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Abstract. We study the finite temperature string path integral introduced by
Polchinski [1]. It is shown that on an arbitrary genus world sheet all windings of
the fields around the compact time direction can be rotated into a single cycle.
The modular invariance of this result is demonstrated.

I. Introduction

The recent work [2] on strings at finite temperature has so far considered free strings
in flat spacetime. Since the extended structure of strings will only become apparent
near the Planck scale, the most likely setting for obtaining (indirect) evidence is the
observation of cosmological effects from the early universe. A most remarkable
property is the existence of the Hagedorn limiting temperature [3] at which the free
energy diverges. Although this critical temperature has been shown only in the ideal
gas approximation, it signals the likelihood that string cosmology differs drastically
from the standard big bang scenario in the early stages.

During the Planck epoch it is impossible to ignore the extreme conditions which
exist; it is expected that any perturbative expansion will then be invalid. Neverthe-
less, it is still interesting to consider the interactions of strings in a regime where
perturbation theory holds. It is therefore the aim of this paper to show how to
include interactions for the closed bosonic string in 26 dimensions. For simplicity,
curvature effects will not be considered. In this regard, our result should be
considered more as a lowest order contribution for more general backgrounds when
an adiabatic approximation is used. The starting point will be the Polyakov path
integral as discussed by Polchinski [1].

In [1], the free energy density F(β) is calculated for a gas of a variable number of
non-interacting closed strings. In other approaches [2], which focus on calculating
the Hagedorn temperature, the partition function for a single string (in a heat bath) is
derived as for a system of independent oscillators. With the inclusion of interactions,
though, a more systematic treatment is needed.

The requirement of modular invariance of physical quantities—here, the free
energy—shall play a key role in this formulation. In particular, the embeddings of a
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compact Riemann surface Mg, of genus g, into a Euclidean spacetime periodic in
time [R25 x S1, can be characterized by a single winding number. This result is non-
obvious in that each handle on Mg can be given two independent winding numbers
corresponding to each of its homotopically (and homologically) inequivalent cycles.
It will be shown that a sequence of Sp(2g, Z) symplectic modular transformations
acting on the homology basis can be chosen so that the embedded surface X μ ( z , z )
has all non-trivial windings in only one homology cycle1.

This may provide two technical advantages. For one, summation over only one
variable should be easier than over 2g variables. In addition, the integration region
in Teichmύller space should be simplified somewhat (see Sect. III). For genus g > 3,
the fundamental region F in Teichmϋller space does not admit a tractable
parameterization. As in the case discussed by Polchinski, elaborated upon in
Sect. II, the integration region can be chosen larger than F at the expense of
dropping manifest modular invariance. It will be shown that F(β) is, nonetheless,
modular invariant, whatever the form.

As a starting point, the genus one case will be examined in detail. Imposing
"symmetric" boundary conditions on the embedding of the torus preserves explicit
modular invariance for the free energy. This form of the free energy (15) will be
shown to be equivalent to that derived in [1] with "asymmetric" boundary
conditions in which modular invariance is not manifest (9). As a consistency check
on the path integral method, the critical temperature is obtained in Appendix AI.
Divergences are examined in a second Appendix All.

The generalization to higher genus surfaces requires somewhat more mathemat-
ical structure. The solutions Xμ(z,z) which satisfy the appropriate symmetric
boundary conditions depend on the abelian differentials on Mg. The winding
number contribution to F(β) appears only in the exponentiated classical action
through terms depending on the period matrix Ω. The proof of modular invariance
depends, then, on the transformation properties of these objects.

The free energy can be written as an integral over the modular parameters for
Mg, with sums over winding numbers. Modular transformations correspond to
changing the dummy summation variables (the individual winding numbers) and
leaving the remainder of the integrand invariant.

