint order-disorder correlation
functions) of a Q.F.T., all its soliton sectors can be recovered as well; (see Sect. 2.2).
In fact, from the sequence of order-disorder correlation functions, soliton field
operators, Sq(x), with charge q E^ can be reconstructed, and if cluster properties
hold and the correlation functions with non-zero total charge vanish, then the
resulting Hubert space splits into sectors, ^q, q e < ,̂ and the soliton field operators,
Sq(x), map the vacuum sector J"f0 onto the soliton sectors J^fq.

We now rephrase this construction of soliton sectors in the language of defects;
(for a definition of defects see e.g. [12]): Suppose that the partition function, Z, of
some Euclidean field theory can be expressed as a sum over configurations of closed
line defects, υ, (analogues of the Peierls contours in the 2-D Ising model) carrying a
charge q, with values in a discrete abelian group «2Γ, i.e.

Z=

where Z(v) is the Boltzmann weight of the configuration v. Then the correlation
functions of the disorder fields are given by

,q1,...,x,,q,y>= Σ Z(v). (1.5)

Let us assume that the correlation functions with non-zero total defect charge
vanish, and clustering holds, so that, for example,

<D(xl9ql9x29q2)y^09 (1.6)

as \x^ — x2 1 / oo.
Then the quantum field theory, reconstructed from the Euclidean field theory,

has soliton sectors labelled by the (total) defect charge q e ̂ , q φ 0, and these
sectors can be obtained from the joint correlation functions of order- and disorder
fields by analytic continuation in the time variables; (O-S reconstruction).

Let us denote by Ω, Sq, φ, Hthe vacuum, the soliton field operator, the ordinary
field operator and the Hamiltonian, respectively, obtained via O-S reconstruction,
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and by Φ the Euclidean field corresponding to φ, i.e. the order field. Then for

. e-(A-®H Sq7 (yι) . . . e-tf-rf-^sjyj Ω> . (1.7)

This equation corresponds to the usual Feynman-Kac formula. The three-point
function

φj(x) = <e-°»Sq(0) Ω, φ (x) ̂ -^Sβ(0) ί2> ,

with ε > 0 small, has a behaviour reminiscent of the soliton solution with charge q,
φq(x), of the corresponding classical field theory. (For more detailed comments
see e.g. [8,9].)

2. Basic Definitions, and Classification of Solitons

Since we shall show how our construction of quantum solitons works for lattice
theories, we start by recalling some basic definitions concerning such theories.
Formally, our methods extend to continuum theories, but then we loose rigorous
mathematical control.

2.1. Lattice Field Theories. The lattice on which we work is 7L\I2, d being the
dimension. A A:-dimensional cell in the lattice is denoted by ck; we also use the
notations c0 = x, c1 = (xy) or = b, c2 =p. The symbol *, applied to cells, denotes
passage to the dual cell; hence c* denotes a (d— ^-dimensional cell in the dual
lattice, Zd, dual to ck. If ^denotes a topological space, and k is a positive integer,
then a PF-valued lattice field of rank k is a map from the /^-dimensional cells of the
lattice to W.

The symbol * applied to a rank-/: field φ, is the operation of passing to the dual
field: φ* is a field of rank d— k on the dual lattice, defined by φ* (c£) = φ (ck). If Wis
an abelian additive group one can define the lattice exterior differential, d, as a map
from rank-/: to rank — (& +1) lattice fields by setting

dφ(ck + 1)= Σ Φ(cά, (2-1)
ckedck + l

where d denotes the boundary operation.
The lattice codifferential, δ, is defined as a map from rank-^c to rank-(/c — 1)

fields, defined by
δ = *d*. (2.2)

Notice that δ2 = d2 = 0. The lattice Laplacian is defined by

A=dδ + δd. (2.3)

If W is a Hubert space with scalar product ( , )^, then a scalar product on the
space of PF-valued fields of rank k is defined by
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If W — 1R, then δ is the adjoint of d with respect to the scalar product ( , •).
We now describe different lattice field theories in more detail.
A scalar field φ is a map from the sites, x, to some vector space VH, with norm

|| || . The vacuum functional of a scalar theory is given by

(φ). (2.5)

In (2.5), dφx is the Lebesgue measure on VH, Z is a partition function chosen such
that

and Gbc specifies some boundary conditions. Finally, S is the action:

(2.6)

where Fis a positive function, and βff, λ are positive constants. 50 is the kinetic
term, and Sί is the interaction term of the action. (To be rigorous, the measure
should be defined first for a finite lattice, A c TL\I2 , with Gb c depending on {φx}xedΛ
Afterwards one should take the limit A / Z d

ί / 2 . See e.g. [12]. We omit henceforth
any reference to the finite lattice A and assume to work always in the
thermodynamic limit, unless A is explicitly mentioned.)

A Fermίon field is an anticommuting map from the sites of the lattice to the
orthonormal frames of a vector space Vsx VF, the Fermion space, where Vs, the
spin space, carries a representation of the Dirac-Clifford algebra.

The vacuum functional of a Fermion theory interacting with an external scalar
field, φ, is given by

)= \\dψxdψ e-s® v>», (2.7)
^ \ x /

where dψxdψx is the Berezin integration, and S is the action, e.g.

S(ψ, ψ, φ) = S0 (ψ9 ψ) + S1 (ψ, ψ, φ) ,

) = ϊ Σψ*Γ<xyyΨy, (2.8)

In (2.8), P(φ) denotes a polynomial in φ with coefficients in the space of matrices
acting on the Fermion space, and

Γ<xy> = r + yμ, if (xyy is in the positive (2.9)
( ~ } (negative) //-direction,

where r = 0 for "naive" Fermions, and r = 1 for Wilson Fermions.
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A gauge field, g, is a map from the links of the lattice to a group G, the gauge
group. Let C be an oriented curve. We define

<χy> e c
— >

where Q is the path ordered product. Moreover, let φ (ψ) be a scalar (Fermion)
field, with VH(VF) carrying a unitary representation UH(UF) of G.

The vacuum functional of a gauge theory with matter fields φ, ψ is given by

, φ, ?7, ψ) = π *«» Π dφx dψx dψx e-s<*>**'*\ (2.10)
\<χjί> * /

where dg<xy> is the Haar measure on G, and S is the total action, given by

(2.H)

to =

S1 (g, ψ , ψ ) = Σ ψ x ' Γ<xy) ® UF(g<Xy>) Ψy ,

where χ denotes a character of G.
If the gauge group is R, then the gauge field is usually denoted by A and the

kinetic action S0 is quadratic, i.e.

- (dA, dA) , (2.12)
L p L

with a local gauge fixing such as

, δA) .

A gauge theory with scalar matter fields is called a Higgs model.
If G is abelian, one can define higher-rank gauge theories with matter fields,

where the role of the gauge field is played by a field of rank k > 1 , and the role of the
matter field is played by a field of rank k — 1 .

In gauge theories, natural observables are given by gauge-invariant functions of
the basic fields, such as the Wilson loop, O(C) = χ(gc), or the string variables

, Π UH(gb)φy,
be CΛV

0F(Cxy) = ψx f] UF(gb)Ψy,
b e Cx>.

where C is a loop, and C a path from x to jμ.
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2.2. Reconstruction Theorem and Solίton Sectors. In this section we briefly review
the basic reconstruction theorem, applied to joint order-disorder correlation
functions of a lattice field theory and define precisely what we mean by a soliton
sector of a lattice theory.

As shown in the next section, we are interested in correlation functions given by
the v.e.v. of a disorder field D(x1,q1,... ,xn,qn} and a monomial of gauge invariant
functions of the basic fields, O (C), with support on a compact connected set of cells,
C, such as a loop or a string.

More precisely, we will consider correlation functions of the form

(2.13)

with £ qi = 0. Correlation functions with non-vanishing total charge are defined by
ί

a limiting procedure, removing a charge to infinity; i.e., for ^^ — ̂  Φ 0,

..9xqz9 —q; Cl, Cm), (2.14)

where Cq is a normalization constant needed if lim S2 0 (0, q, x, — q) φ 0, and then
given by

X - l / 2

/

The precise definition of Sn m for variety of lattice field theories will be given in
Sect. 3.3.

We now turn to the reconstruction theorem. We define the ^-operation as an
antilinear map which acts on the basic fields of the theory as follows.

Let r denote the reflection in the time-zero plane,/a complex function, and/its
complex conjugate. Then,

(θf) (Φx) =f(ΦrX) , (θf) (g<xy>) = f(g<rx,ry>) ,

Consider expectations of the form (FΘFy, where Fbelongs to a linear space, .^+ , of
functions of the basic fields over the positive-time lattice. These expectations can be
expressed in terms of a sum over correlation functions Sn m .

If for every Fin 3?+ , (FΘFy > 0, then the correlation functions {Sn^m} are said
to be Osterwalder-Schrader (reflection) positive. The reconstruction theorem is the
following result.

Theorem 2.1. If the set of correlation functions {Sn^m} is
i) lattice-translation-invariant, and

ii) O-S positive,
then one can reconstruct from {Sntm}

a) a separable Hίlbert space, 3f, of physical states,
b) a vector Ω e 3tf of unit norm, the vacuum,
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c) a self adjoint transfer matrix T with norm ||Γ||^1, and unitary spatial
translation operators Uμ,μ = l,...,d— 1 , acting on Jf, such that TΩ = Uμ Ω = Ω. If,
moreover, the correlation functions {Sntm} satisfy

iii) cluster properties then
d) Ω is the unique vector in 3? invariant under T and Uμ . Π

Let us briefly sketch how this theorem is proven; (for more details see [11]).
First we construct the Hubert space 3^. We equip the space J% with a positive

semi-definite inner product, <•,•>> by setting

<F,(7> = <(0F)<7X (2.15)

for F and G in J%. . Let yKbe the Kernel of < , >, i.e. the subspace of J%. of
functions F, with </% Fy = 0.

