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Particle Creation by a Black Hole
as a Consequence of the Casimir Effect
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Abstract. Particle creation by a black hole is investigated in terms of tempera-
ture corrections to the Casimir effect. The reduction of the Hawking effect to
more familiar effects observed in the laboratory enables us to reveal the
mechanism of particle creation. The blackbody nature of the Hawking radiation
is due to the interaction of virtual particles with the surface of a "cavity" formed
by the Schwarzschild gravitational field potential barrier. These particles are
"squeezed out" by the contraction of the potential barrier and appear to an
observer at /+ as the real blackbody ones.

In the previous papers [2-4] a programme of reduction of particle creation by a
black hole to quantum- field effects in flat space-time was initiated. The programme
is based on the fact that the gravitational field of a black hole creates an effective
potential barrier penetrable for the high-frequency waves and impenetrable for
waves with low-frequency. The barrier is so well-localized near r = 1.5 Rg
(Rg = +2 GM/c2) that for a study of wave propagation we can consider the regions
quite near the horizon and far away from it as "flat". All the scattering takes place in
the small region near r = 1.5 Rg. The consideration of the barrier peak (r = 1.5 Rg}
as a surface of the reflecting sphere permitted to apply to a black hole the results of
various Casimir-effect calculations. It appeared [2] that the flow of negative
Casimir energy should cause the area of the horizon to shrink at a rate consistent
with the energy flux observed at future infinity / +. But the model appeared to be too
primitive providing only qualitative agreement with Hawking's results [1].

Hence the second stage of the programme had to be carried out [3]. It consisted
in creation of a more sophisticated model capable of demonstrating that the two
properties of a black hole - the horizon and the potential barrier - together are
necessary and sufficient to compel the hole to produce thermal radiation at a
temperature that exactly coincides with the result of Hawking. Namely that was
done by means of the reduction of the evaporation effect to that of particle creation
by (non-uniformly) accelerated mirrors.
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But even the second model remained too simple to mimic some important
features of the evaporation process since the vacuum stress-tensor diverged in the
reference frame of a freely falling observer as r->2M. The second model pathology
is due to the assumption of ideal conductivity which is obviously not the case for a
spherical potential barrier of a nonrotating black hole. So, the third stage of the
programme was carried out [4] and the finite conductivity of the barrier was taken
into account. It enabled one to eliminate the pathology and to reveal simul-
taneously that the blackbody radiation should be "created" in the whole region
[3M, oo].

However, even the third model is able to describe the creation domain only, but
not the very mechanism of black hole evaporation as well as the origin of why the
radiation at /+ is the blackbody radiation. The cause of it is obvious: the third
model ignores the thickness of the potential barrier. In [2-4] the barrier was
approximated by a thin shell. However, Fabbri [5] demonstrated that there exists
two branches of turning points for a nonrotating black hole potential barrier:

I

Cos -

where η = arccos {— 3ωM[3/*f(*f +1)]1/2} and arccos denotes the principal value of
the inverse trigonometric function, so that 2M^rx 5^r2. For instance, each (ω, /)
partial low-frequency wave has two turning points,

and

ω

(i)

where O(x) denotes a quantity of order x.
Consequently, for purpose of investigating the interaction of virtual particles

with the surface of the potential barrier, the latter should be represented by two
conducting concentric spheres. One of the shells is situated near the horizon while
the other is far away from it. Each sphere is made of an ideal conductor. The aim of
the paper is to give a description of the evaporation mechanism on the basis of this
model.

A. Casimir [6] demonstrated that the vacuum fluctuations of the electro-
magnetic field give rise to an attractive force between conducting parallel plates.
When one quantizes the field subject to the appropriate boundary conditions on the
plates and calculates the vacuum energy with a wavelength cutoff, one finds that as
the separation between the plates changes, the vacuum energy per unit area changes
by a finite, cutoff-independent amount. Thus, in spite of the formal divergence of
vacuum energy, a change in the configuration of the system causes a finite shift in
the energy of the vacuum state. If the vacuum energy of the system for infinite
separation is set equal to zero, then the energy of the plates for any finite separation
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is described by the expression

ΔE= -π2hcj//Ί2Qd* . (1)

Here j/ denotes the area of each plate, and d is a finite separation between them.
It should be specially pointed out that the Casimir energy is of pure vacuum

origin. No real particles are involved, only virtual ones. But the experiments of
Derjagin, Sparnaay, van Silfhout and Tabor and Winterton (see [7] and references
cited therein) encourage us to take it seriously.

