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Abstract. Starting with a "relativistic" Schrόdίnger Hamiltonian for neutral
gravitating particles, we prove that as the particle number 7V->oo and the
gravitation constant G->0 we obtain the well known semiclassical theory for the
ground state of stars. For fermions, the correct limit is to fix GN2β and the
Chandrasekhar formula is obtained. For bosons the correct limit is to fix GN
and a Hartree type equation is obtained. In the fermion case we also prove that
the semiclassical equation has a unique solution - a fact which had not been
established previously.

Historical Remarks and Background

There are two principal elementary models of stellar collapse: neutron stars and
white dwarfs. In the former there is only one kind of particle which, since it is
electrically neutral, interacts only gravitationally. The typical neutron kinetic
energy is high, however, so it must be treated relativistically. Unfortunatly, the mass
and density are also large enough that general relativistic effects are important. For
white dwarfs, on the other hand, there are two kinds of nonneutral particles:
electrons and nuclei. Because the density is not too large, it is a reasonable
approximation to ignore general relativistic effects (although these effects might be
important for stability considerations [29]) the nuclei (because of their large mass)
can be treated nonrelativistically but the electrons must be treated relativistically.
The Coulomb interaction is usually accounted for by the simple assumption that
local neutrality requires the nuclear charge density to be equal to the electron charge
density, in which case the problem reduces to calculating the electron density.
(There are, in fact, electrostatic exchange and correlation effects [28,29], but these
are small by a factor α = l/137.)
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Under the assumption of local neutrality (and no significant exchange and
electron-nuclei correlation effects) and neglecting the nuclear kinetic energy, the
white dwarf problem is mathematically the same as the neutron star problem - but
without general relativistic effects. This problem was formulated by Chandrasekhar
in 1931 [2] (and also in [7,11]) and leads to an equation for the density which we here
call the Chandrasekhar equation (1.16,1.18). The neutron star problem leads to the
much more complicated Tolman-Oppenheimer-Volkoff equation which will not
concern us. Both are reviewed in [24,27]. Both equations predict collapse at some
critical mass which, in the white dwarf case, is called the Chandrasekhar mass.
Clearly, near this mass the elementary theory is not totally adequate.

Quantum mechanics is essential for the stability in both cases. "The black-dwarf
material is best likened to a single gigantic molecule in its lowest quantum state" [7].
In all treatments up to now, quantum mechanics enters only through the use of a
local equation of state P(ρ), (P = pressure, ρ = density) which is that of a degenerate
Fermi gas (electrons or neutrons). See [30] for example.

Two years ago Lieb and Thirring [19] decided to investigate whether, starting
from the Schrόdinger equation for fermions one would, indeed, recover the
semiclassical Chandrasekhar equation (1.16, 1.18) in the limit N( = particle
number)-* oo and G( = gravitational constant)->0. More precisely, for fermions the
relevant stability parameter should be GN2β, and not GN. Numerically, the critical
N is about 1057, so the limit N-+00 is a very reasonable one to consider. The
Chandrasekhar value of the critical mass (with the correct 2/3 exponent) was proved
in [19], but only up to a factor of 4. For bosons, on the other hand, which have not
been considered for astrophysics, Ruffini and Bonazzola [30], Thirring [25], and
Messer [21] realized that the relevant parameter should be GN, thus leading to
collapse of objects only the size of a mountain. In [19] it was conjectured that, for
bosons, (1.18) should be replaced by a Hartree type equation when N-+co. In a
sense this would mean there is no semiclassical limit for bosons (although we shall
continue to employ that word) because the Hartree energy involves density
gradients, and not just an equation of state. In [19] the Hartree value of the collapse
constant was proved to be correct up to a factor of 2.

In this paper we shall prove that the Chandrasekhar (respectively Hartree)
equations are exactly correct as 7V-> 00, G->0, for all values of GN2β (respectively
GN), not just the critical value. In view of Walter Thirring's contributions to, and
interest in quantum mechanical stability questions - in particular the stellar collapse
problem - it is a great pleasure for us to dedicate this work to him on the occasion of
his 60 th birthday.

At first it seemed to us that reducing the quantum problem to a semiclassical
problem would end the story. But then we realized that a thorough mathematical
study of (1.18), e.g. uniqueness of the solution, has not been done. This, it turn out,
is in many ways more complicated than the quantum problem, and therefore a large
part of this paper is devoted to an analysis of the semiclassical equations.

In Sect. I we state these problems precisely and summarize the main results.
Section II contains proofs of the convergence of the quantum energies to the
semiclassical energies. The analysis of the semiclassical equations (existence and
uniqueness of solutions and qualitative properties) is in Sect. Ill and IV. The
convergence of the quantum density (for fermions) to the semiclassical density is
given in Sect. V.
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I. Formulation of the Problem and Main Results

Our starting point is the "relativistic" Schrόdinger Hamiltonian for N gravitating
particles of mass m (in units h = c — l)

(1.1)

Here p2 = —Δ and x^elR3. HκN can describe a "neutron star" without general
relativistic effects if we take m — neutron mass and K = Gm2. White dwarfs cannot be
described by (1.1) (unless exchange and correlation effects are ignored). A more
complicated Hamiltonian is needed in that case and we refer to [19, Sect. 4] for a
discussion. Our methods can be extended to the case of several kinds of particles
with different masses, but without electrostatic interaction. If electrostatic inter-
actions are present, as in white dwarfs, genuinely new ideas are needed. However, if
the positive nuclei are also fermions, then one can use the inequalities in [19, Sect. 4]
to give a lower bound to the energy; unfortunately, this bound will not be the sharp
one. It is believed that the semiclassical equation for white dwarfs is nearly the same
as for (1.1) as N->co, G-+0 provided we take κ = G(m + M/z)2 with M= nuclear
mass, m = electron mass and z = nuclear charge.

For fermions (e.g. neutrons or electrons) HκN acts on antisymmetric functions
of space and spin. For generality we assume q spin states/particle q = 2 in nature,
but q = 1 would correspond to spin-polarized matter. We also consider HκN without
any symmetry restriction. Since the absolute ground state is always symmetric, this
is the same as bosons (axion stars?). Technically, HκN is considered as the Friedrich
extension of the operator (1.1) with domain {ιl/eL2(ΈL3N)\ψ satisfies fermi statistics
(or no statistics in boson case) and (-Ai)

1/4ψeL2(JR2N) for i=l.. .N}.
The difficulty in going from HκN to the semiclassical Chandrasekhar or Hartree

theories as N->ao and G->0 is this: For one particle, the operator h = \p\—Z/\x\
becomes unbounded below [5, 8-10, 26] when Z>2/π. Suppose that, by some
fluctuation, 3(πκ)~1 particles get very close together. Then they form a trap into
which the other particles can fall. Hence we might expect important correlation
effects or even collapse for HκN when N=O(κ~1), in which case the semiclassical
point of view wherein the gravitational interaction is treated as a smooth per-
turbation would be wrong. Something like this does happen for bosons and that is
why the Hartree equation is the appropriate limiting description. But the interesting
(and difficult to prove) fact is that the Pauli principle prevents this from happening
for fermions. There is a collapse in that case, but only when N — O(κ~3/2). The "local
equation of state" point of view is valid for fermions.

The quantum energy is defined by

E?(N) = infspecHκN (1.2)

in the appropriate space according to the statistics. Later on we shall define the
quantum density.

The semiclassical energy functionals, $ from LX(R 3) to R are defined as follows.
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Fermίons: For ίeIR + , let η ^(6π2t/q)1/3 and

= q(2π

2y1]p2{p2+mψ2-m}dp
0

]}-tm . (1.3)

Then

^{Q) = \KQ(x))dX-κD{ρ,Q) , (1.4)

where D is the classical gravitational energy

D(Q,Q) = k Jf Q{x)Q{y)\x-y\~ldxdy . (1.5)

j(ρ) is the ground state kinetic energy density of g-state fermions at density ρ.

Bosons:

*?(Q) = (Q1/2> {(p2+mψ2-m}ρι/2)-κD(ρ,ρ) . (1.6)
The superscript C is for Chandrasekhar while H is for Hartree.

Corresponding to these functional are the minimum energies:

^0, ρeL4/3(IR3) and fρ = tf}, (1.7)

ί ^ ^ ^ l 0-8)
Later, we shall omit the subscript K when it is not necessary.