The path integral for the connected vacuum-to-vacuum amplitude, for interact-
ing bosonic strings in fiat Euclidean spacetime, can be written as a sum over
contributions of surfaces Mg for every genus:

L^i 9 Δ^J τ/ Ύ/
3 = 1 g VGCVW

The volumes of the general coordinate and Weyl groups have been divided out,
leaving an integral over two dimensional metrics parameterized by the Teichmίiller

G. Moore has stated this result for genus 2[4], and has an unpublished proof for this case
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(modular) parameters of Mg. In Euclidean space times, the integration over Xμ is
gaussian. The contribution of the scalar curvature of Mg weights each term W^ by
appropriate powers of the string coupling constant (suppressed throughout) and μ2

is chosen in d = 26 to cancel the conformal anomaly. T is the string tension.
Temperature will be denoted by its inverse, β. For reviews of the mathematical
concepts, see [5,6].

The free energy is defined by

. (2)

In the path integral language, this becomes

ί [<teet][dA-">-StaX]. (3)

The integral \_dgab] is over 9KQ9 the space of all metrics on the string world sheet Mg,
modulo gauge transformations in the semi-direct product of the diffeomorphism
and Weyl groups. Because the trace in (2) identifies initial states with final states [7],
the path integral (3) involves only compact world sheets. So topology is determined
completely by the genus. (Actually, the scalar curvature term in (1) integrates to the
Euler character which determines the topology uniquely for the boundaryless
surfaces of interest here.) The sum over g is a loop expansion; interactions are
included by adding handles to the world sheet.

The integral [ίUΓμ] is taken over the space S of all embeddings of Mg into
spacetime. The trace (2), together with the fact that the hamiltonian H is a time-
translation operator, forces the identification of the field X°(z,z) with X°(z,z) -f β.
Therefore the embeddings are into a spacetime with periodic time coordinate, Xμ:
Mg-»[R25 x S1. The space of embeddings decomposes as $ = ®$(m, n\ where m ί?

m, n

w f eZ (i = 1, . . . , g) are the winding numbers of X°(z,z) around S1 as its argument
moves around the homology cycles ai9 bt (see Sect. III).

Section II details how this works for the case g = 1. Section III develops the
mathematical machinery needed to handle arbitrary g and contains the proof of our
main result. Conclusions and speculations are contained in the final section.

II. Modular Invariance for Genus One

To provide a setting for the treatment of arbitrary genus Riemann surfaces while
maintaining explicit modular invariance, the genus one result [1] will be reviewed.
Invariance under 5/7(2, Z) = 5L(2, Z) will be shown by construction. The notation of
[1] will be followed with slight modifications for later convenience.

To calculate Wl9 from which the one loop vacuum energy density is obtained,
one must specify boundary conditions on Qab(σ) and Xμ(σ). As usual for the metric on
the torus,

gβfc(σ1 + l,σ2) = gβί,(σ1,σ2) = gβz,(σ1,σ2 + l). (4)

After a general coordinate transformation, all variations in the metric, up to Weyl
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rescalings, are embodied in the complex Teichmϋller parameter, τ = τ1 + zτ2:

ds2 = eφ(σ]\dσ1+τdσ2

2, τ2 > 0. (5)

The embedding coordinates Xμ(σ) are simply periodic functions, as in (4).
To obtain F^β) instead of Wl9 the boundary conditions on X°(z,z) must be

modified. Polchinski chose the boundary conditions

Xμ(σί9σ2 + 1) = X"(σl9σ2) + rβδμ

0,

Xμ(σl + l,σ2) = X"(σl9σ2). (6)

The fields Xμ(σ) can then be decomposed into a periodic piece and a linear piece,

(7)

for which the path integration measure remains unchanged, [dYμ~\ = [dXμ~\.
Therefore, the only modification to W1 from the zero temperature result is in the
additional term in the classical action functional coming from the winding number
term in (7). Thus

r2B2T
] + - — , (8)

where S[7, g] is the usual Polyakov action as contained in (1). The integrand in W1

is otherwise unchanged. After dividing out the volume of spacetime, the free energy
density is obtained:

Fl(β)=-T13Sd2τ-±ΣIl(τ) f' exp-^, (9)
Δ

I1(τ) = e4πτ2(2πτ2Γ
12\f(e2πίτ)Γ4S. (10)

In (9), the integrand I^τ) is identical to that in the calculation of the cosmological
constant A [1]. The prime on the sum excludes the r = 0 term (related to Λ). The
integration in Teichmϋller space is over the strip, S, defined by τ2 > 0, — \ < τί < \.
The function / is discussed in Appendix I.