We set 3tf= J%/yK, where the closure is taken in the norm \\F\\ = ]/(F,Fy.
Given FG ^+ we denote by ^the equivalence class of ^mod yK, which is a vector in
^ The vacuum Ω is defined by Ω = ϊ. We define T(t) = T by

<F,T(t)Gy = <(ΘF)Gty, (2.16)

where ΐεZ + , and Gt denotes the translate of G in the positive time direction by t
lattice units. By translation invariance

i.e., T leaves yK invariant and is symmetric. By the Schwarz inequality and the
symmetry of T,

T(t) Gy I ^ <£ Fyί/2 <

Since <ΘG(G)2^) is bounded in ί,

lim <G
7V-» oo

Hence

i.e. ||Γ|| ̂  1, and hence Γis selfadjoint. We define t/(a)= f] t/2μ by
Aί = l

<F,C/(a)G> = <(ΘF)Ga>. (2.17)

Now
<(0JF)Ga> = <(0F)aG> = <(0F_ a)G>=<C/(-a)F,G>,

i.e. ί/(a) is unitary. Clearly T7 and t/(a) commute. D

We remark that, since || Γ|| ̂  1 and the operators Uμ are unitary, we may apply
the spectral theorem to obtain

C/(a) /> = f rfρF(λ, k) ̂  ̂ k a ,

for some positive measure dρF with support in [— 1, l]x[ — π, π]d-1.
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From the explicit proof of the theorem it follows that there is a set of vectors
{\x1 , q1 , . . . , xn, qn; C1 , . . . , Cw>} in 34f9 with {xj in the positive-time dual lattice,
and {Cj} in the positive-time lattice, such that the set of their linear combinations,
^+ , is dense in Jtf*. On these vectors the scalar product is defined by

(xί,qί,...9xn9qn\Cί9...9Cm\x(9q(9...9x'r9q
f

r 9 C ' l L 9 . . . 9 C ! s y

= (D(rxί7 -qί9...9rxn9 -qn,x'ί,q'1...x'rq'r)

Ό(C'1)...0(CΪ)θ[0(Cl)...0(Cm)]y. (2.18)

"Field operators", A(xl9qί9...9xn9qn'9Cί9...9 Cm), with xt and Cj contained in the
strip {x:x° e[0, t]9teZ + }9 naturally act on T(t) &+ by setting

'l,q^,...,x'r,q'/,c(,...,c^ (2.19)
= \x1,q1,...,xn,qn, (xΊ)t, q'ι,..., «X, q'r'9 Cl9...,Cm, (C(\9 . . . , (Q'X) ,

where ( \ denotes translation by t in the time direction. The operator A (C) is called
on order field operator and

A(x,q) = Sq(x) (2.20)

is called a solίton field operator of charge q.
We now define the superselection sectors. Let stf denote the set of linear

combinations of the field operators A (x1 , ql , . . . , Cm), defined above, and J2/0 the
subset of linear combinations of the field operators A (Q , . . . , Cm). We call j</the
field algebra and j/0 the observable algebra.

Definition 2.2. Suppose that the Hubert space ffl, obtained via reconstruction,
decomposes into orthogonal sectors, ,̂ invariant under Γ, Uμ and -j/0, i.e.
^= 0 j^q , Define ̂  to be the subspace given by

^o is called vacuum sector.
A sector J^q 1 Jf0' is called a charged sector if there are no lattice-translation-

invariant vectors in 3#*q.
Charged sectors, J^q9 q φ 0, are called soliton sectors if the charge, q, is a defect

charge (as defined in Sect. 1.2). D

If we denote by -X^utrai tne set °f linear combinations of operators

{^4 (xί, ql,..., Cm): £ #f = 0}, then by construction

JT Q — --Wneutral ί2 Ξ^ ^ΓQ .

In all models discussed in subsequent sections one may show that, actually,

We therefore shall not distinguish between ̂  and ̂ ^, anymore.

Theorem 2.3. If the correlation functions {Sn^m} defined in (2.13) and (2.14) satisfy
hypotheses i), ii) and iii) of Theorem 2.1, and, furthermore, the limits (2.14) vanish,
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then, the Hilbert space Jtf obtained via reconstruction decomposes into orthogonal
sectors, ,̂ ge^, i.e., for Fe^, Ge J^, with qφq',

<F, <?> = 0.

Moreover, the sectors J^q, q Φ 0, are soliton sectors. D

Remark 2.4. If the limits (2.14) do not vanish, then tfq £ jf0? for all 0.

Proof of Theorem 2.3. We first notice that if the limits (2.14) vanish, then, by
definition (2.18) of the scalar product, this implies that tf decomposes into
orthogonal sectors ,̂ labelled by the total defect charge, q.

Moreover, from (2.16), (2.17), (2.19) it follows that such sectors are invariant
under Γ, ί/(a) and j/0. By clustering, the unique translation invariant vector in 3tf is
Ω which belongs to J^, i.e. for q φ 0, J^ does not contain any vacuum state. D

Remark2.5. If soliton sectors, J^, exist, then the soliton field operator, Sq(x),
defined in 3F= @ ̂ , maps from the vacuum sector J 0̂ to the soliton sector ̂
[see (2.19)]. «

Theorem 2.3 suggests that there is a general procedure to construct soliton
sectors in the Euclidean approach. In fact, such a procedure will be described for
kinks, vortices and monopoles in subsequent sections of this paper.

2.3. Classification ofSolitons. In this subsection, we define the disorder fields for
some lattice field theories and, accordingly, propose a classification of the
corresponding solitons. Let us start with the example of the two-dimensional Ising
model. We consider joint correlation functions of disorder fields and gauge-
invariant spin fields, such as

^D(ώ)σyl Π "JO, (1.4')
\beγyιy2 J I

where ω = {ωb} is a 2£2-valued gauge field, and yy^2 is a path from y1 to y2. Using
gauge invariance, one easily shows that (1.4') depends on ω only through its
curvature dω. This property of joint order-disorder correlation functions is not true
in general, and the different possible dependences on ω permit us to classify
quantum solitons as follows.

A) Local Solitons. They appear in models in which the expectation value of the
disorder field depends on ω only through dω.

This property is shared by lattice field theories whose action satisfies the
following condition.

Condition A:
1) S l5 as defined in Sect. 2.1, is invariant under a group of generalized gauge

transformations with values in the discrete, abelian, additive group 2f, acting on the
highest-rank field, φk. We suppose that the highest rank is k, and by generalized (or
hyper-) gauge transformation we mean a gauge transformation whose parameter,
ξk, has rank k. I.e., we assume that S1 is invariant under

Φk (O -> C (ξk (<*)) φk fe), with ξk (ck) 6 X, (2.22)

where ζ denotes the representation of & in the space of values of φk.
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2) SQ is not invariant under the hyper-gauge transformation (2.22). D

We make S0 invariant under generalized gauge transformations by a standard
procedure: We minimally couple the highest-rank field to an external (hyper-)
gauge field ω of rank k + 1 with values in 2£ and of compact support. We denote by
SQ (ω) the action obtained in this way. Hence, by construction, S0 (ω) is invariant
under c ^

(2.23)

Let us consider a theory with action S = S0 + S1. Then the disorder field for such a
theory is defined by

Z>(ω) = e-Po(ω)-s0]? (2.24)

(but see also Remark 3.1).
From the invariance of S0 (ω) -f S1 under generalized gauge transformations,

(2.23), it follows that <D(ω + <β;)> = CD(ω)>. Since the lattice is convex, this
implies that the expectation value of/) (ω) depends on ω only through its curvature
dω. Since dω is a field of rank k + 2 which is closed (i.e. d(dώ) = 0), it has support in
the dual of a set of closed (d — k — 2)-dimensional surfaces.

From our explicit construction it will be seen that the dimension in which soliton
sectors exist is d= k + 2.

In this particular dimension, the curvature dω can be completely characterized
by a set of points in the dual lattice, {xj?= t = supp (dω)*, and by the values of (dω)*
at these points, i.e. a set of charges {^e^\{0}}"=1. Hence we write

D(ώ) = D(xl9qi9...9xn9qn).

Let O (ω. C) denote a hyper-gauge invariant, ω-dependent, observable with
support in a connected, compact set of cells, C. (Some specific choices for concrete
models are mentioned in Sect. 3.1.)

Then the correlation functions to which the O-S reconstruction theorem is
applied are defined by

Sn,m(xι,?!,..., xπ, ?„; C Ί , . . . , CJ = <Z)(ω) 0(ω, Q)... <9(ω, CJ>, (2.25)

wiihD(ω) = D(xl9ql9...9xn9qn)9ti £ 9ί = 0 and by (2.14) if £ q. Φ 0.

The soliton field operator of charge q, Sq(x)9 obtained via reconstruction (see
(2.20)) from {Sn>m}, is local. In particular, for * = (0,x), Sg(x) is defined on the
entire Hubert space and is unitary. Hence, if soliton sectors exist, it is an intertwiner
between J^qf and 3tfq>+q.

In typical examples, a particle structure analysis shows that the soliton field
operator Sί (x) couples the vacuum to a stable, massive one-particle state, in the
phase of the theory, where M^L^.

In fact, the two-point function of Sί(x)9 S2(x, 1,7, -1), has the long distance
behaviour of a two-point function of a massive particle, i.e. an Ornsteίn-Zernίke
decay e-**-x

S2(x,ί,y,-ί)~^_^a_1/2,

as I*0-/*! -» oo, with m>0.
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Examples of local soliton sectors are the kink sectors in 2-Dφ4, in the broken
symmetry phase, and the vortex sectors in 3-D Higgs models, in the superconduct-
ing phase.

These examples will be discussed in Sects. 3, 4.

B) Strίnglίke Solitons. String-like solitons are encountered in models where
expectation values involving a disorder field, D(ω), depend on the gauge field ω,
rather than merely on dω. This happens when the part Sl of the total action is not
invariant under hypergauge transformations, defined in (2.22), i.e.

Sl(φk,...)*S1(ζ(ξk)φk,...)9 ξk(ck)e&. (2.26)

The disorder field D (ω) is defined as in models of class A, but, in order to obtain
expectation values satisfying reflection positivity (from which a relativistic
quantum theory can be reconstructed), the support of ω must be chosen
appropriately, in particular supp ω will not be compact, anymore.