Recall (see [1, 19] and Lemma 3 for more details) that there is a critical con-
stant Nf(κ) which has the properties that E«(N)= -oo iff N>Nf(κ). Nf(κ)
can be calculated explicitly. Define y=^(6π2lq)lβ and τc = ylσf, where
σ/==sup {Z)(ρ,ρ)/jρ4/3|ρ^O, ρeL 4 / 3 and J ρ = l}« 1.092 (see Appendix A). Then

Nf(κ) = τ3

c

/2κ-3/2π43%q-1/2κ-3/2 . (1.9)

For bosons, there also exists a critical number Nb(κ) which has the properties
E?(N)= -oo iff N>Nb(κ) (see [19] and Lemma 4). Nb(κ) can be related to
σ.Ξsup {£>(ρ,ρ)/(ρ1/2, |/?|ρ1/2)]ρ^O, \p\ιllρ^2eL2 and j ρ = l) by the formula

Nb(κ)=σb-
1

K-1=ωcκ~ί . (1.10)

σb is known to satisfy π/4>σb> 1/2J (Appendix A).
There are scalings

i££(r1iV) , (1.11)

which are easy consequences of the transformation ρ(x)-+ρ(t~1/2x) (respectively
ρ(x)^ρ(t~ll3x)). It is convenient to introduce some normalized quantities. For any
τ > 0, let

$ (1.12)

^(τ)-inf{εc

τ(ρ)| j ρ = l , ρ^O and j ρ 4 / 3 < o o } . (1.13)

It is easy to see that [with ρ(x)^ρ(N1/3x)]

and E^{N) = Nec(τ) , (1.14)
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where τ = N2/3κ. Similarly, we have (with ω = κN)

<??(Q) = Nε%(Q) and E?(N) = NeH(ω) , (1.15)

where ε" and eH(ω) are defined analogously to (1.12, 1.13).
Obviously, if we expect to have a nice limit as N^> oo and G-+0 we should fix the

quantities

τ = κN2β (fermions) , ω = KN (bosons) .

Numerically, K «10 " 3 8 for neutrons or nuclei and TV is about 1057 for a neutron star
or white dwarf, so this limit is quite justified physically.

Our main theorems can now be stated.

Theorem 1 (fermions). Fix τ = κN2/3 and q with τ<τc. Then

lim

If τ>τc then lim E?(N)=-oo.

Theorem 2 (bosons). Fix OJ = KN with ω<ωc. Then

lim E?(N)/E?(N) = \ .
JV^oo

If ω> ωc then lim Eg(N) = — oo.
N-+σo

Corollary 1. Let NJ{K) [respectively N®(κ)] be the critical particle number
for the stability of (1.1) in the fermion (respectively boson) case, i.e. NQ(κ)
= sup {N\E?(N)> -oo}. Then

1 =lim Nf(κ)INfiκ) = \im N?(κ)/Nb(κ)

if q is fixed in the fermion case.

Remarks, (a) In fact, the errors between E®(N) and E%(N) [respectively E^(N)]
can be estimated (see Sect. II). The difference between the quantum and
semiclassical critical particle numbers can be bounded for large N as follows

(κ)^Nf(κ)^(l -20q1/9Nf(κy1/9)Nf(κ) ,

κ)^(l -\0Nb(κyll3)Nb(κ) .

(b) It was proved in [19] that lim Nf(κ)/Nf(κ) is between 1 and 1/4 (roughly).
Likewise, lim N^(κ)/Nb(κ) is between 1 and 1/2.

Theorems 1 and 2 show that we can study HκN by means of its semiclassical
approximations, (1.4) and (1.6), and therefore it behooves us to study the latter.
Auchmuty and Beals [1] showed that there is a minimizing ρ for (1.4) for each
N<Nf and that this ρ has compact support. They did not prove uniqueness.
Later, Lions [20, Theorem II.2] proved that any minimizing sequence of ρ's
for (1.4) has (after translation ρ(x)-+ρ(x +y)) a strongly convergent subsequence in
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The next two theorems summarize some properties of E£(N) and E^(N) which
were not previously known, but which are physically important. For them, we need
the notion of symmetric decreasing functions and rearrangements. For the
convenience of the reader, we collect some basic definitions and facts about this
subject in Appendix A. Since the functions we are interested in are all symmetric
decreasing, we shall abuse notation by writing, say, ρ (r), ρ (r) = dρ/dr, etc. with r = |x|
for a function ρ: IR3->IR.

Theorem 3 (fermions). (a) For each N<Nf, there exists a symmetric decreasing
minimizer ρN(x) for E^(N). It satisfies the Euler-Lagrange equation for some
Lagrange multiplier μ:

1/2-m = {κ\xΓ1*ρ-μ}+ , (1.16)

where {/(x)}+ -max (/(*), 0) and η(x) = (6π2ρ(x)/q)1/3.
(b) Any minimizing ρ for E^(N) is symmetric decreasing after translation and

satisfies (1.16) for some μ.
(c) There is no minimizing ρ for E%(Nf) even though E%{Nf) is finite.
(d) Eχ(N) is a strictly concave, monotone decreasing function which is continuous

at the end point, Nf, and Eζ(Nf)= —mNf.
(e) Let μN be the Lagrange multiplier associated to some minimizer ρNfor N<Nf.

Then the right and left derivatives of E%(N) satisfy (dE%/dN)+ ̂ μN<.(dE£/dN)- .
(f) μjy-xx) as N^Nf.

Remarks, (a) The Euler-Lagrange equation (1.16) is in fact equivalent to the
Newtonian limit of the Tolman-Oppenheimer-Volkoff equation ((11.1.13) and
(11.3.4) of [27], see also [24]). By differentiating (1.16) with respect to r we have

1 2

ef(e) = — lη2(r) + m2Γ1/2η(ry1ρ(r)= -κM(r)/r2 ,
q (1.17)

r

M{r) = 4π\s2ρ{s)ds .
o

Let P(r) = \ * \ k4(k2+m2y1/2dk be the pressure ((11.3.43) of [27]). Then (1.17)
6π 0

can be rewritten as an equation of gravitational-hydrostatic equilibrium:

= κM(r)ρ(r) . (1.18)

Equation (1.18) is the Newtonian limit of the TOV equation. For historical reasons,
we call (1.16), and its equivalent (1.18), the Chandrasekhar equation.

(b) The Euler-Lagrange equation for (1.4) is really 7/(ρ)—κ|Λ:|~1 *ρ—μ = 0
when ρ (x) > 0 and ^ 0 when ρ (x) = 0. But, since^'(0) = 0, this is equivalent to (1.16).

(c) (1.16) is equivalent to a second order partial differential equation. See (4.7)
and Lemma 8.

(d) Theorem 5(b) improves Theorem 3(e).

Theorem 4 (bosons), (a) For each N<Nb, there exists a symmetric decreasing
minimizer ρN(x)for E"(N). It satisfies the Euler-Lagrange equation with Lagrange
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Fig. 1 *—

or E H ( N )

N f or N b

= -oo

- m N f or - m N b

multiplier v in the distributional sense (with p2 = —A) :

[(p2 +m2)112 -m]ρ1/2 = (κ\x\~1 *ρ-v)ρ1/2
(1.19)

(b), (c), (d), (e), (f) Same as in Theorem 3 mutatis mutandis.
Figure 1, which is schematic, summarizes parts of Theorems 3 and 4.
The fact that $£(ρ) has a local kinetic energy enables us to study E%(N) in more

detail. In the next theorem, we show that E^(N) has a unique minimizer up to
translation for 7V< Nf. We also show that the central density is strictly increasing to
infinity while the radius is strictly decreasing to zero as N^Nf.

The next two theorems are stated only for fermions. While we do not expect that
their analogues fail for bosons, to prove them would require a great deal more work.
It will be time enough to undertake this work when boson stars are seen in the sky.

Theorem 5 (fermions). (a) For each N<Nf the minimizer ρN is unique up to
translations ρ(x)^>ρ(x + y) for j e R 3 .

(b) E£(N) is differentiable in N and thus dE£(N)/dN= -μN.
(c) Each ρN has compact support. Let RN denote the radius of its support. ρN(r) is

real analytic for r < RN. RN is a strictly decreasing function of N. RN->0 as N^>Nf

and RN->cc as JV->0.
(d) Let OCN = QNΦ) be the central density of ρN. Then ocN is a strictly increasing

function of N tending to oo as N->Nf.
(e) Every radial solution o/(1.16) is a minimizer for N=§ρ.
(f) Any two ρN's intersect at exactly one value of r.
(g) IfNγ<N2 then M1(r)<M2(r) for allr>0 [M(r) is defined in (1.17)].
Some of these results are displayed schematically in Fig. 2.

Remarks, (a) We can relate Theorem 5 to the stability theorem given in e. g. [24,27].
Since the Euler-Lagrange equation is equivalent to the Chandrasekhar equation,
Theorem 5 asserts that any solution of the Chandrasekhar equation with given
central density is an absolute (global) minimizer for some EC(N) or, in other words,
is stable. However, our result is stronger than the standard result in [24, 27] where
only local stability is discussed.
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Fig. 2

(b) The normalized semiclassical functional εc

τ has properties similar to $%. In
particular, ec(τ) has a unique solution ρτ (say). It is easy to check from the scaling that

(c) As will become clear, the uniqueness (up to translations) of the solution
amounts to the fact that the radius and central density of the star is a continuous
function of the particle number. There are no "phase transitions". While it is clear
that the radius is a continuous function of the central density α, it is not obvious that
there are some α's which do not correspond to some minimizer. If that were to
happen (and we shall show that it does not) then α (and hence the radius) would not
be continuous in N.