For the electromagnetic field the stress-tensor of the vacuum between the plates
was calculated by De Witt [8]:

π2hc2

<T >vac-^-)+^( + )-72(W4

U,έ,£) , (2)

where A is the frequency cutoff that cuts off the high-frequency waves. (The
expression for the vacuum stress-tensor of the massless scalar field differs from that
for the electromagnetic field only by the factor j.)

The works of Boyer [7, 9] offer a method for calculating the vacuum energy of
the uncharged sphere made from a physically realizable conductor. Let us
approximate a sphere of radius d by two parallel plates of area πd2 at a distance
apart. With the help of (1) and (2) we can obtain

ΔE= -π2hc/12Qd+3hcΛ4d3/π , (3)

where the second part is a correction for finite conductivity of the plates. The
approximation is justified by the exact calculations of Boyer [9] and Davies
[10] performed independently. Having computed the vacuum energy of a sphere
with ideal conductivity, they demonstrated that ΛE exactly coincides in magnitude
with the cutoff-independent part of (3). Only the sign changes. So, for finite
conductivity,

AE = π*hc/12Qd-3hcΛ4d3/π . (4)

All the studies of massless fields in various metallic cavities, initiated by Boyer
and reconsidered by several groups, have focused on the integrated total energy.
Olaussen and Ravndal [11 ] seem to be one of the first to undertake the more detailed
and laborious analysis of local densities for spherical cases.

The energy density

(5a)
a ^ιoπ~o~ j jπ~0~ \_ \u/ j j

where

δ = \ !-(-,
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Near the surface of the sphere where r-+d,

where e = l - . (5b)

So, the (normal ordered) energy density is found to be negative everywhere
inside the cavity. In that respect a spherical cavity is not qualitatively different from
the parallel plate or box geometries. The unexpected result, first found by Boyer,
that the total Casimir effect for a spherical shell actually leads to an increase in
energy only occurs because the energy density outside the shell is positive enough to
overcompensate the negative energy inside.

The stresses induced in the Minkowski vacuum by an infinite plane conductor
that is uniformly accelerated normal to itself were investigated by Candelas and
Deutsch (see [16]). The solution of the boundary problem was facilitated by
introduction of accelerated (Rindler) coordinates ξ and τ,

t = ξsmhτ , x = ξcoshτ , ds2 = ξ2dτ2 +dξ2 + dy2+dz2 .

In this system the curves ξ = const, y — const, z = const are worldlines of constant
proper acceleration ξ~l. The surface ξ = b = const represents the trajectory of the
barrier.

The regularized vacuum expectation value <Γv

μ> = <0|Γv

μ|0> of the stress energy
tensor far from the conductor (ξ/b-+ao) for a scalar field was found to be

1 <? dωω3 , Λ Λ
—Ί diag (— I ,τ 5 τ>τ) (6a)J ,,2 πco \ σ v ^ o ' o ' o / v /

Thus <Γv

μ> is reduced below zero by an amount corresponding to black body
radiation at a temperature

T=(2πξΓl . (6b)

This asymptotic form is independent of the acceleration of the barrier in the sense
that it depends only on the acceleration of the local Killing trajectory.

Or, equivalently, far from the conductor

(6c)

ί] , (6d)

where <Γ|V> and < Γ#v> denote the values of <Γv

μ> for the Dirichlet and Neu-
mann cases respectively.

The results belonging to temperature corrections to the Casimir effect (M.
Fiertz, J. Mehra, R. Hargreave, Brown and Maclay et al.) were generalized by
Tadaki and Takagi [12] for two parallel infinite plane boundaries in the four-
dimensional Minkowski spacetime. This system has two special directions (ί,z)
because of the presence of the boundaries and the heat bath. According to the
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symmetry of the system, the conservation law and the tracelessness, <Γμv> has the
following form;

- 1,1,1, -3) + 0 diag (3, 1, 1, l) + ̂ diag (1,0,0, 1)

+ Fdiag(2,l, l ,0) . (7a)