In general, the torus is invariant under the group of modular transformations
generated by (i) translations σ1-*σί+ σ2 and σ2->σ2, corresponding to τ-»τ + 1,
and (ii) inversions σ1 -> σ2 and σ2 -> — σ l 5 corresponding to τ -» — 1/τ. However, the
boundary conditions (6) respect only translation invariance. Therefore, the in-
tegration in (9) is over the quotient of Teichmuller space C + , the upper half complex
plane, by the translation subgroup of Sp(2,Z), denoted Γt. That is, S = C + /Γt.

Full modular invariance is made explicit by altering the boundary conditions
(6) to

Xμ(σl9σ2 + l) = Xμ(σl9σ2) + r2βδh r l 9 r 2 e Z . (11)

These are solved by

Xμ(σl9σ2) = Yμ(σl9σ2) + r^σ^g -f r2βσ2δ^ (12)

where now the modification to the classical action is not a simple generalization of
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(8):

+ 2τ2

 T Γ l + Γ 2 r^2τ'

For future convenience, it is helpful to define

£(τ,r l 9r 2) = |τ 2r2 + r2 — 2r1r2τ. (14)

The free energy can then be written
1 oo 02^

,(τ) ξ' exp-|ί-£(τ,r1,r2). (15)

The r t = r2 = 0 term is excluded by the prime.
It is easy to check that in variance under Sp(2, Z) is manifest. Under translations

(i) τ - » τ + l , the summation variables change by r1-*rί, r2-»r2 —/v Under
inversions (ii) τ -> — 1/τ, r± -> r2, r2 —> — r x . The prime on the sum is understood to be
applied after the change of summation variables, corresponding to the subtraction
of the infinite zero point energy. Therefore, the modular group acts on the winding
number terms as a change in dummy variables. The remainder of the integrand,
/i (τ), together with the measure J2τ(l/4πτ2) is separately modular invariant, as in the
zero temperature case. Since (15) is explicitly modular invariant, the integration
region F is the fundamental domain in Teichmϋller space, F = C + /Sp(2, Z), τ2 > 0,
~ ~ 2 < τ ι < 2 M>1 ? called moduli space. This is the well-known "keyhole"
shape.

It can now be shown that (9) and (15) are actually equal. First, observe that a
fractional linear transformation can be found, y:τ->τ', such that l/τ2£(τ,r1,r2)^
l/τ'2r

2 = [Im(7(r1,r2)°τ)]~1r2, where y(r l 5 r 2 ) is a 2 x 2 matrix representative of a
particular Sp(2,Z) group element. Suppose, initially, that rl and r2 are relatively
prime. Then there exist relatively prime integers, a and b, such that y(r l 5 r 2 ) =

I, detI I = 1, and such that τ'2 = Imτ' = Im(ατ + b/rλτ + r2) =
Γ V I \ V V I \ i Λ. **/

1 Y2j V I Γ2/

τ2£(τ,r1,r2)~1. That is, the integers a, b do not occur explicitly in Imτ;, although
they do occur in Reτ'. If r l 5 r2 are not relatively prime, let r be their greatest
common divisor, so r 1 =rp 1 , r2 = rp2, where p l 5 p2 are relatively prime. Then

E(τ,r1,r2) = r2£(τ,p1,p2) and a matrix y(pι,p 2) = ( I can be found such
\Pι P2j

that τ2 = τ2£(τ,p1,p2)"1.

The integers r, p1? p2 have a physical interpretation. For each r l 5 r2 in the double
sum, P! and p2 determine a linear combination of σ x and σ2 which selects out a time
direction, σ0, around the torus. The integer r is a topological invariant which counts
the number of times X° is circumnavigated in going once around the path σ0. The
important point is that rί and r2 individually do not contain topological
information, so it is possible to put all the winding in either the σί or σ2 cycle. This
will generalize at higher genus.