Equation (1.16) is equivalent to a PDE as shown in (4.7). [Actually, the fact that
every solution to (4.7) is a solution to (1.16) is not obvious; in Lemma 8 we prove
this for radial solutions.] Theorem 5 translates into statements about the ODE
arising from (4.7) in the radial case. This kind of ODE was investigated in an
important paper of Ni [23]. He proves that R(oc) is a decreasing function of the
central density, α, [cf. Theorem 5(c) and (d)] but his uniqueness problem is different
from ours since he fixes R while we fix N. It is possible to use Ni's result to prove
Theorem 5 [except for (g)]. We originally followed that route and found the proof to
be quite complicated. The proof we actually present here is, in our opinion, much
more direct. It uses the variational principle in an essential and, we believe, novel
way. Admittedly the class of ODE's that can be treated by our method is more
restricted than Ni's.

We turn now to the connection between the ground state ofHκN and the unique
semiclassical density ρN that minimizes $%. Recall that ρN(x) = ρτ(N~1/3x), where ρτ

minimizes εc

τ and is independent of TV, and τ = κN2β. Given a normalized N particle
function, φ, of space-spin we define the one-particle density as

; σu...,σN)\2dx2...dxN
(1.20)
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(A similar definition holds for bosons without £\) In some sense, if φN is a "ground
σ

state" of HκN, and if ρ% is the density defined by (1.20) with φN, we expect that
ρ®(N1/3x) should converge to ρτ(x) as 7V-»oo. There are several conceptual
difficulties with this expectation as we now explain.

For one thing HκN is translation invariant so it has no L2 eigenfunction. For this
reason, and also because it is physically sensible to consider only functions ψ which
are "near" the ground state when the particle number is huge, we first have to
introduce the concept of an approximate ground state as in [18].

Definition 1. Fix τ. A sequence of normalized wave functions φN is said to be an
approximate ground state if, as N-+GQ,

N-^iφ^H^φ^-E^O . (1.21)

Even with this definition there is another problem. In quantum mechanics the
fact that φN has a low energy does not imply that the system is localized. To see this,
let g (x) be any nonnegative function with j g = 1, and define the density matrix Γ by
Γ(X9σ\Xfσ') = jg(y)φN(xi+y9σ)φN(x/

i+y,σ')dy. One finds easily that the energy
of Γ, Tr ΓHκN, equals (ΦN,HKNΦN), but Γ has a one-particle density given by
ρΓ = ρ®*g. Thus the single-particle density can be smeared out as much as we
please without affecting the energy.

The usual way out of this difficulty is to fix a certain relatively small number of
particles and then to discuss the density of the rest. But it is clear that the number
that have to be fixed is huge. Thus, this approach is difficult to implement.

What we do instead is to use a localizing potential. We take advantage of the fact
that ρτ(x) has support in a ball of some radius dτ. Let χτ be the characteristic function
of this ball and let λ > 0. If we add — λ J χτρ to εc

τ9 then the minimum energy would be
exactly ec(τ) — λ and the minimizer would be uniquely ρτ [formerly all ρτ{x +y), y e R,
were minimizers]. Let us do the same to (1.1)

HκNλ = HκN-λ J χτ(N-1/3Xi) . (1.22)
ι = l

Theorem 6. Fix λ>0 and τ = κN2/3. Let φNλ be a sequence of approximate ground
states for HκNλ as in (1.21) and let ρ®λ(x) be the densities as in (1.20). Then, for allλ>0
and JV->oo,

ρgλ(iV1 / 3x)-ρτ(x) (1.23)
weakly in L4 / 3 nL x(IR 3).

Remark. The specific choice of χτ as a localizing potential is arbitrary. Any other
potential for which it is possible to prove the uniqueness of the minimum for εc

τλ

would suffice.

II. Convergence of the Quantum Energy to the Semiclassical Energy

The easy part is the upper bound to EQ(N) and we shall dispose of that first. Our
proof is basically the same as that in [19, pp. 503-508] which uses the variational
principle with coherent states for fermions and a product state for bosons. Only the
main points need be given here.
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A.I. Upper Bound to the Quantum Energy (Fermions)

To imitate the proof of [19, Theorem 2] it is only necessary to verify the analogue of
[19, Eqs. (45), (46)] for our kinetic energy, namely for all k,peWL3

[k2 + rn2]112 -m^\k+p\ + \p2 + m 2 ] 1 / 2 -m . (2.1)

[This follows from the triangle inequality by thinking of (k,m), (/>, — m) as two
vectors in R 4 with the Euclidean norm.] Then we deduce [19, Eq. (51)] that for every
nonnegative ρ(x) with J ρ = N and every ξ > 0,

) κ J ρ 4 / 3 + 2Nξlβ + ξ~1κ J ρ 2 . (2.2)

Choosing ρ to be a minimizer, ρ, for $% a n d optimizing ξ we obtain

EQ(N)^Ec(N) + (1.6S)τN1/3 j / 4 / 3 + 3TV7 / 9τ1 / 3(|/2)1 / 3 . (2.3)

[Recall τ = κN2β and ρ(x) =f(N ~1/3x).] Since EC(N) = Nec(τ) and/e L2 n U° for a
minimizer (cf. Sect. IV) when τ < τc, we see that (2.3) can be bounded for all τ < τc as

-C1(τ,q)N~2/9) (2.4)

for some function C^τ, q). Theorem 2 of [19] states that EQ(N)= — oo when
τ>τc{\+C2N~219).

A.2. Upper Bound to the Quantum Energy (Bosons)

Again, we follow [19, p. 505]. Given ρ(x) ̂ 0 with j ρ = TV, we define the normalized
variational function

ψ(x1,...,xN) = N~N'2 Π Q(xj)112 (2-5)
J = l

Then, adding and subtracting the self interaction, we get

(ψ,HNφ) = ̂ H(ρ) + 1

τκN-1D(ρ,ρ) . (2.6)

Choosing ρ to be a minimizer, ρ, for δ H and recalling that ω = KN, ρ (x) =f(N ~1 x),
we obtain the analogue of (2.4) for all ω<ωc\

EQ(N)^EH(N)(l-C3(ω)N-1) . (2.7)

When ω>[N/(N-l)]ωc, EQ(N)= -oo.
Now we present the lower bound to EQ(N) which, apart from the analysis of the

semiclassical equation, is the main mathematical point of this paper.

B.I. Lower Bound to the Quantum Energy (Fermions)

As in [19, Eq. (4)] we write HN as a sum of operators, but here the operators will be
more complicated than in [19]. Let P be a partition of{l,...,N} into two disjoint

sets πι and π2 of sizes L and M respectively, with L + M=N. There are I such

partitions. X= {x1,. . . , xN} denotes the N variables in R 3 .
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H"-\τ{ΐ}'V]+Hm - <2 8)

The hP and H(2) are given in terms of three positive parameters e, κ\ ε with ε< 1 as

hP = (ί-ε) Σ {(pϊ+m2y'2-m}-κ'e\Σ Σ frt-XjΓ1

-e Σ K - ^ Γ ' - Σ
 δ'(χ)~e Σ w l > (2.9)

j<keπ2 ieπi jeπi A

^ ( Z ) . (2.10)
i = l i = l

In order that (2.8) be an identity we require

[2eLM-e2M(M-l)]κ' = L(N-l)κ . (2.11)

The N functions <5j: IR3iv-^IR are defined to be

(2.12)

According to Corollary B.2 in the Appendix, H{ ' ^ —εmN if the following
condition among the parameters, which we shall assume, is satisfied.

ε^(π/2)N1/3κ'e[l+eM/L] . (2.13)

Concerning the hP we note that they are all unitarily equivalent, so it suffices to
study one of them. Call the first L variables Z= {zx,. . . , zL} and the last M variables
Y= {ji 5 J yiiί}- Since there is no kinetic energy in hP associated with Y, the yt can
be fixed. Furthermore, for i = 1,. . . , L

and, for / = L +j with 1 ̂ j5^ M, δt{X) ̂  δj( Y) (since xL+j=yj by definition). Thus, if
we define hγ on q spin-state fermionic functions of L variables by

L L

i = 1 i = 1

Uγ = κ'e2 Γ £ 1^.-^1-1+ J ^.(7)1 , (2.16)

M

we have that for all P

/zp^inf {inf spec (hγ)} . (2.18)
Y

Lemma 1. If

(2.19)

then for all 7, αra/ vvzϊ/z /C"Ξ(1 -2ε)" 1/c /,

hγ^(1 -2ε)E£,(L) -εmL . (2.20)
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Proof. Let Bj be the ball centered at y3- of radius rj=[2δj(Y)]~ί. These are

pairwise disjoint. Let μ} be the uniform normalized (5-measure on dBj, i.e.
M

μj(x) = (4πtj)~1δ(\x —yj\ — η). Let μ = £ μ,. Let i/r be any normalized fermionic L
j = i

particle function and ρ(x) its density [by (1.20) with L in place of N].
Since D(ρ — eμ, ρ — eμ) ̂  0, one easily derives [using 2D(μJ9 μ3) = r]~1,2D(μ; , μk)

1 x\-1*μj)(x) = \x-yj\-1 for \x-yj\^

)^κ'e\ρ{z)V\z)dz-Uγ . (2.21)

Hence, hγ can be bounded by

)^(1 -2ε)KQ(ψ)-κ'D(ρ,ρ) + εKQ(ψ) , (2.22)

(2.23)

By Lemma B.3 (Appendix) vsύhg(x) = ξ3μ exp (-πξx2/2) and (g, \p\g) = 2ξlβ,

we have

) . (2.24)