It is remarkable that (T33y = (Tzzy is uniform though the other diagonal com-
ponents of <Γμv> are possibly z-dependent. The first term in (7) represents the zero-
temperature term and the second the Stephan-Boltzmann term. For a conformally
coupled massless scalar field

"1440</4 ' 90/zV ' _„ .
(7b)

kd I he

he J d4

where
(2kdT/hc? df(T)

> / u )=-
4π2

 ΠtΊ mtΊ [m2 + 4yt2(Wr/M2]2 ' rfΓ

1 » » (IdkTIhcf' Z Λ _ j_ y y
' ' C^.2 -̂J ^—'

n=^oo »̂ ι [m2+4(z/^+«)2(/cJΓ/Λc)2]2 ' y ^ ' ' dT '

In the low-temperature limit (Td<ζ\), <Γμv> has a sinusoidal z-dependence:

(8)

Here the Stephan-Boltzmann term is cancelled out. The temperature correction
is exponentially small, because the basis modes have an energy gap.

In the high temperature limit (7W^>1), <Γμv> is dominated by the Stephan-
Boltzmann value everywhere not close to the boundary. The behaviour near the
boundary may be seen by considering the single boundary problem. In the limit
rf—»oo the result is

F(z)=—p^ {2Z~ 1CothZCosec2Z-Z"2Cosec2Z-Z~3CothZ} , (9)

where
Z = 2πTzk/hc .
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The thermal average deviates off the Stephan-Boltzmann value near the
boundary (Z«l) due to the Γ4 term of F(z):

(ιo)

This expansion coincides with the result obtained in [13]. The calculations for
the electromagnetic field are almost the same.

And, finally, Levin et al. [14] obtained, with the help of generalized Kirchhoff s
law1, the expressions for spectral and complete Poynting vector of the fluctuating
electromagnetic field in a vacuum cavity formed by infinite flat parallel conductors
(ε1? μx) and (ε2,μ2) with temperatures 7\ and T2 (7\ > T2). The Poynting vector

p = J p(ω)dω = ~2 J (Π1-Π2)Mdω , (11)
o π o

where
hω . ω

l~Qxp(hco/KTd-l ' *~ ' ' ~ c

In vacuum (ε1 = £2 = μι = μ2=n = 1) for infinite separation (d->oo) one gets

M(oo)=— (12)

under

d=0 , M(0)=— ,

Thus, though each conductor is in equilibrium with radiation but each at
different temperatures, the whole system is in nonequilibrium state. Under these
conditions a flow of the fluctuating electromagnetic field from 7ί to T2 (7\ > Γ2)
dominates inside the cavity over the flow from T2 to 7i.

B. Consider a particle which is at rest in the gravitational field of a
Schwarzschild black hole. Its four-velocity is

-1/2

,0,0,0

The proper acceleration of the particle is

du«

1 The authors of [14] especially point out that the generalized Kirchhoff s law contains
an expression for the oscillator's average energy Θ (ω, T). Nevertheless, zero oscillations
does not give any impact into the energy flow and are thrown away here: Π1 = Θ(ω, T)-hω/2.

But, of course, the energy of the equilibrium fluctuating electromagnetic field is E = Σ —^

+ Σ ftωα/exp (hωJKT)'1, where ωα are the eigenfrequencies, depending on d
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M ( 2M
(α, β,y = t, r, Θ, φ). The only nonvanishing component of Γf? is Π =-^ 1

ί M \ r>\ r
Hence 0α= 0, -̂ -, 0,0 ,

V r /

A stationary distant observer will measure

2M\1/2

ίfτ ί/ί \ r /

M

Consequently, the peak of the potential barrier (localized in the vicinity of

r — 3M) has a nonzero proper acceleration ^(Sl/SM)"1.
C. According to Fabbri [5], who studied the scattering and absorption of

electromagnetic waves by a nonrotating black hole, when the frequency ω of
radiation is smaller than the critical frequency ωc given by

the turning points exist for all partial waves, that is, for all values of/. When ω > ωc,
the turning points exist only for high-/ waves more precisely, they exist if / is
greater than the critical parameter /c given by

At high frequencies (ω>ωc), for /<^/c, the waves pass above the potential
barrier completely unaffected. When / is slightly greater than /c the turning points
are approximately given by

I1/2!
(18)

In the case / < /c the zeros of the wave number are given by

(19)
/3 L 27ω2M2J

So, for ω > ωc the transmission coefficient of the barrier is

7> = 0 at

7>=1 at (20)

For ω<^ωc real turning points exist for all partial waves [Eq. (i)]:
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That is why they are only the low-frequency waves that can successfully escape
from the region formed by the Casimir plates with reflecting picture nicely
mimicked by the expressions (i). This conclusion is also justified by the calculations
of Sanchez [15]: the reflecting properties of the potential barrier provide that

Hawking emission is only significant in the frequency range 0^ω<-—.