Let supp (dω)* = {xι,...,xr,yι ____ ys}, with xf ^ y® . Then one may take as the
support of co* a set of strings, y ~ , starting at xt and directed in the negative time
direction, ί = 1 , . . . , r, and a set of strings, γ* , starting at y^ and directed in the
positive time direction, j = 1, . . . ,£. Let us denote the corresponding disorder field
by D(γ~ , 0! , . . . , γ~ , qn, y+ , qr + 1 , . . . , y + , qr+s). With this choice, the support of ω
is infinitely extended in the thermodynamic limit, and, as a consequence,
correlation functions involving disorder fields would, in general, vanish, unless they
are correctly renormalized. Correlation functions involving disorder fields must
therefore be defined as thermodynamic limits of renormalized, finite-volume
expectations with appropriate boundary conditions; see Sect. 5. They are given by

= lim NA(y-9ql9...9yf qr+s)

yA9 (2.27)

r+s

if £ qi — 0. Here NΛ is a suitable normalization factor which ensures that the limit
ί = l

exists and is non-zero and xi} yiy ω are defined as above. Correlation functions of
non-zero total charge are defined by removing a charge to infinity, as in (2.14). The
soliton field operator Sq(yx) reconstructed from such correlation functions is a
lattice version of a field localized in a cone, as studied by Buchholz and
Fredenhagen in [6].

For a variety of lattice theories, one can show that, in the phase where stringlike
soliton sectors exist, the two-point function of S1 (γx) decays like

x-y

as \XQ — yQ -> oo, with m > 0. Hence, the soliton field operator Sί (γx\ couples the
vacuum to a stable massive one-particle state.

Examples of string-like soliton sectors are found in 3-D Z^Higgs models, where
they are dual to the charged sectors constructed in [13]. They thus correspond to the
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TLN vortices. Another interesting example is a Higgs model in three dimensions, in
the superconducting phase, weakly coupled to fractionally charged fermions. Such
three space-time dimensional theories may exhibit particles with intermediate spin
and statistics, called "anyons" [14]. They might be relevant in a theory of the
fractional quantum Hall effect [15]. For a rigorous analysis of such theories, see
also [16]. The two examples mentioned above and a 2-D example will be discussed
in Sect. 5.

C) Monopoles. Consider a theory (such as the compact £/(l)4-gauge model) which
can be expressed as a gas of current loops, with the property that every current loop
carries a magnetic flux indexed by the elements of a discrete, abelian group 2E . In
such a theory, a disorder field is constructed by opening up a current loop, i.e.
introducing an open-ended current line, ω. Since magnetic flux is conserved, a
disorder field must always be accompanied by a magnetic field, B, with sources at
the endpoints of the open current line ω. The classical field B can be chosen in many
different ways, subject to the constraint that its sources coincide with the endpoints
of ω and that the total magnetic flux is conserved. The corresponding disorder field
is denoted by D(ω, J5), and the sectors are called monopole sectors. An example
which is under control concerns the monopole sectors in the t/(l)4-gauge theory, in
the Q.E.D. phase.

Typical choices for B are Coulomb fields in a fixed time plane, spreading out
symmetrically from the endpoints of ω, or fields supported in cones with apex in an
endpoint of ω.

The disorder field is defined as follows: Let ω be a third-rank, 2 -valued field
with (dω)* supported in (xJ L i , and (dω)*(xi) = qt e#, i = 1, . . . , n. Let B(xh qt) be
a magnetic field, as envisaged above, with δB(xί,qi) = qtox . We set

B=ΣB(xί,ql), (2.28)
i = l

and let θ denote the ί/(l)-valued gauge field of the model. Then

^^, (2.29)

where Z(ω, B) is the partition function obtained from the partition function, Z, of
the t/(l)4-gauge model by making the following substitution in the usual Wilson- or
Villain action:

1(B-ω). (2.30)

In the representation of <D(ω, £)> in terms of magnetic currents, open currents
ending at {xt} appear, accompanied by magnetic fields B(xl,qi). This repre-
sentation is discussed in more detail in Sect. 6.

Using the periodicity of the action in θ and the Hodge decomposition

one easily sees that <Z>(ω, £)> is invariant under the gauge transformation

ω^ω + dξ, (2.31)

where ξ is a rank-2, ^-valued field; i.e. <D(ω, B)y depends only on dω and B.
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Since ω* can be interpreted as a set of Dime strings attached to the monopoles,
in variance under (2.31) corresponds to the invisibility of the Dirac strings in a
theory without dynamical electric monopoles.

Invariance under (2.31) holds also if we consider expectation values involving
periodic functions of dθ — 2πδA ~ 1 ω, such as

O(ω9p) = e^dθ-2ltδΔ~ίω^9 or

O(ω9S)= Π^b Π e-l2^δΔ~1^. (2.32)
beC peS:dS=C

The correlation functions to which the reconstruction theorem applies are given by

SΛ9m(xl9qί9...9xn9qnιSl9...9Sm) = <,D(ω9B)0(ω9S1)9...90(ω9Sm)y9 (2.33)

for £ qi = 0, where we have chosen a fixed shape, £0, for all magnetic fields, i.e.

x, and we have omitted any reference to BQ in the correlation
functions. The monopole field operator obtained via reconstruction, Sq(x9B0)9 is
non-local. It is localized on supp B(x, q), i.e. at best on space-like cones with strictly
positive opening angle. The classical 5-field appears to introduce corrections to the
Ornstein-Zernike decay of the monopole two-point function S2(x, l,y, — 1),
exhibiting the infraparticle nature of the monopole. More precisely, we expect that

p-m\x-y\

as x°-yQ\S oo, with ra > 0, y > 0.
Some comments on the monopole sectors in the C/(l)4 gauge theory are made in

Sect. 6. See also [1,17].

3. Local Solitons

3.1. Reflection Positiυίty of Correlation Functions. In this section, we consider
lattice field theories satisfying condition A of Sect. 2.3 which exhibit local solitons.
We discuss some explicit examples and prove reflection positivity of the correlation
functions defined in Sect. 2.3.

Condition A is satisfied in two classes of theories:
I. Scalar or fermionic theories in two space-time dimensions with a discrete

global symmetry group, 3f.
II. Gauge theories in three space-time dimensions with a matter field action

invariant under a subgroup, 3f, of the center of the gauge group.
We consider the following examples.
A 1) ψ* Model In this model the scalar field is real, and the potential is given by

To obtain a unique vacuum one should choose + or — boundary conditions.
The "hypergauge" transformation for this model is given by

oiπzx φx z x eZ 2 ~{0,l}.
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A 2) Massless Yukawa2 Model. This model is obtained by adding a fermion
field to the φ4 model and setting

In the kinetic term of the fermionic action we use naive lattice fermions (see (2.9)).
This choice does not give the right continuum limit, but, as far as lattice theory is
concerned, it is perfectly consistent.

This model possesses two "hypergauge symmetries":

2) φx->e>«**φx ψx^e-^5Zχψx,

with zxεZ2~ {0,1}.
A3) Non-Compact Abelίan Higgs3 Model. In this model, the gauge field, A, is

real-valued, and the Higgs field, φ, is complex.
The Si-term in the action is given by

Sι(ΛΦ) = γ Σ \Φy-eiA<">Φx\
2 + gΣ(\Φx

2-V2

Z <χy> x

The "hyper-gauge transformation" is given by

^-<χy> ~* ^-<χy> + 2 π z<xyy , z<xyy e TL .

A4) SU(N)-Higgs3 Model. With gauge fields in the fundamental repre-
sentation and Higgs fields in the adjoint representation, the "hyper-gauge
transformation" is given by

2π

g<xy> -> A™ g<xyy , z<xy> EZN~{0,...,N-ί}.

A 5) Rank-k Stίtckelberg Models. These are higher-rank gauge theories with
matter fields. The gauge field, A, has rank k>\ and is real-valued, the matter field,
B, has rank k—\ and is {/(l)-valued.

The action is given by 5 = S0 + S^ + Sfix , with

So(Λk) = γ
Ck

and

and some gauge fixing term, 5flx (A), is added. For k = 0, setting B_ 1 = 0, we obtain
the sine-Gordon model, and, for k= 1, the usual Stuckelberg model. The hyper-
gauge transformation is given by

Λfo) -» Λfe) + 2πz(ck), z(ck) eZ .

We now turn to the problem of constructing joint order-disorder correlation
functions for these models.
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As mentioned in Sect. 2.3, the disorder field is obtained by replacing S0 by
S0 (ω). This corresponds to the following substitutions in S0 : In 2-D scalar theories,

and in 2-D Fermionic theories

ψx Γ<xyy ψy -> ψx Γ<xy> ζF(ω<xy>) ψy .

In 3-D gauge theories,

or

Here ζH, ζF, ζG are the representations of ̂  on VH, VF, G, respectively.
By hypergauge invariance, expectation values of products of disorder fields and

hypergauge-invariant functions of the basic fields depend on ω only through dω.
Since the basic observables are not always hypergauge invariant, we have to modify
them, by explicitly introducing a dependence on the external (hyper) gauge field ω.
For example, in scalar and Fermion theories, we shall work with the observables

O(ω,Cxy) = φx Yl ζH(ωb)φy, or =ψxY\ ζF(ωb)ψyί

beCxy be Cxy

where Cxy is a curve from x to y, instead of using {φx, ψχ9 ψx}.
For gauge theories with matter fields, the standard observables, the Wilson

loop, χH(gc)9 and the string variables φx ]~\ UH(gb)φy are already hypergauge-
beCxy

invariant, provided χH is a character of G/&.
If we want to use a Wilson loop with a character χ which is not ^-invariant then

we have to use the modified observable

0(ω,S) =
peS:dS=C

If expectation values of functions of the basic fields, Ot, which are not
hypergauge-invariant are considered, they depend on ω only through the homology
class of suppω in Zd

1/2 \ supp Ot. For example, in model A4), the transformation
ω-+ω + dξ, with ξ a Z^-valued field of rank 1, induces a change in <Z>(ω) χ(gcj)
only if supp(ί/ξ)* links C, and

<D(ω + dξ)χ (gc)y = e~»n(ξ' ° (D (ω) χ (gc)> ,

where n(ξ,C) is the linking number of supp (dξ)* and C. However, to avoid all these
homological factors, we use only correlation functions involving hypergauge-
invariant order fields.