The remainder terms which we have to bound below are

R= -2(1 -2ε)ξ1/2L + εKQ(ψ)-$; κf J ρ(x)w(x-^)ρ(^K^j (2.25)

with w(x) = \x\~1 -(g2*\x\~1*g2) (x). The integral in (2.25) can be bounded using
Young's inequality by ||w||2||ρ||4/3. Clearly, ||w||2 = C^~1 / 4 with Caconstant; one
easily finds C2 ̂  32/(3 π1 / 2). Optimizing the first and last terms in (2.25) with respect
to ξ (and replacing 1 -2ε by 1) we get

R^ -(3/2)C 2 / 3(κ /) 2 / 3L 1/ 3 | |ρ | |^ + ε^(ίA) . (2.26)

But by (B.10), KQ(φ) ̂ 1.6q~1/3 | | ρ | $ | -mL since (p2 +m 2 ) 1 / 2 ^ |/?|. Thus, condition
(2.19) implies R^ -εmL. D

Let us now put our results together to prove Theorem 1. There are five
parameters L, M (with L + M=N), ε, e, /c'. These must satisfy (2.11), (2.13), (2.19).
We set e = LjM and determine κf from (2.11), whence κf <κN/L. Then we take

ε = \Jq1/3κ2/3N2/3L-1/3 = lJq1^τ2/3N2^9L-^3 (2.27)

so that (2.19) is satisfied (as N^oo, L/N-+1, so ε< 1/2), The right side of (2.13) is
less than πτN2/3/M, so (2.13) will be satisfied [with (2.27)] if we choose

(2.28)

Finally, L = N-M=N(ί -OiN'219)) and ε = O(N~1/9).
Our lower bound (2.8, 2.20) is thus

E?(N)^(N/L)(1 -2ε)E^(L)-2εmN (2.29)
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with (1 -2ε)κ" = κ'<κN/L. Since N-+EC(N) is concave and £ c(0) = 0 (Sect. Ill),
(N/L)EC(L)^EC(N), and thus

E$(N)^N{ec(τ")-2εm} (2.30)

with τ" = (l-2ε)~1τN/L = τ + O(N~1/9). This agrees with Nec(τ) to O(N8/9)
provided τ< τc. D

.5.2. Lower Bound to the Quantum Energy (Bosons)

The proof of Theorem 2 closely follows that of Theorem 1 just given, and only the
differences will be mentioned below. Everything from (2.8) to (2.18) is the same.
Condition (2.19) is not needed and the replacement for Lemma 1 is

Lemma 2. Let K" = (1 — ε)" 1 K'. Acting on L2(R3 i V) without statistics, hγ satisfies (for
all Y)

hγ^{\-ε)E»{L) . (2.31)

The proof is the same as for Lemma 1 up to (2.22), but now we do not split KQ(ψ)
into two pieces. We merely use Lemma B.5 which immediately yields (2.31).

Our only conditions are (2.11) and (2.13). As before, we set e = L/M and
determine κr from (2.11), giving K'<KN/L. TO satisfy (2.13) we take

ε = πN4/3κ/M=πN1/3ω/M . (2.32)

(Recall Nκ = ω for besons.) We take M=N2β so that ε = cN~lβ and L/N
= 1-N~ίβ. Then [again using (N/L)EH(L)^EH(N)]

E?(N)^N{eH(ω") -εm} (2.33)

with ω" = (l -ε)~ίωN/L. This agrees with NeH(ω) to O(N2β) when ω < ω c .

III. Properties of Semiclassical Energies

We begin with some a priori bounds on the components of the energy.

Lemma 3 (fermions). For any ρ^O with J ρ = N^Nf we have the following a priori
estimates:

(3.1)

-(N/Nf)
2/3]1/2 , (3.2)

with C^m^ (ρF)4 / 3 J (ρF)2 / 3}1 / 2 \\QF\\Ϊ\ where ρF is any mίnimizerfor F(ρ) in (A.4).
In particular, (3.2) implies that EC(N) is left continuous at Nf andEc(Nf) = —mNf.
When N>Nf, EC(N)= -oo.

Proof LQtjo(ρ)=j(ρ) + mρ. By definition [and recalling y = J (6π2/g)1/3]

= (N/Nf)
2/3[$j0(ρ)-(Nf/N)2βκD(ρ,ρ)] + (l -(N/Nf)

2β) Jyo(ρ) .
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Since j ρ = N and κ = σj1 yNJ2β we have from the inequality JjoG?) = 7 J Q4/3

The last inequality follows from the definition of σf in (A. 5) and J ρ = N.
Let Qλ(x) = λ3ρ(λx), where ρ^O is a fixed minimizer for F(ρ) in (A.4) with

Jρ = l. By considering ρχ(N~lβx), we have from the variational principle that
mN+Ec(N)^N$j0(ρκ) -N5/3κD(ρλ, ρλ). Since (p2 + m2)1/2 ^ \p\ +m2/2\p\, we find

4/3+& m V Y / 3 . Using this,
2(\6yλy1 \ ρ2β-κN2βλD(ρ,ρ)] .

By definition, D(ρ, ρ) = σf J ρ4 / 3 and κ = σj1yNJ2β, whence

mJV+£c(Λ0^7V{[l -(NINff
l3]λy j ρ4 / 3 + 9 m 2 ( 1 6 ^ ) " 1 J ρ2/3} .

Optimizing this with respect to λ yields (3.2) and it also yields EC(N) = — oo when

iV>iV/. D

Lemma 4 (bosons). For any ρ^O am/ j ρ = N^Nb, we have the following a priori
estimates

N) , (3.3)

(3.4)

= 2m{ρψ, \p\ρψ)lβ(ρψ, \p\~lβ ρψ)2β \ρB\\ϊl and ρψ is any minimizer for
B(ψ) in (A.6). Corollary A.2 implies that C<oo. In particular, EH(N) is left
continuous at Nb and EH(Nb)= -mNb. When N>Nb, EH(N)= -oo.

Proof Similar to Lemma 3, one uses (p2+m2)1/2^\p\+m3/2\p\~lβ. D

In order to prove the concavity of EC(N) and EH(N), a technical lemma, whose
proof is elementary, is needed.

Lemma 5. Suppose f: [a, Z>]->1R is a strictly decreasing concave function. Then for any
constant s>0 the functions g(t) = tf(st2β) and h(t) = tf(st) are strictly concave on
[(a/s)3/2,(b/s)3β] and [a/s,b/s] respectively.

Now we can begin the proofs of Theorems 3 and 4.

Proof of Theorems 3(d) and 4(d). ec(τ) in (1.13) is a strictly decreasing concave
function because ec(τ) = inf {non-constant linear functions of τ}. The strict con-
cavity of EC(N) and EH(N) follows from the scaling relations (1.14, 1.15) and
Lemma 5. The continuity of EC(N) and EH(N) at Nf and Nb is in Lemmas 3
and 4. •

Proof of Theorems 3 (a), (b), (c), (e). The existence of a minimizer was first proved
by Auchmuty and Beals [1]. The fact that a minimizing ρ is necessarily sym-
metric decreasing follows from the strong rearrangement inequality in [13] (see
Appendix A.I).

Part (b) is a standard result in the calculus of variations.
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To prove (c) we use the a-priori estimate (3.2) which reads (under the
assumption of a minimizing ρ when N=Nf) —mNf = Ec(Nf) = £>c(ρ). Since
(p2 +m2)1/2 —m > \p\ —m, we have generally (with j ρ = N)

j(ρ)>yρ*β-mN . (3.5)

Thus, in our case, —mNf>A(ρ)—mNf with A(ρ) = y j ρ 4 / 3 — κD(ρ,ρ). But when
N=Nf = τ3/2κ~3/2, A(ρ)^0 [see (1.9) and (A.5)]. This is a contradiction.

As for (e), the concavity of EC(N) implies the existence of left-hand and right-
hand derivations for all N, and they are equal a.e. Part (e) follows by considering tρN

as a variational function, differentiating $>c(tρN) at t = 1 + and 1 —, and using the
Euler-Lagrange equation (1.16). D

Proof of Theorem 4 (a), (b), (c), (e). The proof is essentially the same as that for
Theorem 3 except for the existence part (a). Here the proof is virtually the same as
that for Choquard's equation in [13]. Note that Lemma 4 places an a-priori bound
on the kinetic energy which permits us to use a weak compactness argument. The
key fact is in (A.2) [and also (A.I)] which permits us to restrict a minimizing
sequence to symmetric decreasing functions. Note that the weak compactness
argument leads to the existence of a function ρN satisfying J ρN^N and SH{ρN)
^ EH(N). Since EH(N) is strictly monotone decreasing in TV, we must have equality
in both cases. •

To prove Theorems 3(ί) and 4(f), Lemmas 6 and 7 (which are intrinsically
different in the two cases) are needed.