Continuing the proof, Teichmϋller space consists of an infinite number of
domains, FΓ which are related to F by the action of Sp(2,Z) elements y(pι,p2).
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Furthermore, each domain Fy is obtained from F by a unique γεSp(2,Z). Thus

μ* i / ι ( τ ) Σ e x p_& ( τ > r i j r 2 )
F 4πτ2 π,r2 ^τ2

= Σ Σ KτΛ
I* P1.P2 F

where y is chosen from the equivalence class of modular transformations, related by

translations, such that y:τ->τ' as needed to recover (9). Indeed, if y = (
\Pl P2

is such an element of Sp(2, Z), then so is a translation, y' = I )•(
\0 I/ \Pι P2

1 2 1. It is therefore possible to choose each y so that y°τ lies in a
Pi P2 /

domain Fy occupying the same strip as the fundamental domain F.
Defining Γ = Sp(29 Z), the sum over relative primes can be converted to a sum

over y(pι,p2) in the coset space Γ/Γt:

Σ Σ ί -Σ Σ ί
r pι,p2τeF

The sum over y then acts to sum over all "copies" of F in the strip, S.

Σ ί- ί (is)

To complete the proof, note that /^τ) with the measure d2τ(\/4πτ\] is separately
modular invariant, coming from the zero temperature result [1]. It follows that (9)
and (15) are equivalent by virtue of

Guided by this explicit construction, the higher genus case can be tackled, but only
after the introduction of more mathematical machinery.

III. Free Energy for Interacting Strings

The path integral (3) sums over all winding numbers for the embedding of handles of
Mg around the periodic coordinate of spacetime, X°. This can be done in several
ways. To maintain explicit modular invariance requires summing over winding
numbers for each non-trivial homology cycle. Alternatively, one may sacrifice the
explicit invariance by (arbitrarily) choosing one non-trivial loop on Mg as the "time"
direction and summing over windings of this loop only.
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In the first case, Fg(β) is expressed as an integral over modular space — the
quotient of Teichmϋller space £Γ by the modular group 7"g cSp(2g,Z). In the
second instance, the integration region corresponds to 2Γ modulo that subgroup of
Γg which preserves the arbitrarily chosen "time" loop on the worldsheet. This may
have the advantage of yielding more tractable modular integrals. It does not,
however, manifest the modular invariance of Fg(β). The equivalence of these
formulations will be demonstrated below.

Following [8-10], choose a canonical homology basis ah bt(i= 1, . . . , g) on Mg.
The winding numbers mi9 nt count the number of times X°(z, z) wraps around S1 as z
traverses ah bt. The space of abelian differentials of the first type is defined as the set
of closed holomorphic 1 -forms modulo exact holomorphic 1 -forms. The Riemann-
Roch theorem states that this space is g-dimensional on a genus g surface. A
normalized basis ωf for this space can be defined by

S<»j = δtJ. (20)
at

This completely determines the basis ωt. The period matrix Ω is defined by

ίω, = βy (21)
bi

The period matrix is symmetric, Ωij = Ωji, and has positive imaginary part,
Im Ω > 0. In addition, Ω is a holomorphic function of the moduli; in fact, this can be
used as the definition of the complex structure on moduli space [9-11].

It is convenient to introduce the jacobi maps φt(z)

Φi(z) = } ωi9 (22)
zo

where z0 is a fixed, arbitrary point in Mg. These maps are not well-defined maps of
Mg -> C9; the integral (22) depends on the homology class of the path from z0 to z.
For example,

As z traverses a p φt -» φt + δij9 while if z traverses bp then φi-+φi + Ωtj. The Jacobi
map is well-defined, however, as a map (/>:Mg->C9/Lβ, where LΩ is the lattice
spanned by Ω^\ i.e., ~z ~ ~z' if ~z' — ~z + m + Ω Jί.