We now propose to prove O-S positivity of the correlation functions {Sn>m},
defined in (2.25), in dimension d= k + 2. All the models we have introduced above
have an O-S positive vacuum functional. Hence our claim concerning O-S
positivity of sequences of correlation functions {SΛt m} is proved if there exists a field
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D+(xl9ql9...9xn,qn) in 3?+ (i.e. depending only on the field variables located
on the positive time lattice, # + ), such that for x^y^TL\\

D(xl9ql9...9xn9qn9ryl9-q'l9...9rym.-q'J

= θ+(xl9ql9...9xn9qn) 9 Ci)θD + (yl9q'l9.. . 9ym9q'm)

This, in turn, follows from the arbitrariness in the choice of ω, with dω fixed, that
follows from hypergauge invariance.

Let us suppose, for simplicity, that ]Γ q{ = q = £ q'j9 then
i j

<D(xί9ql9...9xn9qn9ryl9 -q'l9...,rym9 -O( )>

Moreover, we can choose the support of ω* to be a set of paths starting at
Xi E TL + (ryj e TLά_ = r(2£ + ), respectively) and ending at 0 completely lying in the
strictly positive (negative) time lattice and such that the path starting at xt is the
reflection of the path starting at rxt .

With this choice

D+(yl9q
t

l9...9yn9q'n)=D(yί9q'l9...9yn9q
f

n9Q9-q')

= ΘD(ryl9-q'l9...9 ryn,-q'n9Q9q') = ΘD+((ryί9 -q'l9..., ryn9-q'n). D

For the two-point function, our proof is illustrated in Fig. 0.
Since lattice translation invariance and reflection positivity hold for

{^π,m}^m = θ 5 we can aPPly> to these sequences, the reconstruction theorem and
obtain a Hubert space of states ^ the vacuum Ω, the transfer matrix T, the
unitaries Uμ9 the order field operators A(C) and the soliton field operators Sq(x).

If we prove clustering and show that the limits considered in (2.14) vanish, then,
by Theorem 2.3, we obtain soliton sectors J1^, labelled by a charge q φ 0 with values
in 2£ . To prove clustering, we first rewrite the joint order-disorder correlation
functions in terms of defects (Sect. 3.3) and then use a cluster expansion (Sect. 3.4).

t = o

Fig.O



Soliton Quantization in Lattice Field Theories 361
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Fig. 1

Remark. We should mention that there is an alternative construction of soliton
Green functions similar to the one used in models with non-local solitons and more
akin to the Hamiltonian approach to soliton quantization. In the example of
the kink propagator in /l</>2-theory this modified construction involves imposing
+ - boundary conditions (see Fig. 1) and choosing the support of the external gauge
field ω to consist of two strings attached to the positions, x and y, of the kinks and
extending to the boundary of the system, as sketched in Fig. 1. This construction of
the kink propagator is related to the previous one by a global TL2 gauge
transformation; φ(x)-> — φ(x), for xeL, with support on the half space L. It
therefore yields an identical kink propagator. Clearly, it extends to arbitrary soliton
Green functions, reproducing the same results as those obtained before.

Similar remarks apply to the other examples of theories with local solitons
discussed above, e.g. the vortices in three-dimensional Higgs models.

3.2. Defect Representation of Soliton Euclidean Green Functions. A defect
representation of the joint order-disorder correlation functions has several
applications:

It provides an intuitive idea of what the disorder field is and how it is related to
solitons; it suggests the basic structure of the cluster expansion needed to prove the
clustering of the correlation functions and the vanishing of the limits in (2.14); and
it also plays a central role in the analysis of the particle structure of soliton sectors.
To simplify our notations, we consider only disorder correlation functions, but
hypergauge-invariant observables can be included in a straightforward way.

Let us start by discussing the partition function, Z, of the φ* model. The
simplest way to reveal the defects is to rewrite Z in terms of the "hypergauge-
invariant" field ρx= \φx\ and the Z2-valued "spin field", σx, defined by

The Peierls contours for the spin field σx, or, in other words, the connected
components of supp (Jσ)*, are the defects of the model.
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This way of exhibiting the defects can be generalized to discuss all hypergauge-
in variant order-disorder correlation functions of the models satisfying condition A
of Sect. 2.3. Consider e.g. the expectation value

.

Rewrite Z(ω) in terms of a set of fields which represent orbits of the basic fields
under the hypergauge transformation (2.22), such as ρx in φ4, and a ^-valued field,
σ, of rank k parametrizing the orbits.

By the hypergauge invariance of S1 , σ can only appear in SO (ω), and from the
hypergauge invariance of SO (ω) it follows that σ appears only in the hypergauge-
invariant expression

v = dσ + ω. (3.1)

Example. In the non-compact abelian Higgs model, A3), we decompose the gauge
field as

σ<χy> ' <χy> ~ ' ' <*y> '

and take as our orbit fields (θ, φ\ where φ is the Higgs field on which the
hypergauge transformations act trivially.

The action of the model coupled to ω can be rewritten as

S0 (ω) + S, = ̂  Σ (dθp + 2π Vp)
2 + S, (θ, φ) ,

Z P

using the periodicity of Sj in A. Hence it depends only on the orbit fields (θ, φ} and
the field υ.

We now turn to the general case. Define Z(v) to be the function obtained by
integrating e~[s°(ω)+s^ over a j j orbίt fields, for a fixed configuration, v, of defects.
Then we get

Σ z(v)
<£(ω)> = -ψ- = *''*=*° . (3.2)

z Σ z(y)
υ : dv = 0

The object υ in the denominator is a ^-valued field of rank k+\ and is closed. The
support is therefore dual to a set of closed d — k — 1 dimensional surfaces, i.e. a set
of loops when d=k + 2.

These loops are just the supports of the 2£ defects generalizing the notion of
Peierls contours in the Ising or the φ4-model. For the non-compact abelian Higgs
model, they are the Abrίkosov vortex loops.

The v in the numerator of (3.2) satisfies dv = dω. Hence it has support in the dual
of a set of d — k — 1 dimensional surfaces, whose boundary is given by supp (dω)*, a
set of d— k — 2 dimensional surfaces (see Fig. 2).

Therefore, for d— k + 2, Eq. (3.2) expresses Z(ω) as the partition function of a
gas of line defects labelled by the elements of 2£. If ω φ 0, then Z(ω) is a sum over
configurations of open line defects whose boundary is given by supp (dω)*, and of
closed defects.
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α)

supp (dω) supp v

d = 3

b)

d= 3

k = I

supp (dω) supp v*

Fig. 2. Configuration of υ occurring in the numerator of (3.2)

Hence Eq. (3.2) is a generalization of (1.3). In a particle picture, one can
interpret the closed defects as Euclidean worldlines of pairs of virtual solitons.

An open line defect corresponds to the worldline of a soliton created at one end
of the line and annihilated at the other one. From this point of view, it is clear that
solitons in models satisfying condition A exist when the dimension is d — k + 2. For
this value of d the defects are line defects.

Remark 3.1. It is possible to use a definition of the disorder field slightly different
from Eq. (2.20), involving the ^-valued field σ defined above. Let {O} denote the
set of orbit fields considered at the beginning of the section.

The disorder field is then defined to be an operator Dop (ω) acting on function
F(O9 dσ) of O and dσ by

Dop (ω) F(0, dσ) = F(O, dσ + ω) = F(ω) .

Hence, denoting by dO the measure over the orbit fields,

(3.3)

£ J dODop (ω) l(o)] F(O9 dσ)

3.3. Clustering. For models involving only a ^-valued field, the proof of clustering
in the low-temperature region follows immediately from Eq. (3.2) by a standard
low-temperature (L.T.) cluster expansion.

In the 2-D Ising model, at large β, one can rewrite (3.2) as, (see e.g. [12]):

)> = Σ*(»ω), (3-4)

where vω denotes a configuration of the u-field such that every connected
component of supp(ι;ω)* has non-vanishing intersection with supp(dω)* and
dvω = dω. Hence, in (3.4), supp(ι;ω)* is given by a set of fluctuating random lines
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joining the points of supp(Wω)*. #(ι;ω) is a statistical weight explicitly given by
(see [12])

%(vω) = e-
2^ £ Π e~2βM βr(v, vω) , (3.5)

V ί ev

where υ denotes a configuration of the i -field with supp υ* connected and dv = 0; v
denotes a collection of v's where every v can occur an arbitrary number of times, and
#Γ(v, ι;ω) is a combinational factor which vanishes, unless every connected
component of supp (v)* touches suρp(ι;ω)*. Finally |ι;| = card (supp v). One easily
establishes an upper bound

from which clustering and the vanishing of the limit in (2.14) follow.
If, in a lattice model, continous fields are present as well, one can still derive

from (3.2) a representation of disorder correlation functions similar to (3.4). In fact,
every configuration of defects appearing in the numerator of (3.2) contains a
component υω with dvω = dω as above, and a set of closed components, vh with
dvt = Q and suppuf connected. If we resum (3.2) over the closed defects, viy then
we obtain a representation (3.4), where &(vω) is the statistical weight of the defect
υω interacting with a gas of closed defects. In order to prove clustering, however,
we now need to combine a low-temperature expansion for the u-fϊeld, as before,
with a high-temperature expansion for the other fields (i.e. the orbit fields of
Sect. 3.2).

The combined expansion will be called "combined low- and high-temperature
(C.L.H.T.) expansion." Generally speaking, these expansions tend to converge in
the phase in which the gas of defects is dilute, i.e. when d = 2, in the phase where the
^-symmetry is spontaneously broken, and when d ̂  3 in the superconducting
phase.

The upshot of the C.L.H.T. expansion is an estimate like

|*(ιOl^e~φ ω | (3 6)

Again, an estimate like (3.6) yields clustering of correlations and proves
vanishing of the limits (2.14), by standard arguments.

In our examples, those expansions converge in Al), A 2), (d=2)9 for βHy λ large,
^small, with c = O(βH}; in A3), A4), (d= 3), for βG, βff, λ large, with c = O(βG); in
A5), (d= k + 2), for βG, βH large, with c = O(βG). Details will appear in [18].

Since the C.H.L.T. expansion is not yet completely standard, (but see e.g. [12,
Quasi-theorem 3.20], and [19]), we give an outline of how it works for disorder-
correlation-functions in Appendix 1 .