Lemma 6 (fermions). Let ρ and μ > 0 satisfy (1.16) with J ρ = N. We do not assume ρ is
a minimizer for N, but we do assume ρ is radial, i.e. ρ(x) = ρ(r), r = |JC|. Then

(3.6)

(3.7)

00

Proof Multiply (1.17) by r3ρ(r) and integrate. Then - 4 π J r3j"(ρ)ρρdr
o

00

= 4πκ j M(r)ρ{r)rdr. But the second integrals is κD(ρ, ρ) (by Newton's theorem).
o

The first integrals is — 4π j r3 — (ρj'(ρ) —j(ρ))dr. After integrating by parts [and

using (ρjf —j)(0) = 0] it becomes 3 J {ρj'(ρ) —j(ρ)}dx. This proves (3.6) since $c(ρ)
= K(ρ)—κD(ρ,ρ). To prove (3.7), multiply (1.16) by ρ(x) and integrate. Then
J ρj'(ρ)dx = 2κD(ρ, ρ) —μN. Combining this with (3.6) yields (3.7). •

Remark. (3.6) is a υirial theorem. It can also be proved for minimizing ρ's by
replacing ρ(x) by ρλ(x) = λ3ρ(λx) and differentiating $c(ρλ) with respect to λ at
λ = l.

Lemma 7 (bosons). Suppose ρ(x) ^ 0 , ρ 1 / 2eL 2(IR 3), (ρ1 / 2, \p\ρ1/2) < oo and ρ satisfies
(1.19) for some v (in the sense of distributions). Let Jρ = JV. Then

(3.8)
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Proof. Since (ρ1/2, \p\ρ1/2)< oo and ρ1/2eL2, we have j ρ(\x\~1*ρ)<(const) ||ρ||i/5
< oo by Young's and Sobolev's inequalities. Multiply (1.19) by ρ1/2 and integrate.
This yields (3.8). Note that although (1.19) holds only in Q)\ this integration is
justified since all the terms are separately finite. •

Proof of Theorems 3(f),4 (f). We prove the boson case using Lemma 7. The fermion
proof is the same using Lemma 6. Assume, on the contrary, that there is a sequence
N->Nb with minimizers ρN satisfying (1.19) with vN. Suppose that vN-f>cc. Then
since £H(ρN) = EH(N)^EH(Nb)= -mN f c [Theorem 4(d)], we see from Lemma 7
that K(ρN) is bounded. Recall in the proof of Theorem 4(a) that the proof of the
existence of a minimizer for any N needed a bound on K(ρ) for a minimizing
sequence. Formerly we used Lemma 4 to achieve this when N< Nb. But now, by our
assumption on v^, we also have uniform boundedness of K(ρN). By the proof of
Theorem 4(a) we have a function ρ (weak limit of ρN) with j ρ^Nb and $H(ρ) =
—mNb. As in Theorem 4(a), this implies that ρ is a minimizer for N=Nb and this

contradicts Theorem 4(c). •

IV. Properties of the Semiclassical Density (Fermions)

Our main goal here is to prove the uniqueness of the minimizer of the semiclassical
functional for each N<Nf. This will enable us to prove Theorem 5. The main facts
about the density ρN are summarized in Fig. 2, which will be explained later. We
shall explore all radial [i.e. ρ(x) = ρ(|x|)] solutions to (1.16); this class includes all
minimizers by Theorem 3. Henceforth ρ will be assumed to be radial without further
mention. We shall also suppress irrelevant constants [by replacing ρ(x) by aρ(bx)]
so that (1.16) becomes

/ f e ( * ) ) = [ ( l * Γ 1 * β ) ( * ) - μ ] + (4.1)

with/(0 = ('2/3 + l ) 1 / 2 - l τ h e s i d e condition is j ρ = N<Nf = (3/4σf)
3/2 in these

units [see (A.5) and Lemma 3]. We also have defined

r

M(r) = 4π \ ρ(s)s2ds (4.2)
o

so that
00

F f i Ξ | χ | - 1 * ρ = r- 1 M(r) + 4π J tρ(t)dt . (4.3)
r

Equation (4.1) implies

= -r~2M(r) . (4.4)

A. Regularity Properties

Since Vρ(r)&N/r as r->oo we see, first of all, that μ>0, for otherwise for large
r,ρπ(N/r)3/2 φL1. By Newton's theorem, (4.1) implies that ρ has compact support
in a ball of radius

R = N/μ (4.5)
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and, since Vρ(r) is continuous in r andy'(ρ) is continuous in ρ withy '(0) = 0, we have
that ρ(r)->0 as r-+R. Since dVρ/dr<0, in the domain BR = {r\r<R] we can write
(4.1) as

j'(ρ(x))=VQ(x)-μ , in BR (4.6)

with ρ(R) = 0. We also see [since y'(ρ) is monotone] that ρ is necessarily monotone
decreasing. Since VQ{r) < N/r we can easily iterate (4.6), starting withy'(ρ) < N/r —μ,
to conclude that ρ is C00 in BR. (Here we have to use the fact that (/O'KO
= ( ί 2 +2ί) 3 / 2 is C00 for t>0).

By applying Δ to (4.6) we get

-AΘ = 4π(jT1(Θ) = 4π[Θ2+2Θf12 (4.7)

with Θ=Vρ— μ^O. Equation (4.7) holds on 2?Λ with the boundary condition
Θ(R) = 0. Notice that in this version of the problem N is not mentioned. By [22,
Theorem 5.8.6] we can go one step further and assert that Θ (and hence ρ) is real
analytic in BR.

Since ρ is radial, (4.7) is an ODE. We are looking for a strong solution to (4.7),
with (9(0) = /? < oo and <9(0) = 0. Starting with these initial conditions (with β
arbitrary) we can easily (using Picard's method for example) prove that (4.7) has a
unique positive solution for each β up to some R = R(β) at which Θ(R) vanishes
(which conceivably could be R=oo).

It is clear that every strong solution to (4.7) with the property that R(β)<co
gives a solution to (4.6). Conversely, a solution to (4.6) gives a solution to (4.7) with
β =J'(QΦ)) However, it is conceivable that for some β > 0, the solution to (4.7) has
R(β) = co. Later on, by an indirect argument, we will show that this does not
happen, but it seems worthwhile to give a direct proof now.

Lemma 8. Let Θ be the radial solution to (4.7) obtained by integrating outwards
from r = 0 with the initial conditions Θ(0) = β and $(0) = 0. Then there is some
0<R(β)<oo such that θ(R(β)) = 0. Forr<R(β\ <9(r)<0.

Proof. Integrating (4.7) twice we get, for r^

Θ(r) = β-4π] (Γ1~r-ί)t2ρ(t)dt (4.8)
o

with ρ = ((92-f 2Θ)3/2. From (4.8) it is clear that 0(r)<0. Suppose R(β) = ao. We
r

first claim g(t) = tρ(t)eLx{{0, oo), dr). This follows from J (Γ1 -r~ι)tg(t)dt
r/2 rβ 0

^ { (t~1-r~1)tg(t)dt^ J g{t)dt\ thus, if giήφL1 we would have from (4.8)
0 0 r

that Θ(r)<0 for large r. Next, by Proposition 9 below, r'1 j tg(t)-+O as r->oo.

Then, from (4.8), as r->oo, Θ(r)->β-C with C=4π J g(t)dt. Since θ
r 0

β^C. Hence Θ ( r ) ^ 4 π r - 1 J tg(t)dt^C'/r for large r. But, since ρ^(2<9)3/2, we
0 o

have that ρ>C"r~ 3 / 2 for large r and hence J g(t)dt=oo, which is a
contradiction. • °
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oo r

Proposition 9. Suppose/: [0, oo)->IR+ and j f(t)dt = C< oo. Then r " 1 j tf(t)dt^O

as r->oo. ° °
r rε r

Proof. Let /(r) = J ί/(0Λ. Choose l > ε > 0 and write /(r) = j tf(t)dt+$ tf(t)dt.
0 rε 0 rε

The first integral is bounded by rε \f(t)dt^rεC. The second is bounded by rKε(r)
0

with Kε(f) = \f(i)dt. Since / e l 1 , £ e-*0 as r->oo. Thus lim sup r~ιI(r)
rε

^ ε C + lim^ ε (r) = εC. This holds for all ε, and thus proves the Proposition. •

Let us pause to summarize the situation. For each choice of the central density
ρ(0), which we henceforth call α ((x = (β2 + 2β)3/2) there is (by Lemma 8) a unique
radial solution that satisfies (4.1) for some unique μ = μ(oc) > 0. This ρ is real analytic
up to R = N(oΐ)/μ(aι), where jV(α) = Jρ. The qualitative nature of this ρ is shown
in Fig. 2.

Suppose that N(oc) were a strictly monotone increasing function of α. Then, since
a minimizing ρ satisfies (4.1) and is radial we would conclude: (i) All radial solutions
of (4.1) are minimizers (ii) for each TV the minimizing ρ is unique. But we do not yet
know that N(μ) is strictly monotone increasing, and that is the problem we now
address. Up to this point the arguments were fairly standard (with the possible
exception of Lemma 8) and that is why we were brief.

B. Uniqueness and Comparison Properties of Minimizers

Our strategy will be to first focus on solutions to (4.1) which are minimizers for Sc.
Then we will show that all solutions to (4.1) are minimizers.