The boundary conditions on X°(z, z) in (3) can be implemented using the Jacobi
maps. Following (11), introduce the ansatz

X»(z, z) = Y"(z, z) + ΔX(z, z)δ»ΰ, (23)

ΔX(z, z) = £ [H;0,.(z) + H;̂ (z)]. (24)

Γμ(z, z) has zero winding number around all homology cycles. The coefficients Ht

depend on /?, the winding numbers and Ω. AX trivially satisfies Laplace's equation,

z) = 0, (25)

since AX is the sum of a holomorphic function and its complex conjugate. As z
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traverses at, X° changes by βm^ From (22) and (24) one finds that

βmt. (26)

Similarly, letting z traverse bi determines

KeHjΩ^βn,. (27)

Equations (26) and (27) determine H, uniquely:

Hj=
l-β(lmΩ)Jk

1\:Ωklml-nkl. (28)

To proceed further requires the introduction of a metric. It is conventional to
work with a constant negative curvature metric with R(2} = — 1. After canonical
dissection, Mg can be represented as H/^g, where H, the hyperbolic plane, is the
universal covering space of Mg and J^g is the Fuchsian group of Mg. The natural
complex coordinate z in H can then be used to label points in Mg. In these
coordinates the metric is

(29)

Substituting (23), (24), (28) and (29) into the action (1) results in

SIX, g] = XIY, g] + ΔS(β; m,n), (30)

ΔS(βιm,~n) = -— [mzβh - n j ( lmΩ)~ l [Ω j k m k - rij], (31)

where (20), (21) and (25) have been used.
Since [_dY~\ = [dX~\, the Gaussian integral over Yμ can be performed in (3)

yielding (Detzi^)"13, where Δg is the scalar Laplacian on Mg. Gauge degrees of
freedom are eliminated by the Fadeev-Popov determinant DetP+P. The integral
[dgα&] then reduces to an integral over the moduli space Jt, the quotient of
Teichmύller space 2Γ by the modular group Γg, thereby giving

00

Wι,«ι = - 00 J(

m,n Jί

Here (dτ)WP denotes the Weil-Petersson measure on Jt. The prime on the sum
indicates that the mi = w f = 0 term, corresponding to the zero temperature vacuum
energy density, has been subtracted. The factors (dτ)WP, (Det Δg) and Det (P + P) are
each individually modular invariant. The invariance of £ e~ΔS will be checked

explicitly. For future convenience, we have defined /g(τ) = (Det Δg)~ 13(Det P + P)1/2.
Modular transformations are defined to be those diffeomorphisms, not deform-

able to the identity, which take Mg to itself. An example of such a transformation
is the Dehn twist: Cut Mg along any homotopically non-trivial closed curve, twist
one side of the cut by 2π relative to the other side, and then rejoin the edges. It is clear
that any Dehn twist is a disconnected diffeomorphism. The converse is also true.
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Any modular transformation can be represented as a sequence of Dehn twists.
Moreover, a finite number of Dehn twists generates the entire modular group.

Under a Dehn twist, a canonical homology basis ( a , b ) = (a1,...,ag,b1,...,bg)
changes to (a',~5'\ where ~a' and "£' are linear combinations of ~a and Tϊ with integer
coefficients.

B\fa\

DJU) '"'

The matrix I J has block entries which are g x g matrices with integer

elements. This allows a matrix representation of the Dehn twists, which are known
to preserve the (signed) intersection numbers of any two curves on Mg. For the basis

(α,"K), the intersection matrix is ( I in block form. Thus
N - l 0,

A B\τί 0 1\Λ4 B\ ( 0 1

c DJ \-ι oj\c DJ \-ι o (34)

shows that the modular group is a subgroup of Sp(2g, Z). Equation (34) is
equivalent to

ATC = CTA, BTD = DTB, ATD-CTB=l. (35)

Under a modular transformation I I, the period matrix changes by
C D

Γ1. (36)

It follows that

(ImΛ')'1 = (CΩ + D)QmΩΓί(ΩCτ + Dτ). (37)

Therefore, the finite temperature piece of the action ΔS(β;m,~n) transforms under
A

C

B2T

—̂ (ro β' - n)(lm Ω'Γ1 (rnΏr - 7?)1

= ΔS(β',m',nr), (38)

where

m' = m D-n B, (39)

n'=n A-m C. (40)
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Equations (39) and (40) can be inverted using (35) to give

m = m'Άτ+n''Bτ, (41)

n = n' Dτ + m' Cτ. (42)

Thus, for each I _> ) there is a unique f _^ ). The effect of a modular transformation
W \n'J

on Fg(β) is just to reorder the infinite sums, thereby changing the dummy variables in
(32) from mh nt to m'i9 n't. This proves the modular invariance of the free energy at any
genus.