Clearly, the limits (2.4) do not vanish in the "high-temperature region" of
parameter space, where the defects, u*, condense, (i.e. the confinement region for
gauge theories). As a consequence soliton sectors do not exist.

This discussion is summarized, pictorially, in Fig. 3. The shaded regions
correspond to the phases in which soliton sectors exist.

Remark 3.2. If the correlation functions {Sn>m}™m = Q admit a Euclidean-invariant
continuum limit, as one expects for all models discussed in this section, then a
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unitary representation of the full Poincare group satisfying the spectral condition
can be constructed [11].

A fully relativistic Q.F.T. with soliton sectors is then obtained by Osterwalder-
Schrader reconstruction.

Remark 3.3. The soliton sector constructed in the 2-D φ4 models for + b.c., is the
so-called kink sector. If we consider φ4 with — b.c. an anti-kink sector is obtained.
Both sectors have been constructed in the continuum in a somewhat abstract
fashion in [8,9]. The soliton operator, S (0), can be considered to be a lattice version
of the soliton intertwiner introduced in [8,9].

There are two soliton sectors in the massless (Yukawa) model, with + b.c. for φ,
corresponding to the two symmetry transformations

π π
i~ys -i^Jsψx-^e2 ψx, ψx ^e 2 ψx.

The solitons have fractional fermion numbers, 1/2 and —1/2, respectively. (For a
heuristic discussion based on the W.K.B. approximation see e.g. [20]. A rigorous
analysis appears in [16].)

The soliton sectors of the 2-d sine-Gordon model (^rank-O Stuckelberg
model), too, have been constructed in the continuum in [9,21].

4. Particle Structure in Soliton Sectors

In this section, we discuss the particle structure on local soliton sectors, using the
excitation analysis of [4].

We consider the models discussed in Sect. 3.1, (Al-5). Our goal is to show that,
in the phase of a model where the soliton two-point function does not have long-
range order, the soliton field operator with lowest charge, Sί(x), couples the
vacuum to a stable, massive one-particle state. This supports the general idea that
the soliton is a massive particle.

4.1. General Remarks on Particle Structure. We define the mass operator of a
lattice field theory by [4]:

(4.1)
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where ^f(0) denotes the subspace of zero total momentum in the direct integral
representation of JP, i.e. ψ e ̂ (0) iff t/(a) ψ = ψ.

Applying the spectral representation to T and [/, we obtain, for every operator
Ae jf, t^Q (see Sect. 2.2):

(AΩ;

*•*, (4.2)

where dρA (λ, k) is a finite positive measure with support in [α, 1 ] x [ — π, π]d 1, and
α ̂  — 1. In particular, α = 0 if Γ^ 0, which holds in our models without fermions.

By summing the lefthand side of (4.2) over xeZ^"1, we obtain

X

Comparison with (4.1) gives

spec e~M 3 supp dρA (λ, 0). (4.4)

Since AΩ is dense in -^we obtain

~~ A, 0)} , (4.5)

where the bar denotes the closure in IR.
Using (4.3), (4.4) one notices that A couples the vacuum Ω to a stable one-

particle state iff

Σ<ΛΩ; C/(x)Γ(ί)ΛΩ> „ e-«M<(l+ const <r^>0> (4 6)
r / c o

with m(v4), //(>4)>0.
If // (^4) = 0, one can still show that a decay

p-m(A)t

<AΩ;T(t)U(x)AΩy ~ -̂ ^ (4.7)
t /• oo t

with m(v4) >0, is equivalent to the statement that A couples Ω to a stable one-
particle state. This decay law is called Ornsteίn-Zernίke decay.

More generally, if t

(4.8)

with m (A) > 0 and k a positive integer, then A couples Ω to a state describing at
most k particles, whose total mass is m(A).

In the next section, we establish behaviour (4.6) for the soliton two-point
functions

of all the models introduced in Sect. 3.1, in the phase where <Ω, Sί (0) Ω> = 0. We
also suggest that, for A — Sq(x) with q>\, one may find a behaviour like (4.8), with
k = q.

We close this section with a sketch of the proof that the mass gap
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of the soliton sector ,̂ # Φ O , coincides with the decay rate of the two-point
function of Sq(x), i.e.

mq = lim - - In (Sq (0) Ω, Sq (t, 0) Ω> . (4.9)

The proof works for theories where Euclidean Green functions are given by
expectations in & positive measure, i.e. for all our models without fermions. We first
observe that £0Ωr\ 3?q is dense in J1^, by construction. Moreover, every vector
AΩε3?q can be written as Sβ(0);40Ω with A0Ωe^f0. Therefore, for some
Λ 0Ωe^ 0,

mq = lim - - In <5β (0) A0 Ω, T(t) Sq (0) A0 Ω> .
ί/*oo t

Let FAo denote the Euclidean field corresponding toA0. Since j^0 Ω is dense in J^0 ,
we can choose A0 e «s/0; with H/^JI^ < oo. Hence

Therefore

^ mg-inf{spec(M Γ^)

i.e. (4.9) is satisfied. D

4.2. Excitation Analysis. To analyze the particle structure of the soliton sectors, we
return to the representation of <Z)(ω)> in terms of random lines given by Eq. (3.4).
We discuss only the main ideas; precise definitions are deferred to Appendix 2.

We consider the two-point function of the soliton field operator Sq(x). If x is a
point in the Euclidean space-time lattice with x° > 0, (3.4) reads

/ <? f(\\ O C (\Λ CV\ V » (Λ*, \ (Λ 1 1 Λ\o„ (\)) lώ, oq {X) ίι£/ — / j & \PQX) •) (jτ 11)

where we have set (ι;ω)* = vQx.
For q — 1, the support of vQx is a single random line joining 0 to x, and # (u0x)

behaves, roughly speaking, like the statistical weight of a simple random walk from
0 to x. If # (ί;0x) were exactly the weight of a simple random walk, then

X^KJ-consti-zl + m2)-1^,^)- -̂

for some m > 0. Hence we expect a behaviour

g-m|*|

~ r^^, ™>Q. (4.12)
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As remarked in the previous section, a decay like (4.12), i.e. an Ornstein-Zernike
decay, implies that S1 (x) couples the vacuum to a stable one-particle state of
mass m.

For q > 1, the support of v0x consists, in general, of a set of q distinct random
lines, γi9 carrying charge 1. If the dominant contributions to (4.11) come from
configurations where the lines y1,..., γq are essentially bound in one single line of
charge q, then we would obtain

~ ,!,^ιv^ 0<mq<qm. (4.13)

Instead, if the dominant contributions come from configurations of q inde-
pendently fluctuating lines, each of charge 1, then one expects that

mq = qm>0. (4.14)
\x\ -> oo

In the first instance, Sq (x) still couples Ω to a one-particle state, a bound state of q
solitons of charge 1, in the second one, it couples Ω to a ^-particle state. Both
situations arise in concrete models. In the non-compact abelian Higgs model, for
example, we expect that only (4.14) arises, whenever \q\ > 1, i.e. vortices do not
bind.

For the Si/(W) Higgs model, with TVlarge and q close to 1 or TV, behaviour (4.14)
is found.

We now review the basic method to establish behavior (4.6) in our models,
for A = Sι (x). In the region of coupling-constant space of a model where a
C.L.H.T. expansion converges,

\*(vox)\^e-c^9 (4.15)

where | v0x is the length of the support of υ0x, and C is a large constant. The leading
contribution to

Σ Σ <Φo*)
x υ0x

χ = (*,x)

is then given by a single term, # (v0x), where supp v0x is the straight line from 0 to
jc = (f,0).

A link in the support of v0x is called regular if it is in the /-direction and if there
are no other links in suppv0x with the same projection onto the /-axis. If we omit
from supp v0x all the regular links, we are left with a set of connected lines, whose
projection onto the /-axis are mutually disjoint. They are called excitations and
denoted by ε. A path v0x can be reconstructed from its excitations {εl9..., εj, and
we may rewrite χ(v0x) as Z(εί,..., εn}.

We define an interaction, [/, between the excitations by setting

Z(0) (4.16)

so that

= Σ Σ *(voχ) = Σ Z(0)e-^ -β->. (4.17)
{ε 1 ;...,εn}

x = (t, x)
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Equation (4.17) expresses the two-point function of the soliton field as a statistical
sum of a one-dimensional gas of extended particles, the excitations, moving in the
finite interval [0, t]. In the region where a C.L.H.T. expansion converges, this gas is
dilute, and the strength of interactions between excitations is weak and decays
exponentially in the distance. Hence the sum on the right-hand side of (4.17) can be
exponentiated with the help of a convergent Mayer series, i.e.

Z(0) Σ e-u^> tietPV'*9 (4.18)
k,...,^}

where P[0>ί] is the pressure of the gas of excitations constrained to the interval [0, /].
The pressure P[Q {] can be expressed as the sum of three terms:

bd + Pint, (4.19)

where P is the pressure in the thermodynamic limit, Pbd is a correction due to the
interaction of excitations with the boundaries of [0, ί], and Pint is the interaction
between the boundaries of [0, t] mediated by the excitations. Now, Pmi ~ e~μt, as
t / oo, where μ is the correlation length of the one-dimensional gas of excitations.
Hence

const etp(l + £?-*') . (4.20)£ <SΊ (0) Ω, S1 (t, x) Ω> = etp+p»+pto
χ ί / O O

By comparison with (4.6) we obtain

m = m(SJ=-P, μ(S1) = μ. (4.21)

Using the excitation analysis and the estimates in Table 2 of Appendix 1, one can
establish behaviour (4.20) for all our models and give estimates on m (S1 ) and μ(Sl).
This analysis is made more precise in Appendix 2, where a derivation of estimates
(4.21) for the kink in φ4, in two dimensions, is also sketched. For a more detailed
discussion of the excitation analysis and estimates of m(Sί) and μ(SΊ) in our
models, see [18]. (For background see [4].) We summarize the main results for the
examples A1-A5 in the following Table 1:

Table 1

Al

A4

β, λ large; β/λ small
β > \ l n β / λ \

A2

βH, λ large; βF, β/λ small
β$>\lnβ/λ\, Inλ

?ι): 0( | ln/?M|)

βo' βπ .r small

m(S1):
2π

A3

βG,βH,λ large; ]8G/j5HM small

2π 2 0 G (l+Oθύ

min 0

^5

j5G > βHlarge; βG/βHsmall

^>|ln^/^|



370 J. Frόhlich and P. A. Marchetti

5. Stringlike Solitons

In this section, we discuss some examples of lattice field theories which exhibit
stringlike soliton sectors and analyze some aspects of their correlation functions.
Some characteristic features of the particle structure analysis on these sectors are
outlined, too.