Lemma 10. Suppose ρx and ρ2 are minimizers for Sc with jρ i=A Γ i , \Q2 = N2

respectively. Let Rx and R2 be the radii of their supports and let R = max {Rγ, R2).
Suppose that ρi(O)>ρ2(O). [If ρ^O) = ρ2(0) then ρ i = ρ 2 and this is uninteresting.]
Then for allO<r<Rwe have M1(r)>M2(r) [see (4.2)].

Proof. Suppose on the contrary, there is an r0 such that M 1 ( r 0 )^M 2 ( r 0 ) . Since
M1(r)>M2(r) for r sufficiently small, there exists (by continuity) an r, 0 < r ^ r o ,
such that M1(r) = M 2(r)Ξg(say). We first note that ρ\{f)^ρ2(r). Otherwise from
(4.4) we would have ρ\(r) = ρ2(r) which together with ρi(r) = ρ2(r) would imply
Θ^r) = Θ2(f) and Θλ{r) = Θ2(r). By the uniqueness theorem of ODE, Θx = Θ2 which
is a contradiction. r

Now define the set (for Λ ^ β ^ O , j=l,2)jtfQ(Nj) = \ρ^0\ J ρ = Q and

j ρ = Nj — Q\. which is subset of J#(NJ) = {ρ ^ 0 |J ρ = Nj}. From the variational

principle, EC(N1) ^ inf $c(ρ) = EQ{Nγ). But since ρx e ^ ( N ^ ) by assumption,

Q

we have in fact Ec(Nί) = EQ(N1). Similarly EC(N2) = EQ(N2). Now define the
following sets (with /, o denoting inside and outside)

^ i = {ρi^0\ρi(x) = 0 if \x\>r and j ρ ι = ρ } ,

^J° = {ρ°^0\ρo(x) = 0 if \x\^r and J Q° = Nj-Q) .
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It is easy to check that S : ^ f x jrf?^stfQ(Nj) defined by S(ρi,ρ°) = ρi + ρ° is a
bijection. Define a new functional on jtf°

W) = lΛQ°)-D{ρ\ρ°)-Q J M^ρ^dx .

Let Si

Q{ρi) = Sc{ρi). Then, for any ρejtfQ(Nj) it is easy to check that [with
S~1(ρ) = ρ\ρ°]£>c(ρ) = £)ι

Q(ρi) + £>Q(ρ0\ where we have used Newton's theorem
and the definition of Q= J ρ.

Let ££ = inf {^(ρOl^e J**} and E%tj = mf {<^(ρ°)|ρ°ej//}. Then by the varia-
tional principle, we have EQ(Nj) = Ei

Q + EQj. Then, since ρ, is a minimizer for
Ec(Njl Sfap + Wφ^iQj^Eh + EZj. Since 4^4(ρj) and E0

Q(ρ])^(ρ°)
by the variational principle, we obtain Eι

Q = ̂ (ρ j ) and EQJ = <f>Q(ρ°). NOW let ρ = ρ[
+ ρ2. It is easy to check that ρ is also a minimizer for N2 by using <fζ)(ρ2) = $Q{Q\)
But ρ is not continuous at r, which violates the regularity of the minimizer proved
above. Another way to reach a contradiction is to note that ρ = ρ2 + ρj is a minimizer
for Nι. One of the two functions, ρ and ρ must be increasing at r, and this contradicts
the symmetric decreasing property of minimizers. •

Remarks, (a) The same method and conclusion apply to minimizers for some other
functional $(ρ) which can be written as S{ρ) = \j(ρ{x))dx—D{ρ,ρ).

(b) Lemma 10 does not say M1(R)>M2(R). In fact, we shall later see that this is
true, but we do not yet know it. If we knew in advance that Mί(R)>M2(R) the
proof of the following Lemma 11 would be trivial.

Lemma 11. There exist at most one minimizing ρ for EC(N) when N<Nf.

Proof. Suppose, on the contrary, that we have two minimizers ρi and ρ2 with
ρ1(0)>ρ2(0). Let Rx and R2 be the radii of their supports. By Lemma 10,
M1 (r) > M2(r) for all 0 < r <max (R1, R2). Then R^R2, for otherwise N=M2(R2)
< M 1 ( Λ 2 ) < ^ Let J(z) = 4j(z)— 3/(z)z, whence J(z) is concave since J'(z)= —1
+ (Z 2 / 3 + 1 ) " 1 / 2 is decreasing. From (3.6), 0 = ̂ c ( ρ 1 ) - ^ c ( ρ 2 ) = J[/(ρ 1)-/(ρ 2)]ί/x

= 4π / [J(ρi(r)) -J(ρ2(r))]r2dr^4π J r 2 ^ ) -ρ2(r))J'(ρ2(r))dr. The last
o o

inequality is a consequence of the concavity of /. Integrating the last integral by

parts and using the definition of M(r), we have Org — j {Mγ{r)

-M2(r))J"(ρ2(r))ρ2(r)dr. Since J / ;(z)<0, ρ 2 (r)^0 and Mί(r)>M2(r), this last
integral is negative, which is a contradiction. •

Remark. Note that the only property of/(z) used in the above proof is the concavity
of /(z). Since the concavity of /(z) is equivalent to the convexity of z-^/Xz3),
Lemma 11 holds for all functional withy'(z3) convex.

Lemma 10 says that if ρi(0)>ρ2(0) then TVx^Λ .̂ But Lemma 11 say that
TVx = N2 is impossible if ρ1 is not identical to ρ2. Therefore we have

Corollary 2. Ifρ1 andρ2 are minimizers for Λ^ andN2 respectively andifρι(O) > ρ2(0)
then Nι>N2.
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Lemma 12. Let ρα be the unique bounded nonnegative solution o/(4.1) with central
density α = ρ(O). Then ρ is the unique minimίzer for EC(N) with N=§ ρa. In other
words, all the solutions of (4 A) parametrized by their central density are in fact minima
of EC(N) for some N.

Proof Let G = (O,Nf) and let D = {a\ρa is a minimizer for some NeG}. For each
NEG there is a unique minimizing ρN, and hence a unique central density α^. We let
Γ: G->D denote this map from NeG to otN.

(i) Γ is 1:1 by the aforementioned uniqueness of the ODE (4.7) with given initial
condition α.

(ii) Γ " 1 is continuous on D and D is closed in R + . To prove this we suppose
a,—>α e IR + monotonically. By Corollary 2,Nj = Γ~1 (α7) is monotone and bounded,
so Nj has a limit N. It is clear that N<Nf for otherwise μ/ ->oo [Theorem 3(f)] but
Vj(r) is uniformly bounded [since ρ7 (r)<α7 and J ρ ^ N y ] ; these facts would
contradict (4.1) when r is small. By continuity of the solution of the ODE with
respect to α (this follows e.g. from the contraction mapping principle) Qj(r)-*ρ(r)
pointwise and ρ(r) satisfies (4.7) with ρ(0) = α. We have to prove that ρ is a
minimizer for N, which will imply α e D (whence D is closed) and Γ ~1 is continuous.
By (3.1) Qj is uniformly bounded in L4 / 3 so (by passing to a subsequence) ρ , ^ ρ
weakly in L4 / 3. Then<f c (ρ)^l im δc(ρ, ) = lim Ec(Nj) = Ec(N). [The lower semicon-
tinuity, namely S>c(ρ)^\im S>c(ρj), follows as in [13], for example. Clearly jy'(ρ)
rglim j7(ρj) since ρ ^ ρ . On the other hand D(ρj, ρj)^D(ρ, ρ) since ρ is symmetric
decreasing and QJ-+Q pointwise.] Thus, ρ is a minimizer for TV because J ρ^N while
EC(N) is strictly decreasing; therefore Jρ = 7V.

(iii) Γ ~ι is 1:1 and continuous from D onto G and also D is closed in 1R+. Hence
Γ - 1 is a homeomorphism from Z> to G. Since G is connected, so is Z>, and therefore
D is a closed interval in R + . Since the only closed interval in R + homeomorphic to
(0,Nf) is IR+ itself, we conclude that Z> = IR+. D

Finally we want to make a qualitative comparison of solutions with different N.
First a technical lemma is needed.

Lemma 13. Suppose Θ1 and Θ2 are two nonnegative solutions of (4.7) with radii 7?x

and R2 with R1<R2. Then there exists an r<R1 such that Θί(r)^.Θ2(r).

Proof This is a standard Sturm comparison argument. Assuming, on the contrary,
that Θ2(r) > Θ^r) for all r<Ru let u(r) = Θ^/Θ^r). Then, from (4.7), u satisfies
Θ2Au + 2Vu'VΘ2 + (F(Θ1)-F(Θ2))Θ2u = 0mthE(t) = 4π(t2 + 2t)ll2(t + 2). Now
u(R1) = 0 and O^w(r) < 1 for r <Rί. Hence g^FiΘγ) -F(Θ2)<0. At a maximum,

w = 0, but this contradicts g<0. •

Lemma 14. Le/ ρx and ρ2 be two solutions to (4.1) with central densities αx > α 2 .

i? : < R2 and there is precisely one point r in (0, R±) at which ρi(r) = ρ2(r) (as in Fig. 2).