Consequently, the potential barrier of a nonrotating black hole should be
approximated by two concentric shells with the first in the vicinity of the horizon
(T = TI = 2M + 4ω2M3//(/-h 1)->2M, ω-»0) and the second far away from it

(r = r2=]//(/ + l)/ω->oo, ω->0). Success of the approximation of the Casimir
sphere by two parallel plates - Eqs. (l)-(4) - permits us to replace each spherical
conductor by two plane conductors.

Consider an observer resting on the surface of one such conductor (r = r0) in the
gravitational field of a Schwarzschild black hole. According to the Principle of
Equivalence, he is equivalent to an observer accelerated in Minkowski spacetime

/ 2M\~1'2 M
with proper acceleration b 1 — I 1 -^. However, as it is well-known (see,

for example, [16], and the references cited therein), an observer that is accelerated in
Minkowski spacetime with a proper acceleration ή"1, finds himself in a thermal
bath with temperature T=b~l/2πck. An observer who is accelerated with the
surface of the wall, should find the thermal radiation being in equilibrium with the
wall at the same temperature. Hence, an observer resting on the surface of a
conductor in the gravitational field of a Schwarzschild black hole would discover
thermal radiation in equilibrium with a conductor at a temperature

M « - (22)
2nck

Consequently the interaction of the radiation with the surface of the potential barrier
can be described in terms of temperature corrections to the Casimir effect.

Firstly, the temperature 7\ of a conductor in the vicinity of the horizon is
considerably higher than that of a conductor far aray from it. So, though each
conductor is in equilibrium with radiation, the whole system is in a nonequilibrium
state (Tι > T2\ and a flow of the fluctuating scalar (or electromagnetic) field
establishes itself in the region [ r ί , r2]. The flow is directed from the horizon to spatial
infinity.

An observer who sits at rest (r = r0) near the horizon will discover a flow of
1 M ί 2MV1/2

thermal radiation with a temperature 7^=-— —^ 1 . A distant
2π

stationary observer at future infinity J + will find that the temperature of radia-

tion in the vicinity of the horizon is T=- j. Indeed, the gravitational blue shift

of the photon (ratio of observed energy fiω0 to emitted at J> + energy hώ) is

= (0U~ 1 / 2(l ) - But—= const along the light ray (see [17]). That is
V ro / T

ί 9 .Λ/Λ" 1 / 2

why 7\ =
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M
According to (15), — Γ is the magnitude of the acceleration (measured by an

>o
observer at J> +) of a particle at rest in the gravitational field of a Schwarzschild
black hole, it tends (see [1 8]) to the so-called "surface gravity" K when the particle is
infinitesimally close to the event horizon. For a Schwarzschild black hole
κ = (4M)~1 (c = G = l). So, the temperature of the radiation near the horizon is
7\ = κ/2π according to an observer at J> + . Since the temperature T2 of an observer
far away from the horizon is negligible, the Poynting vector [see Eqs. (11) and
(12)] is

P = ] p(ώ)dω = ̂  ] (Π1-Π2)Mdω
0

1 <?

π2 ί

h
π2c2

7T J

hωM(cc)dω 1

exptftω/^l-l^π2

1 »

/ 2MV J exp[Λω(

I1 r J

1 /ϊω3ί/ω

o exp[/iω/A:7;]

o2π/^]-ι

-1

l j

Equation (23) exactly coincides with the results of the various studies of Hawk-
ing radiation made on the basis of usual quantum field theory in curved space-
times. It should be pointed out that zero oscillations does not give any direct
impact into the energy flow (23). But, of course, they influence it through the
expression for the energy of the equilibrium fluctuating electromagnetic field
^~Σ (^ωα/2 + ̂ coα/exp [hωJKT] —1) when the eigenfrequencies ωα depend on d.