A two-dimensional example with stringlike solitons is obtained by perturbing
a scalar theory with an even polynomial self-interaction, λΣ V(Φx)> by a term

Λ:

ββΣ Q(Φχ)> where Q is an odd polynomial with degg < deg V. Stringlike soliton
X

sectors occur if this theory has two disjoint vacuum states not related by the
symmetry φ -» — φ [22]; (example Bl).

Three-dimensional models are obtained by adding to a gauge theory satisfying
condition A, Sect. 2.3, a matter field with an action which is not invariant under the
c^f-valued hypergauge transformations (2.22). For example, we can add Higgs or
fermion fields with fractional charges to the non-compact abelian Higgs model
(example B2), or fermions to the SU(N) Higgs model (example B3).

A simpler model involving only discrete fields is the 2^-gauge theory with
Zjv-valued matter fields. Stringlike charged sectors in this model have been con-
structed by Fredenhagen and Marcu (F.M.) in [13].

In all these models we denote by βB the coupling parameter of the term of the
action which is not hypergauge invariant.

As remarked in Sect. 2.3, the presence of a term in Sί which is not hypergauge
invariant makes the expectation value <Z)(ω)> depend on ω, and not just on dω.

As a consequence, a proof of O.S. positivity of disorder correlation functions
similar to the one given for local solitons is not adequate. The support of ω* has to
be arranged in such a way that it does not intersect the time zero plane. Since we
want supp(dω)* to be given by a pre-assigned set of points {xj, this implies that
suppω* is in general non-compact. As we have seen in Sect. 2.3, correlation
functions are defined by taking a thermodynamic limit of suitably normalized
finite-lattice correlations. For the choice of ω made in Sect. 2.3, we choose a
normalization factor NΛ constructed as follows. Let yx denote a straight line of the
dual lattice in the time direction connecting the bottom to the top of the lattice and
intersecting x. Denote by D (γXι ,qι,...,yXr,qr) the disorder field which corresponds
to an ω satisfying

(ω*)<xy> = qi, for (xy) eyXι, = 0, otherwise. (5.1)

We assume that A = [- Γ, T] x [-L, L]x(d~l\ and define

NA(y~9q^...,y~,qr9yyl9qr + l9...,yyt,qr+s)

-^^^^...^^^^(^(y^^^i,...,?^^^))^2. (5.2)
Let ω be as defined in Sect. 2.3 and Λ^ as in (5.2). Let O(Γ) denote an observable
with local, connected support Γ. Then, by means of cluster expansions, one can
prove the existence of the correlation functions

Sn = r + S,m(y^^l,"^yχr^r,y^qr + ̂  "^ys^r + sl Γ 1 5 . . . ,ΓJ (5.3)

= lim N^(y-7q1,...,y^qr +
ΛSΈ.\I2

for all models above.
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In the definition of the state <( ))Λ m (5-2), (5.3) appropriate boundary
conditions must be imposed: For example, in (5.3) r strings y ~ , . . . , y~ end on the
face {t= —T} of dΛ, and s strings 7^,... ,7^ end on the face {t= T] of dΛ.
Hence on [t = — T} a total defect charge of q = q1 + ... -f qr e 2£ is accumulated
at the endpoints of the strings y ~ , . . . , γ~, while on {t = T} a total defect charge
of — q = qr +1 + .. . + qr+s is accumulated. Therefore, one must impose a boundary
field (of highest rank) on dΛ corresponding to a defect current flowing from
the face {t= —T} to the face [t= T}, whose curl equals q on {t= — T}, equals
— q on [t= T} and vanishes elsewhere on dΛ.

In the example of the three-dimensional 2^-Higgs model, a path 7 is chosen on
dΛ which connects {t = —T} to {t = T}, and one imposes the following boundary
conditions on the gauge field, g, which is the field of highest rank in the model:

if b* ey

[1, if £ * φ y ,

for all bedΛ.
The O-S positivity of the correlation functions (5.3) is essentially obvious.
A simple way to prove the existence of the limits (5.3) is to apply a cluster

expansion to both, numerator and denominator, and then exponentiate it by means
of an excitation expansion. This method is discussed in detail in [18]. We now give a
brief sketch of how it works in the ZN Higgs model for the two-point function

(5.4)

We work in the low-temperature phase and use the Marra-Miracle-Sole cluster
expansion [23].

A configuration of the cluster expansion for (D(y~, — 1, y +, 1))^ consists of a
vortex line (uω)* in the dual lattice joining x to y and a set of vortex loops and
Wilson loops linked to (y~ \jy^)A supp(uω)*; (A = symmetric difference). A
configuration of the cluster expansion for (D(yx, ± 1))^ consists of a set of vortex
loops and Wilson loops linked to γx.

We now apply to both numerator and denominator, an excitation analysis; (see
Sect. 4.2 and Appendix 2). The excitations in the numerator can be divided into two
classes, the string excitations, εs, whose projections onto the time axis are contained
in (— oo, x0] u[y0, +00), and the particle excitations, ε, arising from the
fluctuations of v°\ having non-empty projections in [x°,^°] (see Fig. 4).

ω

e,

*• / - "Ίin/ ~ °UP

f
C2

p(vω)*

ί

Fig. 4
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In the denominator only string excitations appear. When we exponentiate the
expansion, the contributions coming from string excitations in the numerator are
essentially cancelled by the contributions due to the string excitations of the
denominator. Hence all clusters of excitations left have non-empty projections onto
the time axis contained in [x° ,y°], and one can now easily prove the existence of the
thermodynamic limit.

Clustering of correlation functions and vanishing of correlation functions with
non-zero total charge easily follow by noticing that the contribution of every vortex
line is exponentially decreasing in the total length of the vortex line.

Hence, by Theorem 2. 3, one can construct TLN soliton (vortex) sectors in the
low-temperature phase of the 3-D ZN Higgs model. The particle structure of these
sectors can be analyzed with the help of an excitation expansion, as in Sect. 4.2 and
Appendix 2. The result of this analysis is a decay law

for βG large, βB small, βG^>\\nββ\^>\nβG. This proves that the soliton field
operator S1(y^~) couples the vacuum to a stable one-particle state.

Using the excitation expansion, one can also show that, since the model has
short range interactions, joint expectations of local observables and disorder fields
are independent of the choice of the asymptotic direction of the strings yx . The
independence of the soliton states of the direction of the strings of the solitons is
expected on the basis of the axiomatic analysis of non-local charged states in
massive theories performed in [24].

Remark 5.1. The ZN Higgs model in d dimensions is dual to a rank-& ΈN Higgs

model with k = d+2 and coupling constants β% = Oι—-\, β* = 0 I -— 1 . The
\PB/ V/W

duality transformation maps the F-M string observable onto the disorder field
discussed above.

Fredenhagen and Marcu [13] constructed a charged state in the ΊLN model, for
small ββ and large βG, making use of a sequence of string fields with one end of the
string tending to oo. The soliton state we construct in d=3 is the dual of this
charged state. More generally, vortex sectors in d=k + 2 dimensions in rank-/:
(Z^-Higgs) models - which are constructed just like the vortex sectors in the
three-dimensional Z^-Higgs model - are the duals of their charged sectors.

In d — 3 dimensions, the Z#-Higgs model is self-dual. We may therefore consider
mixed correlation functions of disorder fields, local order fields and of the charged
fields of Fredenhagen and Marcu. Applying Theorem 2.3 to such mixed correlation
functions, we can prove that in the phase corresponding to large βG and small βB the
Hubert space 3tf of physical states decomposes into a direct sum, 0 ^1>(72, of

01,02

sectors, ^l?ί?2, labelled by an "electric charge," q1 (the charge of Fredenhagen and
Marcu) and a defect charge q2 (the vorticity). These charges take values in ZN . This
is expected to be a complete description of the super-selection structure of the three-
dimensional Z^-Higgs model.

An analysis analogous to the one just sketched for the Z^-Higgs model can be
performed for the examples Bl-3, using a kind of C.L.H.T. expansion; (see [18]).
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In particular, one can prove the existence of TL2 kink sectors for the example B1, for
βB small, β, λ large, and of ZN vortex sectors for the examples B2 and B3, for βB

small, βG,βH large. Moreover, in this parameter region, the Ornstein-Zernike decay
of the two-point correlation function for the soliton field S1 (γx) can be obtained.
These results show that the existence of stringlike soliton sectors is not limited to
models in which the basic fields are discrete, nor to the existence of a duality
transformation. We therefore expect that there are continuum theories with
stringlike soliton sectors, such as the three-dimensional SU(N) Higgs models with
fractionally charged fermions.

6. The Monopole Sectors in the U(l)4 Gauge Theory

The partition function of the t/(l)4 gauge theory in the Villain form is given by

z=

where θ is a C/(l)-valued gauge field, n is a second rank, Z -valued field, and || || is
the norm determined by the scalar product (2.4). We first recall a representation of
the expectation value of the disorder field in terms of magnetic currents. In
Sect. 2.3, the disorder field D(ω, B} has been defined by

-

where ω is a third rank, Z -valued field with supp(Wω)* = {xt} and (dω)*(xi)
= q{ tTL \ {0}; B is a classical magnetic field given by

where (dB)* (x1 , qt) = qιδx, so that d(ω — B) = 0, and B(xi9 qt) is a "Coulomb-like"
classical field, with support in a constant-time plane, see Sect. 2.3. We use the
Hodge decomposition to rewrite

n = dA~1 δn + δΔ~lm, (6.3)

where

m = dn. (6.4)

Let n [m] be an integer-valued solution of the cohomological equation (6.4). Then
every other solution is of the form n [m] + dl, with / a ^-valued field of rank 1.

We can now rewrite the numerator of (6.2) as

V V Γ ΓΊ dθ e-(

m:dm = 0 I <xy>

Let us define a real-valued gauge field A by setting
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Note that the cross term

in the exponent of the integrand of (6.5) vanishes. Moreover

since d(m + B — ω) = 0.