Proof We know M1(r)>M2(r) when 0<r<^R = max(RuR2). Suppose R^
Then integrate (4.4) from r<R2 to i?2 for both ρx and ρ2. One has /(ρ£(r))

- / t o ( ^ 2 ) ) = - J s-2Mi(s)ds for ι = l,2. Since f(ρ1(R2))^0=f(ρ2(R2)) and
r

Λfi(J)>M 2(J 1) for 0 < i <i? 2 , we easily conclude /(ρi(r))>/(ρ 2 (r)) and hence
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Qι(r)> ρ2(r) for 0^r<R2. If R1>R2, then this contradicts Lemma 13, so sup-
pose R1=R2=R. Then, similar to Lemma 13, define u = Θ2/Θ1. By Gauss's
theorem Θj(R) = NjR2, since IQJ = NJ. Then u(R) = N2/N1=δ<l. As in Lem-
ma 13 (using Qι^q2), u can have no maximum for r<R. Thus u^(5.However, N2

= $(Θ2

2+2Θ2)
3/2^$(δ2Θ2 + 2δΘ1)

3/2^δ3/2$(Θ2+2Θί)
3/2 = δ3/2Nu so δ^l,

which is a contradiction. Thus, Ri<R2.
Since αx > α 2 the function f=Qι —ρ2 which is C°° for t<Rχ must have at least

one zero in (0, R^. Suppose there is more than one zero. At each zero we have, by
(4.4) that df/dr < 0 (since Mί > M2). But it is easy to see that a C 1 function cannot
have a negative derivative at all its zeros. •

C. Summary

Let us summarize the results of A. and B., for this is Theorem 5.
(i) All radial solutions of the Euler-Lagrange equation (4.1) are in L1 and are

minimizers.
(ii) They are real analytic up to the cut off radius R. For r « R, Θ (r)« R — r so

ρ ( r ) « ( Λ - r ) 3 / 2 as in Fig. 2.
(iii) They are parametrized by the central density α which goes from 0 to oo. μ(α)

and N(OL) are strictly monotone increasing while R(oc) is strictly monotone
decreasing. As α->oo, μ(α)->oo, N(ai)^>Nf,R(<x)->0. As α->0, 7V(α)->0, R(a)->oo
[to be proved in (vii) below], and hence μ(α) = iV(α)/Λ(α)->0. JV, μ, 7̂  are continuous
in α.

(iv) Any two solutions always have exactly one intersection as in Fig. 2.
(v) For each r, the mass M(r) is an increasing function of α.
(vi) Proof of Theorem 5(b). In the notation of Theorem 3(e), suppose that

(dEc/dN) + Φ (dEc/dN) _ for some N<NfΛn this case it is easy to see that μN must
be discontinuous at TV. However, by (4.5) μ^ is continuous since N-+ocN is continuous
(by Lemma 12) and a^R(a) is continuous [by continuity of the solution of (4.7)
with respect to the "initial data" at r = 0].

(vii) Proof of Theorem 5(c). The only fact yet to be proved is that RN^cc as
N-+0 [or equivalently, 7?(α)->oo as α->0]. Suppose on the contrary, R(oι)<Ro for
all α. Choose a solution Θ1 of the Lane-Emden equation

AΘ + 4π(2Θ)3/2 = 0 (4.9)

with Θ1(R1) = 0ίor some Rχ>2R0 andΘi(O) < 1. Such a (^always exists since there is
a scaling Θ(x)->λ4Θ(λx). Letβ = ̂ Θι(Ro) and let Θβ be the solution of (4.7) with

[since Θγ and Θβ are monotone decreasing and Θί(Ro) = 8Θβ(0)]. But this is
impossible as can be seen by the argument given in Lemma 13. D

V. Convergence of the Quantum Density to the Semiclassical Density (Fermions)

Here we prove Theorem 6 for fermions. As explained in Sect. I, we first add a fixed
single-particle potential λχτ(N~1/3x) to HκN. (Recall that χτ is the characteristic
function of the support of ρt.) Following the method in [18] we next add an
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additional one parameter single-particle potential δW(N~1/3x) and differentiate
with respect to δ at δ = 0. Two facts have to be established: (i) an extension of
Theorem 1 to include the potential λχ + δW\ (ii) the differentiability of the
corresponding semiclassical energy with respect to δ. We shall call (i) Theorem Γ
and (ii) Lemma 15.

For any WeC?(WL3) and <5eR, define [with HκNλ defined in (1.22)]

(5.1)
E°δ(N) = inf spec HκNλδ ,

Wρ ,

ρ = l} . ( 5 > 2 )

Theorem Γ (fermions). Fix q,λ and τ = κN2/3 with τ<τc. Then lim N~γE%(N)
= ec

λδ(τ). N-CO

Proof, (a) Upper Bound. Let ρ = ρ*g2 with g(x) = ξ3μ exp (-πζx2/2). Then we
have generally G = \$ {ρ(x)-ρ(x))W(N~1/3x)dx\^ J ρ\\W*g2 -W\«>, where #(x)
= (p / 4 exp (—π<f;c2/2) with ξ=N2/3ξ. By the same method as in the proof of Theo-

rem 1, we only have to show that N'1 [ 1 . 6 8 K j ρ 4 / 3 +2Nξ1/2 + ξ - 1 κ J ρ 2 + G]-^0 as
7V-> oo. Note that the minimizing ξ for (2.2) is ξ = κ 2 / 3, whence ξ = N2/9τ2/3 -> oo. This
implies N~1G= \\ W*g2 - ^ H ^ - ^ 0 as N^oo.

(b) Lower Bound. We only have to show that [cf. (2.25)] N~ίRf = N~1[R + G]
[-2ξιl2L + εKQ(φ)-Cκfξ~ilA\\ρ\\l/3-G]-^0 as N->oo (with |/|_
(0,/)). Let ξ = max {L~4/3 | | ρ | | ^ ( κ ' ) 4 / 3 , i V - 1 / 3 } . Then i V ^ ξ Ξ ^ T V 1 / 3

whence, as in the proof of part (a), G/7V->0 as N-+oo. We take ε and /c' exactly the
same as in the proof of Theorem 1. For the first three terms, we can use the same
estimate as in Lemma 1 if ξ = ZΓ 4 / 3 | |ρ |$3(κ: ') 4 / 3 . lΐ ξ = N~lβ we have that | | ρ | | 4 / 3

^ (const)N 1 7 / 2 4 , and then the result is immediate. D

Lemma 15. Fix λ andτ<τc. Then ec

λδ(τ) is differentίable at δ = 0 anddec

λδ(τ)/dδ\δ=0

= \QτW.

Proof. For each δ>0 choose a function ρδ satisfying δ~1\εc

τλδ(ρδ)—ec

λδ{τ)\-^ΰ
as (5->0. By the variational principle, δ\ρτW^ec

λδ{τ) — e\(τ)^δ\ρδW + ec

λδ{τ)
— εc

τχδ(ρδ). To prove the lemma we only have to show that \ρδW-+\ρτWas <5—•().
Clearly, ec

λδ(τ) is continuous in δ and therefore, by the assumption about ρδ, we see
that ρδ is a minimizing sequence, as <3->0, for ec

λ(τ) = ec(τ) —λ. Since εc

τλ(ρδ)^.^τ(ρδ)
— λ, we have that ρδ is also a minimizing sequence for ec(τ) and \ρδχτ^l- We also
know that the minimizer, ρτ, for ec(τ) is unique if we center it
at the origin (Theorem 5). By Lion's result [20] there exists a sequence yδe!R3

such that ρδ(x + yδ)^>ρτ(x) strongly in L*l3nl}. But since fχτρ<5—>1 we must
have j«5->0. •

Proof of Theorem 6. For any approximate ground state ψNλ we have, from the
variational principle, that

(ψNλ,HNλφNλ)} .
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By taking the limit 7V->oo and then <5->0 (using Theorem Γ and Lemma 15),
lim j ρ%λ(Nlβx)W(x)dx = \ ρτ(x)W(x) for any WEC^(R3). Hence ρ%λ(N1/3x)

—ρτ(x) in weak L 4 / 3 (R 3 ). The fact that ρ%λ(N1/3x)-^ρτ(x) also in weak L 1 ^ 3 )
follows form Lemma III.4 of [18]. D

Appendix A: Some Definitions and Basic Facts

A.I. Symmetric Decreasing Rearrangements

Given a function ^:IR3->(C, the symmetric decreasing rearrangement φ* of ψ
satisfies ι/̂* : IR3-̂ 1R + , φ*(x) depends only on |x| and Lebesgue meas {x\φ*(x) >a]
= Lebesgue meas {x\ \φ(x)\>a} for all a>0. φ is symmetric decreasing if φ = φ*.
It follows that if y : I R + ^ I R + and ρ(x)^0 then $j(ρ*)dx = $j(ρ)dx. Also
(φ*)2 = (φ2)*. A particular case of the Riesz inequality states that

JJ Q(x)Q(y)\x-y\-1dxdy^^ ρ*(x)ρ*(y)\x-y\-1dxdy , (A.I)

and the strict rearrangement inequality in [13] states that (A.I) is a strict inequality
unless Q(x) = Q*(x—y) for some 3

We also have that

, (A.2)

, (A.3)

with T=(p2+m2)1/2-rn = (-A + m2yi2-m. This follows from the proof in [13]
and the fact that the kernels e~^p\x,y) and e~tT(x,y) are symmetric decreasing
functions of x— y, as shown in [4].