The modular invariance of (32) can now be used to show that all windings can be
put in a single homology cycle. Let us see under what conditions an arbitrary m, 7?
can be transformed into m = (1,0,..., 0) and ~n = (0,..., 0). Suppose all entries mh nt

have a greatest common divisor (G.C.D.) r,

mi = rμi9 nt = rvh r ̂  1, μi9 vteZ. (43)

The first component of (41) becomes

\=r(AijμJ + Bijvj). (44)

Both r and the factor in parentheses are integers, so each must individually be equal

to one. This shows that ( _> ) can be brought to the form ( _, | = ( -,11 ) by a modular
\nj \n'J \0 J

transformation only if all mh ni are relatively prime. As in the genus one case, the
converse is also true. It then follows that there is always a modular transformation

which takes an arbitrary ( _ ), not necessarily relatively prime, to f -+ ll 1, where r is
W \° /

the greatest common divisor of mi and nt. A constructive proof will now be
presented.

The proof that all non-trivial windings of the surface Mg embedded in [R25 x S1

can be put in one homology cycle proceeds by induction. The case g = 1 was proved
in Sect. II. If the theorem holds at genus g — 1, then it suffices to show that the
windings can be moved from the gth to the (g — l)th handle. In fact, the ordering of
the handles is irrelevant2. The modular group transforming the homology cycles on
those two handles is therefore a Sp(4, Z) subgroup of 5p(2g, Z). This is equivalent to
working on the genus 2 surface (i.e. ignoring all but two handles), so the relevant
cycles will be labelled now a1,b1,a2, b2. The associated winding numbers are m 1 ? nl9

m2, n2.
First, all windings in handle 2 can be moved to the cycle b2, say, using a

transformation under the diagonal Sp(2, Z) subgroup of Sp(4, Z) which leaves alyb1

fixed. If mi = riμi, ni = rivi(i= \,2) with μh vt relatively prime, then the matrix

1, with 1 and y both 2 x 2 matrices, will do the job, where y = I 2 2 1 is of
0 γj \μ v J

The homology basis in what follows shall be ordered by handle (a1,bί,...,a b
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the form used at genus one. For example, this choice of y leads to

549

= V2a2 ~~ vb (45)

Under (45), b2 will obtain winding number r2, the G.C.D. of m2, n29 just as for the
torus.

For convenience, assume also that all windings in handle 1 have been moved to
the cycle bl9 with winding number r^. Let r be the G.C.D. of r1 and r2, so r1 = rp1?

r2 = rp2. Then the matrix

" 1 0 0 0 "

0 ?l 0 q2

o ό ' ϊ"o"
-0 -p2

0 Pl_

(46)

transforms all windings from b2 to bl9 as promised, and satisfies (35). The
topologically conserved winding number r for the two handles is the greatest
common divisor of the winding numbers ml9nl9m29n2.

In fact, (46) is not the most general form of a Sp(49 Z) matrix which unwinds the
Ά B\

J can have arbitrary integer entries subject to thesecond handle. The matrix

conditions (35) and dety2 = 1. Four degrees of freedom remain, in addition to the
freedom in how one chooses ql9 q2. This allows

(47)

This procedure can be repeated on Mg until all windings reside in one cycle. By a
diagonal \_Sp(2, /)]g transformation, windings for all the handles are put in the b-
cycles. Then a sequence of Sp(4, Z) transformations moves them ultimately, say, to
al9 with winding number r the G.C.D. of all the mt, nt. The product of these

1

0
_0

0 Bll

01 #21

0 1

-P2 #21

o -
02

0

such that y _ ) =
n

transformations will be a modular transformation γ =

-H. ll ). Clearly, this y is not unique since there exist many choices at each step of the

procedure.