Hence <£>(ω, j9)> is given by

Σ ίΓM^W
m: dm = 0 (xy)

Σ ί Π dA

V

m : dm — — dB

V

m + dm = 0

(6.6)

where J Y[ dA<xy> denotes integration over the gauge equivalence classes of the
<^>

gauge field A. The dual of the field m, w*, is supported on a set of lines in the dual
lattice which may be interpreted as magnetic current lines. They are the defects of
the t/(l)4 gauge theory. Equation (6.6) justifies our definition (2.29), (2.30) of
D(ω,B).

Applying the Jensen inequality to (6.6) one obtains the lower bound

<D(ω,£)>^e-W2>(*-ίM~1(*-ω», (6.7)

which shows that <Z> (ω, B)y does not vanish, as long as (B — ω, A ~ 1 (B — ω)) < oo .
We now turn to the proof of O-S positivity of the correlation functions (2.33).

The easiest way to prove O-S positivity is to apply a duality transformation which
we now discuss for the special case of <Z>(ω, £)>. The analysis of more general
expectations is straightforward.

We start by performing a Fourier transformation in the variable (dθ)p, given by
1(B-ω)\\2 _ V1

 eι(n,dθ + 2πδΔ'l(B-ω}) e~(

n n

Integrating over θ, we arrive at the following constraint for the field n:

δn = Q. (6.8)

Next, we pass to the dual lattice and solve the constraint equation (6.8), using the
Poincare lemma, n* = dA, where n* is the field dual to n, and A is a Z -valued gauge
field. Let [A] denote the gauge-equivalence class represented by A. Then we may
rewrite (6.2) as

y e - l/(2jS) \\dA I I 2

 eι2π(dA, dA~\B- ω)*)

^ - ̂ ^̂  -- (6'9)

[A]
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Using the identity

and noticing that, since ω* and A are integers, e

i2π(A>ω*^= 1, we obtain

Let {x1,x2} = supp(dώ)* and B = B(xί,q)-\- B(x2, —q). The classical fields
^*(*i9#) and B*(x2,—q) are supported in the planes {x° = Xi}, {x° = x2}
respectively. Choosing xί , x2 such that Λ:? > 0 > x2, it is clear that

eι2π(A,B*) — β [ei2π(A,B*(rx2,q))] ei2π(A,B*(Xl,g)) (6.11)

O-S positivity of <Z) (ω, J?)> is an immediate consequence of (6.10), (6.11).
Next we discuss the behaviour of <D(ω, £)> in the two phases of the t/(l)4

gauge model, the confining and the Q.E.D. phase. The confining phase of the Z7(l)4

model corresponds to the superconducting phase of the dual model derived in
(6.10). This phase is massive, and one can show with the help of a simple low-
temperature expansion that

<Z)(ω, £)> - <e2^>**)>* ̂  e-(Ww*,v + m>Ar
lB*) ^ const? (6ιl2)

uniformly in Λ^ — .x2 1 Here β' and m^ are strictly positive constants which can be
estimated as in [19].

We now turn to an analysis of <D(ω, 2?)> in the Q.E.D. phase of the ί/(l)4

model.
Clustering in the Q.E.D. phase and vanishing of correlation functions of non-

zero total charge can be proved in the dual model by means of correlation
inequalities as in [25]. However, for later discussions we need a more refined upper
bound.

This has been obtained in [1,17] using a suitable combination of the Peierls
argument with renormalization group techniques.

Here we only summarize the results for S2(x, !,>>, —1). The discussion can
easily be generalized to all the other correlation functions. Let us be somewhat more
general than in Sect. 2.3 and take two different shapes B0 and BQ for the fields at x
and y, i.e.

To make the dependence on the shape of the magnetic field explicit, we rewrite the
two-point function S2(x,l,B0,y, — 1 , BQ) in a more convenient form. By using the
representation in terms of magnetic currents we can write

V

^ — - - ; - , (6.13)
- - ί ' V '

where m denotes a set of currents satisfying dm = 0, and mD is a current satisfying
dmD — — dB = — dω, dual to a line joining x to y.
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From [1,17] it follows that, at large distances, the main effect of the closed
currents, ra, is just to renormalize the coupling constant β. Hence, as \x — y\ / oo,

S2(x,l,B0, y, -l,BΌ)~Σe-(β™l2Hm'>+B>A~ί(m'>+B», (6 14)
mD

where /U^-e-0"".
Equation (6.14) embodies several pieces of information: Clustering and

vanishing of correlation functions of non-zero total charge easily follow from (6.14)
and from its generalization to the other correlation functions. If we take, for all
correlation functions, a fixed choice, B0 , of the magnetic field, Z -monopole sectors
can then be constructed in the Q.E.D. phase using Theorem 2.3. In particular,
monopole field operators Sq (x, B0) localized in supp (B0)x are obtained. The sectors
dual to the monopole sectors are the charged sectors of the TL -gauge model
described by the vacuum functional <(•))*? and can be viewed as limits of the
charged sectors of the non-compact abelian Higgs model, (as λS oo; see [1]).

From the explicit construction one derives that the monopole sectors 2tfq, q φ 0,
depend on the choice of the shape, B0 , of the magnetic field. Hence we denote them,
more explicitly, by JΊfq(B0). It is natural to ask if JΊ?q(B0) is orthogonal to ̂  (B0),
for BO^BQ. The scalar product between states \x, 1,£0> e ̂  (B0) and
1 7,1,^)6^(^)18 given by

From the upper bound (6.14) one obtains that

<x,l,50 |jM,^> = 0, (6.15)

if

diverges.
This happens, for example, if BQ and BQ are localized in different spatial cones

#,#' with apex in 0.
The states obtained from fields B localized in cones are the lattice

approximations of the states discussed by Buchholz for Q.E.D. in [26]. In
particular, if we choose <&' to be a cone obtained from ^ by a rotation, then the
vanishing of (6.15) shows that, in the continuum limit, rotations cannot be unitarily
implemented on Buchholz states.

We now turn to an analysis of the particle structure suggested by (6.14), for
B0 = BQ . The contribution coming from the fluctuating current line mD is expected
to produce an Ornstein-Zernίke decay corresponding to a massive particle.
However, there is also the contribution of the 5-field, and this gives a power
correction to the exponential decay:

exp-βΐen(B,A-1B)~\x-y -c~*», c > 0 . (6.16)

Therefore one expects

-c/?renl*0-/Ί

(6 17)
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Equation (6.17) exhibits the infraparticle nature of the monopole. It shows that the
mass operator M does not have a discrete eigenvalue corresponding to the
monopole state Sί (x, B0) Ω. This is due to the "cloud" of soft photons, surrounding
the monopole, which produces the power correction (6.16) to the Ornstein-Zernike
decay. See also [28].

We expect that all these features of the magnetic monopole in the £/(l)4 gauge
theory are found in the analysis of all monopole sectors, e.g. in the 't Hooft-
Polyakov monopole sectors in non-abelian gauge theories, but we have no rigorous
results, so far.

Appendix 1. The C.L.H.T. Expansion

In this appendix we give an outline of the C.L.H.T. expansion for the disorder
correlation functions of our models Al-5). Details appear in [17, 18].

For d^ 3, we eliminate, in a preliminary step, the "angular" degrees of freedom
of the matter field by imposing the unitary gauge. The advantage is that, in this
gauge, the Higgs mechanism which renders the gauge field massive appears in its
clearest form. The field corresponding to the surviving radial degrees of freedom is
taken to be one of the orbit fields of Sect. 3.3, to which the high temperature cluster
expansion is applied.

The first step of the C.L.H.T. expansion is to rewrite the partition function, Z,
of the model as the partition function of a polymer gas with polymers of two
different types: t -polymers and Jf-polymers.

A t -polymer arises in the low temperature expansion for the i -field. It has
support on a set of cells whose dual is connected and closed.

An ^-polymer arises in the high-temperature expansion for the remaining
(orbit) fields and has support on a connected set of cells (see Fig. Al).

The activity of a v-(X-) polymer is denoted by z(υ) (z(X)\ and the partition
function, Z, can be rewritten as

Z~const l\z(Xί)l\z(vj), (A.I)

MIIIIIIIIIIIIΓ
support of α v-polymer

-support of an X -polymer

Fig. Al
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where {X1 . . . Xn] denotes a set of Λ>polymers with disjoint supports and {v1 . . . vm} a
set of t -polymers such that the dual of their supports are disjoint.

To be more concrete, consider the example Al) ,

- const
{vί...vm}{X1...Xn}j=l

•Π
2 Π

where 1^1 = card (supp ΌJ).
The modified partition function in the numerator of (3.2), Z(ω), contains,

besides ordinary v- and ^-polymers, a t;ω-polymer such that every connected
component of supp (ι;ω)* has non-vanishing intersection with supp (dω)*, and dvω

= dω. Hence,

Z(ω) -const *(*}) Π (A.2)

where, again, supp (uω)* n supp (t;f)* = 0.
Now we combine t -polymers and Jf-polymers in Z into "connected" clusters, C;

(see e.g. [27]). A configuration [v^ , . . . , vm9 Xγ . . . Xn] is said to form a cluster on

r/ m \
C^supp \l\Jvj u

L\J = I /

[ / m \ / π \ Ί

U (ϋj)* KΊ U ί̂ hs connected (see Fig. A.2).
\j = ι / V = 1 /J

The activity of the cluster C is defined by

clusters on C

Fig. A2. A configuration ( v 1 , v 2 , X ) forming a cluster on C=supp (υ ; ί/=2, k =
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In the expression for Z(ω) a cluster, Cω, containing vω, arises, in addition to the
usual clusters C. A configuration {vl,...,vm, vω], {X1,..., Xn] is said to form a
cluster on

j = ί

[ / m \ / n \ Ί

I (J vf \ u I 1J Xι) u (O* has non-
T^^o^^t, ^v^^^v^,, „,,„ ^^^^V^^y. •\J'=1 / \ l = 1 / -I

The activity of Cω is given by
m M

clusters on Cω

Using standard methods [12]; one can write

α = 0 {C,Cω} CeC

(A.4)

where {C, Cω} denotes a collection of clusters in which a cluster C can occur an
arbitrary number of times and a cluster Cω occurs once, and α ris the combinatiorial
factor appearing in Eq. (3.5).