α

Secondly, to give a more complete description of the vacuum stress-tensor
between the conductors and in the whole [2M, oo] region we can apply (7.a)-(7.b)
with d being the "distance" in the accelerated (or Rindler - see [1 7] for details) frame

of reference: d=ξ = \ 1 -- — . But the fact that the temperature T=T(r)
\ r ) M

varies from one point to another hampers the direct utilization of the temperature-
correction results. Hence we shall calculate the <Γv

μ>vac. in the vicinities of r^ and r2

first. In these regions the variations of T with distance are small in comparison with
those in the domain between the conductors. ^ / ?A/\~ 1 / 2

The proper acceleration of the r2 barrier is b2

l=—2 ( 1 — τ~ 1 > where
2\ 2 J

Δ2 = \ --- M -KX) if ω->0. The spherical conductor that is far from
\ ω )

the horizon can be represented by two plane conductors with equal temperatures

-̂ — and accelerations b2 * . To describe the region [r2 , oo ] the rf-> oo limit of Eq. (19)
2π
should be involved: (7W)|>1, and < > is dominated by the Stephan-Boltzmann
values all over the space,

1440π2( 1
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To describe the situation near the other side of the r2 barrier, it should be noted that
the spherical conductor can be exchanged with a pair of flat plates that rest in the
Schwarzschild gravitational field. So, taking into account Eq. (2), we obtain:

2 11̂ 4
π -l,l,l,3) . (25b)

Equations (25a)-(25b) are in good qualitative agreement with Frolov's exact
calculations [20] obtained by the usual quantum-field methods for the Boulware
vacuum :

The Boulware vacuum \βy is defined by requiring normal modes to be positive

frequency with respect to the Killing vector — with respect to which the exterior

region is static. |£> is relevant [16] to the region exterior to a massive body that is
only just outside its Schwarzschild radius. The Boulware vacuum corresponds to our
familiar concept of the empty state at large radii, but is pathological at the horizon
since it diverges in the reference frame of a freely falling observer. In the region near
the "nonaccelerated" side of the r2 conductor Eq. (25b) corresponds to the absence
from the vacuum of blackbody radiation with temperature Γ2 = /?2^

1/2π. It means
that if thermal radiation was added, the resulting state would be indistinguishable,
near the r2, from the usual Minkowski vacuum. <7τμv)Vac. in Eq. (25a) is positive,
that corresponds to the presence in the [r2 , oo] region (near the "accelerated" side of
the r2 conductor) of the positive virtual radiation.

When the barrier is made from the real conductor that conducts well only at high
frequencies, the Eq. (25) should be modified to include the correction term [4] :

3 A4

71 ~
(27)

Ϊ2 1
where ωc = \ -- is the cutoff frequency for the absorption of massless waves by a

y 21 M

nonrotating black hole. The cutoff dependent part of (27) at infinity corresponds to
that of an ordinary photon gas.
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The proper acceleration of the r1 barrier is

M / 2M 1'2 8M3ω2

If we exchange the r1 conductor with two plates at the distance 2^ apart, we can
apply Eq. (2) to describe the situation in the [2M, rj region:

2 1^-4

14401* l-
r

(28a)

Or, equivalently, to obtain the first part of Eq. (28) we can use the (Td) <l 1 limit of

Eq. (8)wi th</s4M(l-—) :
V r J

π2

π6 (28b)

90(8πM)4fl-—Y
V r J

Equations (28a)-(28b) are justified by the application for [2M, rj of a black hole of
Eq. (5b) valid near the surface of an ideal spherical conductor:

3 330π2r3 1

where

~ 2M

Again the equations obtained are in good agreement with Frolov's Eq. (26) for
Boulware vacuum. The |/?> vacuum in [2M, rj is depressed below zero by an
amount corresponding to the absence from the vacuum of blackbody radiation at a

temperature T= - -, - r- . It is this pure virtual Casimir negative energy that

8πM( 1

enables the black hole to contract with nonuniform acceleration.
The second part of Eq. (28a) enables one to eliminate the pathology of |£> on the

horizon.
To describe the situation near the other side of r l 5 in the direction of

acceleration, we can again apply the (7W)>1 limit of Eq. (19) with d-^oo. Again
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<7"μv) is dominated by the Stephan-Boltzmann value all over the conductor:

_2 rj-Ά ,_2

- (29)
90 90(8πM)4(l-—

The expression (25b) for the "unaccelerated" side of the barrier can be obtained
in the way that clearly points out its physical significance. If we exchange the r2

/ 2MY/2

conductor by two plates at the distance Δ2 1 I apart, the (Td) <ζ 1 limit of

Eq. (8) can be involved to describe the situation in the vicinity of r2:

π

1440 ί -

(30)

Of course the result is too rough, but it helps to reveal an important detail of the
radiation picture between the r1 and r2 conductors: any observer in the [r1?r2]
region sees two flows of blackbody radiation crossing each other. The dominating

flow with Tγ = - comes from the r± conductor; and the r2 conductor implies the

second one, of negative energy. It comes from the surface of r2 and corresponds to
the absence from the vacuum of blackbody radiation with T2 = (2πZ?2)~1, according
to an observer at J>+ . An observer at r — r0 in [r1?r2] sees

τ_ 1 1 M
2 1 ~ 2M\1/2 ' 2 2πξ ^ J 2MV/ 2

2πr2 18πM
J

since Eq. (6a)-(6b) guarantee that the asymptotic forms of <Γμv>vac are inde-
pendent of the acceleration b2

l of the barrier in the sense that they depend only on
the acceleration ξ'1 of the local Killing trajectory. The resulting flow

x ^ u v x π' r^4 ^41 π2(l-x8) _2M
r

in complete agreement with Eq. (13) for d=0.
Equation (31) is also in good qualitative agreement with Page's [21] formulae

obtained for the Hartle-Hawking vacuum:

_ A β\ y /s ° i Ί
(32)

The Hartle-Hawking vacuum |//> is defined by taking incoming modes to be
positive frequency with respect to the null coordinate on the future horizon, and
outgoing modes to be positive frequency with respect to the null coordinate on the
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past horizon. |//> corresponds to a black hole in equilibrium with an infinite sea of
blackbody radiation. This equilibrium is unstable (see [16]) since the temperature of
the hole varies inversely with its mass. So if, by virtue of a fluctuation, the black hole
were to absorb more radiation than it emitted, its mass would increase and hence its
temperature would fall. It would absorb more radiation, cool further, etc. On the
other hand, if the black hole were initially to emit more radiation than it absorbed
then its temperature would rise. It would radiate more rapidly. So in either case all
the system as a whole tends to evolve away from equilibrium. However, the stability
of the equilibrium can be restored by enclosing the black hole in a suitably small box
[22] as we had done already.

Thus, all the thermal radiation is "born" in all the "region" [r1, r2] between the
conductors. Its blackbody spectrum owes to the interaction of scalar, electro-
magnetic, etc. fluctuations with the conductor surfaces. The dominating flow is
directed from r± to r2 (7\ > T2). The particles between the conductors still are virtual
ones. And they would remain virtual if this was the case for real black holes. Yet it is
only the scattering aspect of the Schwarzschild gravitational field that entered our
ideal model. The exchange of the nonrotating black hole potential barrier with two
ideal conductors is merely an approximation. The real potential barrier of a black
hole forms a "bell" that lasts continuously from zero magnitude at the horizon up to
zero at spatial infinity passing through the maximum at r = 3M. The reflecting
properties (i), (17)-(21) insure that the barrier behaves as a real, and not as an ideal,
conductor which conducts well at low frequencies but as the frequencies increase,
its conductivity diminishes. So, the Hawking radiation is "born" inside the "bell"
formed by a potential barrier of a nonrotating black hole in all the region [2M, oo].
Its blackbody spectrum owes to the interaction of zero-rest-mass field fluctuations
with the surface of the "bell". The flow is directed from the [2M, 3M] region to the
[3M, oo ] tail of the potential barrier. The particles between the walls of the bell are
virtual ones. But they can become real after passing through the [3M, oo] tail,
appearing to an observer at future infinity </+ as real ones, created by the
accelerated tail of the potential barrier.

The comparison of our reaults with those obtained by usual and more laborious
methods of quantum-field theory in curved spacetimes gives one a confidence that
the proposed picture does not differ significantly from the "real" one. For instance,
the situation at r = 3M with no flux corresponds to unstable photons that circle
around the horizon of a Schwarzschild black hole.
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