Let be the subgroup of the modular group Γg which leaves _
rδ

ll

n , if yί _. j = ί ̂  n ). Moreover, if ̂invariant. Then for any αe^1? α c

\ n j \ u / \

and y2 both take ί _ j to ί -,ll j, then α = y^2l^ι- We thus conclude that for

every set of 2g integers mi9 nί9 there is a unique yeΓJ&< which takes ( _^ ) to ( ^ l r ).
\ n / V ° /
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Consider the action of the group ̂  on the homology basis I _> 1. By comparing

(33) with (41) and (42), one sees that

a\ = a1 + (linear combination of a29. . , α g , f t l 5 . . . , frg),

a'j = (Independent of αj jΦ 1,

b\ = (Independent of α x ) i = 1, . . . , g. (48)

Furthermore, all modular transformations which satisfy (48) are elements of^l. So
^Ί can alternatively be defined as the subgroup of Γg which preserves winding
around the cycle al only.

Our main result can now be proven. In the sums appearing in the expression for
the free energy

(49)

make the change of variables

where r is the G.C.D. of mh n t and

As ( _ ) runs over all 2g-tuples of integers, r runs over Z and y runs over all of
w

/y^i once and only once. Then Fg(β) becomes

00 β^^Fg(β)=Σ Σ ί (dτ)/g(τ)exp-^— r2[Im(yofl)]-}, (51)
r=l7eΓg/ylΓ/Γg

 Z

where the subscript 1, 1 refers to that component of the matrix, and the action of 7 on
Ω is given by (36). The change of variable

(moduli) -> 7 ° (moduli) (52)

in the integration over moduli space yields

P*(ft=Σ Σ ί (dτ)/g(τ)exp-^r2[Imfl]Γl (53)

The modular invariance of (dτ)WP and /g(τ) have been used to obtain (53). Note that
an element yeΓg has a natural action on ^~/Γg: y carries a point in one fundamental
domain of ^~/Γg to the corresponding point in a different fundamental domain.

The sum over y in (53) is performed by Poincare resummation, as in the Selberg
trace formula [6]:

FvW=Σ ί (^)/g(τ)exp-^r2[Imί2]Γ,ί. (54)
r = i * r / g ί *•

This is the desired result. Equation (54) can be obtained directly from the path
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integral by imposing the boundary conditions that X°(z,z) has winding number r
around the cycle a1 and is strictly periodic around all the other cycles. ̂  is the
subgroup of 7"g which preserves this boundary condition. Clearly the choice of a± is
arbitrary; the derivation of (54) would remain valid with aί replaced by (say) b3.

The expression (54) for the free energy at the g-loop level has the advantages over
(32) in that:

(i) All but one of the 2g infinite sums have been eliminated.
(ii) The region of integration &~/&ι may be simpler in practice than Jt — 3~'/Γg.

Although the manifest modular invariance of FQ(β) has been sacrificed, the
derivation of (54) from (32) makes it clear that these symmetries are still intact

IV. Conclusions

The free energy for a gas of interacting closed bosonic strings has been calculated
using the Polyakov path integral. Thermal effects introduce various winding
numbers for the field X°(z, z) mapping the string worldsheet Mg around the compact
time direction. It has been proven that the manifestly modular invariant formulation
is equivalent to one putting all the winding into one arbitrary non-trivial closed
curve. The latter formulation yields more readily to direct computation.

After this work was completed, we received a paper by Ohrndorf [12] which
derives the generalization of our classical action for the embedding of higher genus
surfaces in a compactified spacetime U26'D x ΛD, where ΛD is a lattice of dimension D.
Upon judicious placement of lattice vector indices on our variables β, mh nh Ht and
choosing a metric on AD to contract indices, Ohrndorf's result can be obtained.
Ohrndorf does not, however, discuss the consequences of modular invariance for
this result.