A.2. Minίmizers for the Gravitational Energy

In the fermion case we are concerned with the ratio (for ρ e L4/3 nL1)

F(β) = D(ρ,ρ)\\ρ\\;/r\\e\\ϊ213 (A. 4)

which is homogeneous in ρ and dilation invariant. We set

= 1.092 . (A.5)

It is a known fact (proved in [17]) that there is a minimizing ρ = ρF for F(ρ). It is
unique up to scaling, dilation and translation: ρF(x)^>aρF(bx+y). It satisfies
Emden's equation. The value 1.092 in (A.5) is numerical.

For bosons we consider the ratio

| |^| | 2- 2 , (A.6)

σ^EESup {B(φ)\φeL2,(Φ,\p\Ψ)<π} . (A.7)

By (B.10) with N=ί, (Ψ,\p\Ψ)^C\\Ψ\\lβ [actually, there is a Sobolev ineqality
(φ, \p\φ)^C\\φ\\l]. This, together with the Hardy-Littlewood-Sobolev inequality,
D(Q,Q)SC\\ρ\\l/5, shows that B(ρ) is bounded. In fact, the rearrangement
inequalities (A.I), (A.2) permit us to imitate the proof in [17] and show that there
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is a minimizing φ for B(φ) with φeL2 and (φ, \p\φ)< oo. See also the proof of
Theorem 4(a). We have no precise numerical value for σb. However, Theorem 2
states that OJC = l/σb and, using the results in [19, pp. 503, 504] we have that π/4 > σb

> 1/2.7.
Another fact we shall need is

Lemma A.I. Let φ be any minimizer for B(φ). Then φeL3/2 + ε, all ε>0.

Proof. Note that φ = φ* and satisfies

= {W(x)-v}φ (A.8)

with W= (const) Ixp1 * |ι/f|2 and v>0. Equation (A.8) is just the Euler-Lagrange
equation. Since |ι/Ί2 = |ιA2|* a n <^ IΨf^L1, W(x)^0 as |x|-*oo. Thus, writing
/ = {W(x) —v}φ and using φ(x) ̂  0, we have that/+ has compact support in a ball
of some radius R. Since

we see that φ(x)<c\x\~2 for \x\>R. Π

Corollary A.2. If φ is a minimizer for B(φ) then (φ, \p\~1/2φ)< oo.

Proof \p\~1/2 is convolution with |x|~5/2. By the Hardy-Littlewood-Sobolev
inequality φeL12/Ί^(φ, \p\~1/2φ)< oo. D

Appendix B: Some Inequalities

B.I. Domination of the Nearest Neighbor Coulomb Potential by \p\

Let Y= {y1,. . ., yN} be N arbitrary, but fixed points in R 3 and let Z = {z±,. . ., zN}
with ZjGIR, Zj^O be given. Define

HHl3={Σ^ 3 } 1 / 3 (B i)
For ieR 3 , the function

ωYZ(x) = msix \x-yJ\~1zj (B.2)
j

can be called the nearest neighbor Coulomb potential. Let

β = {/|/GL2(IR3), f \fip)\2\p\dp< co} , (B.3)

where f{p) = \f(x) exp (ίp 'x)dx denotes Fourier transform.

Lemma B.I. For all Y and Z and fe Q

(2π)-3 f \f(p)\2\p\dp^(f \p\f)<t-{zy\fωγzf) . (B.4)
π

Proof. If N=\ the lemma is known [8-10,26] and we shall reduce (B.4) to
that case. Let / * denote the symmetric decreasing rearrangement of /. By (A.2)

^ ( / * , \p\f*). On the other hand (f,ωYZf)^(f*,ωγ

t

zf*). We claim that
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ω*z(x)= z\x\ ~\ from which (B.4) follows by applying the N= 1 lemma to /* . To
prove this it is only necessary to note that for all b > 0 (with μ = Lebesgue measure)

μ{x\ωγz(x)>b}^ Σ

= (4π/3)ίΓ3Σ ή = μ{x\z\x\-1>b}. D (B.5)

Corollary B.2. Let ι^:IR3iV->C be an N particle function (without any particular
statistics) in QN. Let ^ : IR3iV->IR denote the N functions defined in (2.12), i.e.
δi (X) = max {\xt —Xj\~1\j + i}> Then for each i

(φ^^φ^d/^iN-iy^iΨ^iip) . (B.6)

Inequality (B.6) holds without regard to statistics. If, on the other hand, ψ is
restricted to be a ^r-state fermionic function, it is possible to prove that

Σ (Ψ,\Pi\Ψmcomi)q-1/3Σ (φ,δtφ) . (B.7)
i = l i = l

Since (B.7) is not needed here we defer its proof to a forthcoming paper of ours.
Fefferman and de la Llave [6] have proved (B.7) for q — 1 but their method does not
appear to be easily generalizable to q > 1.

B.2. Semiclassical Lower Bounds to the Kinetic Energy

The single particle kinetic energy operator is T= (p2 + m2)112 —m with/?2 = — Δ. Let
φ be a normalized wave function for TV fermions with q spin states each and let

(B.8)

be the total kinetic energy. The semiclassical approximation to KQ(φ) is

(B.9)

with Qψ being the single particle density defined by (1.20) and with j(t) given
by (1.3).

It is conjectured that K(ρφ) is, in fact, a lower bound to KQ(φ) but no one has
proved this. Daubechies [4], using the method in [12], has found two lower bounds
of the right form for fermions, the first of which we use here.

> ί.Σ \Pi\\ φ\^M~lβ ί Qφ(x)4/3dx , (B.10)

KQW)^ClKC-%(x))dx (B.ll)

with C = 9.6.
Although (B.10) is important for us, we also need a bound similar to (B.9). This

is provided by
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Lemma B.3(fermions). LetgeQ [cf. (B.3)] with ||gf||2 = l. Then, for all normalized ψ,

K°(Ψ)^iA(Qφ*\g\2))dx-N(g,\p\g) . (B.12)

Proof This is the same as that given in [15, Eqs. (5.14)-(5.22)]. Introduce the
coherent states gpqeL2(JR?) by gpq(x) = g(x — q) exp (ip x). Here/?,#eIR3. Let πpq

be the projection onto gpq. Then for / e L 2 ( R 3 )

= (2π)-3 Jj (fπpqf)dpdq ,

(/, (V* \g\2)f) = (2πy3 jj V(q) (/, πpqf)dpdq ,

T(p)(f,πpqf)dpdq-\\f\\2(g,\p\g) •

Here, T(p) = (p2 +m2)1/2 —m is a function, not an operator. Equations (B.I3) and
(B.I4) are obvious. Inequality (B.I5) is easily proved by writing / as a Fourier
integral and then using (2.1) with k-+p, p^r—p. Thus, if h is the operator
T — (V* \g\2)(x) and γ is a positive semidefmite operator with Ύτγ = λ we have (by
making an eigenvector expansion of γ) that

Γ 3 j j dpdq[f(p)-V(q)]M(j>,q)-λ(g9\p\g) (B.16)

with M(/?, q) = Ύrγπpq^0. If, in addition, O^γ^qlthen 0^M(p, q)^q and hence

3q tf dpdq[V(q)-T(p)]+ -λ(g,\p\g)

J (
Recall that j (ΐ) depends on q.

Let ρ(x) = y(x,x) and take (V2+2mV)3/2 = (6π2/q)ρ*\g\2. Noting that
Try(F*|#| 2 ) = j V(ρ*\g\2), (B.17) becomes

To apply this to our case, let y be given by the kernel

y(χ,y) = NΣ J ψ(x,x2,. ..,xN;σl9...,σN)
σ

,x2, ..,xN,σί9.. .9σN)dx2. ..dxN .

Then 7^0, λ = Ίry = N. The fact that y^ql is standard [16]. Inequality (B.I8)
becomes (B.I2). •

Lemma B.3 can trivially be generalized to operators other than Tand to n φ 3 in
the following way.

Lemma B.4. Let T: IR"^1R+ satisfy T(p)^0 andjor dip, qeW, T{p)^T{p -q)
+ S(q) for a suitable nonnegative function S:1R'1->IR + . Let T and S be the
corresponding multiplication operators in momentum space. Let g I R " - ^ with
\\g\\2 = \. Then

(φ, Σ W ^ J((βψ*\g\2)(x))dx-N(g,Sg) . (B.20)
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Here, J:R+^R+ is defined as follows. Let

meas {p\T(p)Zt}

j T(p)dp .

Then f W S ί

where μ~x is the inverse function. (It is not always uniquely defined everywhere, but

βoμ'1 is.)

On the other hand, for bosons (or, more generally, particles without any

statistics) (B.9) is not a good approximation to KQ(φ). The following is a good

approximation and also a bound.

Lemma B.5 (bosons).

H y \ ) l 2 (B.22)

The proof of this is that given by Conlon for Lemma 4.2 in [3]. One only has to

verify that e~tT has a positive kernel, but this is proved in [4, Remark 1].
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