Equation (A.3) is the generalization of (3.4), (3.5) to models with continuous
fields.

Theorem A.I. The expansion (AA) for the expectation value of the disorder field
</)(ω)> converges if every cluster activity is dominated by an exponentially
decreasing factor, i. e.

" e-κm (A.5)

with K large enough and \C\ — card C.
Moreover, if we denote by v™in the configuration of vω with the highest activity

and if
) I ̂  e~κ\cw\ e~κ> l^nl , (A.6)

then clustering holds for all correlation functions, and the limits (2.14) vanish. D

The constants K and K1 in our examples A 1-5) are summarized in Table 2.

Table 2. (The conditions of Table 1 are assumed for the coupling constant)

A l ) A2) A3)

K 0(\\nβ/λ\) min [ 0 ( | l n j f f / λ | ) , O(lnΛ)]
in 0min

2β Q ( β G )

A4) A5)

K Odln/y^l) Odln/y/y)

K, 0(βG) Q(βG)

βc
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Equation (3.4) and bound (3.5) are obtained by partially resumming (A3), (A 4)
and using (A5), (A6).

Appendix 2. Estimates for m (S^and (£,-)

In this appendix we present some details concerning the excitation analysis of
Sect. 4.2, using the C.L.H.T. expansion of Appendix 1. From (A. 4) it follows that

(A.7)
{C,C0x} CeC

where we have set Cω = C0x and x = (t, x).
In this case C0x is given by the dual of a line directed from 0 to x, corresponding

to supp v°\ enriched by cells coming from the support ofv- and J^-polymers in C0x.
By the explicit form of the combinational factor aτ, every configuration

{C, C0x} contributing to (A. 7) is given by a cluster C0x, enriched by a set of clusters
Cin C "connected" to C0x. Hence it appears as a "decorated" path from 0 to x\ (see
Fig. A3)

We now define the excitations.
A cell in (C, C0jc) is defined to be regular if
1) it is orthogonal to the time axis,
2) it occurs only in C0jc,
3) there are no other cells having the same projection onto the time axis,
4) it is not connected to other cells.
The "connected" complements of the regular cells in C, C0x are the excitations,

ε. Their projection on to the time axis are denoted by π(β). If ε1 ...εn are the
excitations corresponding to the configuration C, C0jc, then we set

Z(fil . . . O = aτ(C, C0x) Z(COJC) Π Z(C) . (A.8)
CeC

Since the configuration corresponding to Z(0) is the dual of a straight line, all the
cells contributing are disjoint. Let zω(ck + 1) denote the contribution to Z(0) of one
of these cells, then

(A.9)

__l :=T

I Ξ Ξ
I 3=

0 d= 2

k= 0

supp Co x / supp Cεc / supp v ω

/ r^> /

Fig. A3



Soliton Quantization in Lattice Field Theories 381

Inspection of the explicit form of C0jc, C easily shows that the following
factorization property holds for all our models: There exists a function ζ on the
space of excitations such that

. Kfe) if π(ε ί)ππ(ε j)-0,
Γ , . for all zj. (A.10)
0, otherwise.

If we use (4.16) to define an interaction between excitations, then (A. 10) tells us that
the excitations interact via hardcore exclusion with an activity £(ε).

In the region of convergence of the C.L.H.T. expansion

l ί O O I ^ e - * 1 " 1 , (A.ll)

where k is a large constant and | ε | denotes the cardinality of ε, minus the cardinality
of π (ε). The bound (A.I 1) ensures the convergence of the Mayer series for the gas of
excitations.

Thanks to the factorization (A.9) we can give an explicit formula for the
pressure of the gas of excitations defined as in Sect. 4.2:

' (A 12)

where ε denotes a collection of excitations. By comparing (4.19) and (A. 12) one
easily sees that only clusters of excitations, ε, whose projection onto the time axis
contains [0, t] contribute to the second term on the right-hand side of (A. 12), Pint.

From (4.21) and (A. 12) it follows that

m(Sί)= -lnzω(c, + 1)

where εmin is the excitation with the highest activity, and

where ε[0,]min is the excitation with π(ε) ID [0, t] having the highest activity.
Using (A. 7-14) one can prove the behaviour (4.20) for all our models with

precise estimates on m(Sl\ μ(S±).
We discuss in some detail the case of the φ4 model in two dimensions with the

help of some self-explanatory drawing. The results for the other models
summarized in Table 1 (Sect. 4.2) are obtained in a similar way, using Table 2
(Appendix 1). In the φ4 model the contribution, zω«.xy», of a link to Z(0) is given
by the sum of two terms: the first one corresponds to the situation in which (xy) is
only in the vω polymer and the second one to the situation in which it is also the
support of an X-polymer.

As a result we can estimate for /?, λ large, β/λ
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The leading excitations are given by configuration like

,X - polymer

vω-polymer

hence C(εmin) ~ 0(j8/λ). The leading contribution to Pint comes from configurations
like

X - polymer

vω-polymer

hence ί(6IO,,]min)~0(#*)'.
Therefore, for the φ4 model, for β large, β/λ1/2 small, β > |ln(j8/A) |,

Remark A.2. For Λ, — oo, the φ4 model reduces to the 2-d Ising model.

In this limit there are no Jf-polymers, hence the leading excitations are given by
configurations like

and the leading contributions to Pint come from configurations like

Hence for the (Ising)-model

Therefore we see that the presence of a continuous field φ in φ4 completely changes
the upper gap μ(S^.

References

1. Frohlich, J., Marchetti, P. A.: Magnetic monopoles and charged states in four-dimensional,
abelian lattice gauge theories. Europhys. Lett. 2, 933-940 (1986)

2. Frohlich,!.: in, Progress in gauge theory. (Cargese 1979), G. ' tHooftetal. (eds.). New York:
Plenum Press 1980



Soliton Quantization in Lattice Field Theories 383

3. tΉooft, G.: Nucl. Phys. B138, 1 (1978)
4. Bricmont, J., Frδhlich, J.: Nucl. Phys. B25 [FS 13], 517 (1985); Commun. Math. Phys. 98,

553 (1985
5. Marino, E.G., Swieca, J. A.: Nucl. Phys. B170 [FS 1], 175 (1980); Marino, E.G., Schroer, B.,

Swieca, J.A.: Nucl. Phys. B200[FS4], 473 (1982)
6. Borchers, H.J.: Commun. Math. Phys. 1, 57 (1965); Buchholz, D., Fredenhagen, K.:

Commun. Math. Phys. 84, 1 (1982)
7. See e.g.: Solitons and particles, Rebbi, C. et al. (eds.) Singapore: World Scientific 1984
8. Frόhlich, J.: In: Invariant wave equations. Lecture Notes in Physics, Vol. 73. Berlin,

Heidelberg, New York: Springer 1978
9. Frόhlich, J.: Commun, Math. Phys. 47, 269 (1976)

10. See e.g. Kadanoff, L. P., Ceva, H.: Phys. Rev. Bll, 3918 (1971); Wegner, F.: J. Math. Phys.
12, 2259 (1971); 't Hooft, G.: In [3]; Mack, G., Petkova, V.B.: Ann. Phys. 123, 442 (1979);
125,117 (1980); Kogut, J.: In: Recent advances in field theory and statistical mechanics. (Les
Houches 1982) Zuber, J.-B. et al. (eds.) Amsterdam: North Holland 1984; Frόhlich, J.,
Spencer, T.: In: Scaling and self-similarity in physics, PPh 7, Basel, Boston: Birkhauser 1983

11. Osterwalder, K., Schrader, R.: Commun. Math. Phys. 31, 33 (1973), 42, 281 (1975); Glaser,
V.: Commun. Math. Phys. 37, 257 (1974); Frόhlich, J., Osterwalder, E., Seller, E.: Ann.
Math. 118, 461 (1981)

12. Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical
mechanics. Lecture Notes in Physics Vol. 159. Berlin, Heidelberg, New York: Springer 1982

13. Fredenhagen, K., Marcu, M.: Commun. Math. Phys. 92, 81 (1983)
14. Wilczek, F.: Phys. Rev. Lett. 48,1144(1982); 49, 957 (1982); Wilczek, F., Zee, A.: Phys. Rev.

Lett. 51, 2250 (1982); Wu, Y.S.: Phys. Rev. Lett. 53, 111 (1984)
15. See e.g. Thouless, D.J., Wu, Y.S.: Phys. Rev. B31, 1191 (1985)
16. Frόhlich, J., Marchetti, P.A.: In preparation
17. Marchetti, P.A.: Ph. D. Thesis, S.I.S.S.A. Trieste 1986
18. Marchetti, P.A.: Particle analysis of soliton sectors in massive lattice field theories (in

preparation)
19. Kennedy, T., King, C.: Commun. Math. Phys. 104, 327 (1986)
20. See e.g. Jackiw, R., Rebbi, C.: Phys. Rev. D13, 3398 (1975), and other papers in [7]
21. Frόhlich, J.: In: Renormalization theory. Erice 1975. Velo, G., Wightman, A. S. (eds.) NATO

Advanced Study Institutes Series C23, 1976
22. Frόhlich, J.: In: Current problems in elementary particle and mathematical physics,

Schladming 1976. Acta Phys. Austriaca [Suppl.]XV. Berlin, Heidelberg, New York: Springer
1976

23. Marra, R., Miracle-Sole, S.: Commun. Math. Phys. 67, 233 (1979)
24. Buchholz, D., Fredenhagen, K.: In [6]
25. Borgs, C., Mill, F.: No Higgs mechanism in scalar lattice Q.E.D. at large electromagnetic

coupling. Preprint MPI-PAE/Pth 79/85
26. Buchholz, D.: Commun. Math. Phys. 85, 49 (1982)
27. Balaban, T., Brydges, D., Imbrie, J., Jaffe, A.: Ann. Phys. 158, 281 (1985); Brydges, D.: In:

Critical phenomena, random systems, gauge theories. Osterwalder, K., Story, R. (eds.) (Les
Houches 1984). Amsterdam: North Holland 1986

28. Steinmann, O.: Ann. Phys. 157, 232 (1984)

Communicated by A. Jaffe

Received March 27, 1987