Ultimately, our description of early string cosmology will hinge upon our ability
to calculate non-perturbatively in the infinite genus limit [13] corresponding to a
dense gas of strings. Of course, this is the physical regime in which the loop
approximation in the sigma model breaks down, i.e. gμv(x) φ δμv. The assumptions
which justify the free string calculations of the Hagedorn temperature no longer
hold. The effects of higher genus surfaces and curvature are under investigation.

Appendix I

Beginning from the form of the free energy in (9), the critical temperature is
calculated. Omitting an overall constant and the T13, the τ integration in (9) can be
written

,/= 7 dτ1]dτ2τ^14e4^\f(e2πίτ)\~48 £ e~r2β2τ/2τ\ (A.I)
-1/2 0 r=l

The τ2 integral can be evaluated in the asymptotic limit corresponding to large mass
level, n-»oo. The function f(e2πiτ) = f(x) in (10) can be written with x = e2πlτ

Π

-48 48

1 + Σ P(n)x"
n= I

(A.2)
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The number p(n) is the degeneracy of the nth mass level. For — %<τi <^, the
absolute value is dominated by the value at τ1 = 0. Hence

1 + X p(n)x"
48 Γ oo Ί48

^ 1+ Σ P(n)e~2^n

L "=1 J

= 1+ Σ P*a(n)e-2"ιa> (A.3)
n= 1

where p48(n) is given asymptotically by Huang and Weinberg [14]:

/2

π(2n)1/2, (A.4)

for n>n0, for some n0. Considering those terms for which n>n0, one has
asymptotically

oo oo oo

J~ const Jdτ 2τ 2- 1 4 £ p48(φ-2π"("-2) X e-'2/>2r/2«
0

oo oo

= const £ ΣP48(rc) , /_,J /C13(rj8>/4π(n-2)T), (A.5)
n = f i o r = l y^TΓ^n ZJy

where Kί3 is a modified Bessel function. For large n, K13 behaves as

-13/2

I- (rβj4π(n-2)TΓ 1/2 exp - rβj4π(n-2)T. (A.6)

Since for large n, (n — 2) ~ n, using (A.4) gives

f f n-^l2(r2β2T

The dominant contribution comes from the r = 1 term, so the critical temperature
obtains by equating the exponents:

(A.8)

This agrees with the known result. Note that only an upper bound on βc has been
calculated, i.e., a lower bound on the critical temperature, because of the argument
leading to (A. 3).

Appendix II

The divergences of F^β) below the critical temperature are examined here at each
mass level n, using | J +Σp(n)x"l48 = 1 +Σ^4sWx" The lowest mass level is the
tachyon, corresponding to n = 0, where the 1 in (A.2) can be written 1 = p(0)x°. This
contributes a factor

r=l 0

which diverges like e4πτ2 as τ2 -» oo.
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At n = 1, one would guess that the dilaton behavior is like

00 00

J dτ2τ;14e4πτ*p48(l)e-2πτ2e-r2/>2τl2τ\

However, |/(^)|~48 can be expanded as

48 / oo \ 2 4 / oo \24

= 1+ £ p(n')xn' 1+ £ P(*")x*n"1 + Σ p(n):
n= 1

- 1 + 24p(l)(x + x*) 4- 0 ( \ x \ 2 ) + ...

-1 +24β~ 2 π τ 2(β 2 π ί τ ι+β~ 2 π ί τ ι)+ •••. (A.9)

1/2

Keeping in mind the integration j dτ1 in (A.I), one sees that the terms of first
-1/2

order in x vanish because of periodicity in τ^ Consequently, there is no dilation
divergence.

For n > 1, the expansion (A.9) will include interference terms from various n' < n.
Again, the phase integrals vanish expect for the terms in which the phases sum to
zero, i.e. (xn/2)(x*"/2), for even n. For the level n = 2 this interference term contributes
a factor

1/2 oo

j dτ1 j dτ2τϊ14e4πτ2e~4πτ2e~r2β2τ/2τ2(5Ί6e2πiτίe~2πίτί}
-1/2 0

,,2o2rΓ\ -13

This makes a finite contribution to F^β). All higher order terms will also be finite.
However, only for β > βc does the sum over r converge.
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