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Abstract. We construct a classical lattice gas model with a unique periodic
ground state configuration such that the Peierls' condition is not satisfied. The
ground state configuration is nondegenerate, which means that for any fixed
energy E and any integer n, the diameter of the support of all rc-connected local
excitations, with energy less than E, is bounded. Nevertheless the configuration
is not stable: it does not give rise to a low temperature phase. Any translation
invariant Gibbs state of our model corresponds to quasiperiodic ground state
configurations. This requires the modification of a recent hypothesis of
Dobrushin and Shlosman.

1. Introduction

In their recent paper Dobrushin and Shlosman [1] formulated a hypothesis
concerning the stability of ground state configurations of classical lattice systems.
They addressed the question: which ground state configurations give rise to the low
temperature phases? One of their suggestions was the following. Assume all periodic
ground state configurations be related by the symmetry of the Hamiltonian. Then a
ground state configuration should be stable if and only if it is nondegenerate, where
by nondegeneracy it is meant that for any fixed energy E and any integer n the
diameter of the support of all n-connected local excitations with energy less than E is
bounded.

Here we provide a counterexample to this assertion. Our model is a two-
dimensional lattice gas system with nearest neighbor interaction. The construction
is based on Robinson's tiles [2,3]. There is a family of 56 square-like tiles which tile
the plane only in a nonperiodic fashion. This can be translated into a lattice gas
model without any periodic ground state configurations in the following way
[4,5,3]. Every site of the square lattice can be occupied by one of the 56 different
particle-tiles. Two nearest neighbor particles which do not "match" contribute
positive energy; otherwise the energy is zero. Such model does not have periodic
ground state configurations. It does possess, however, "quasiperiodic" ground state
configurations. A configuration of particles is quasiperiodic if when a certain
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fraction of them is ignored the rest of the configuration is periodic; the smaller the
fraction, the larger the period. Such quasiperiodic ground state configurations are
unstable: arbitrary small changes in chemical potential lead to changes in
stoichiometries, in distinction with all previous known models [6]. The low
temperature behavior of classical lattice systems with quasiperiodic ground state
configurations was studied recently in [3]. It appears that such systems can have
many Gibbs states. The existence of quasiperiodic Gibbs state, however, has not
been determined. We will demonstrate here that even in the presence of periodic
ground state configurations the low temperature behavior may still be of
quasicrystalline nature. In order to do that we introduce another particle (which we
call square) which does not "match" any square-like particle but "matches" itself. In
addition every square-like particle is furnished with one of the two "orientations":
+ 1 or — 1. The square particle acquires 0 orientation. Two nearest neighbor
particles contribute positive energy if their orientations are either not the same or
are both — 1; otherwise the energy is zero. The interaction of our model is then the
sum of the two interactions described above.

It is easy to see that such a lattice gas model has a unique nondegenerate periodic
ground state configuration—every lattice site occupied by the square particle.
Nevertheless it does not satisfy the Peierls' condition because of the existence of
nonperiodic ground state configurations with all bonds "satisfied." (Systems with a
finite number of periodic ground state configurations and violating the Peierls'
condition were first introduced by Pecherski [7, 8].)

We will prove here that the unique, nondegenerate ground state configuration of
our model is not stable: it does not give rise to the low temperature phase. The proof
is based on a method developed in [9,8,10,11]. The basic idea is the following. We
fix the energy coupling constants in such a way that the lowest excitation energy of
the nonperiodic ground state configurations is smaller than the lowest excitation
energy of the periodic ground state configuration. Therefore the leading term of the
low temperature expansion of the free energy is smaller for the nonperiodic ground
state configuration than for the periodic one. The nonperiodic ground state
configurations are then dominant [9]. This perturbation argument was made
rigorous by Slawny [8] for systems to which Pirogov-Sinai theory applies: finite
number of periodic ground state configurations satisfying the Peierls' condition; i.e.,
not in the present example. One can find a very nice exposition of the proof for the
case of the Blume-Capel model in the paper of Bricmont and Slawny [10]. The
proof can be applied almost directly in our case. In fact, our model is a variation of
the Blume-Capel model incorporating nonperiodic ground state configurations.

2. The Model

Each site of the square lattice is occupied by one of the 113 particles. 112 of them are
Robinson's square-like particles (the complete description of them can be found in
[2,3]) furnished with one of the two orientations: + 1 or — 1, and one is the square
particle with 0 orientation. If X(d) is a particle at site a, then we denote by Xor(a) and
X\a) its orientation and its tile component respectively. If the tile components of two
adjacent particles do not match the energy is Et. If the orientations of two
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neighboring particles are + 1 and — 1 respectively they contribute the energy E+ _;
if the orientations are 0 and — 1 or + 1 or if both orientations are — 1 the energy is
E0. In all remaining cases the energy is zero. We set 0< 12Et<E+_ <(4/5)E0.
Observe that the interaction between particles decouples into the sum of the
interaction Hor between their orientations and ΐf between their tile components.

The model just described has a unique periodic ground state configuration g—
all lattice sites occupied by the square particle, and many nonperiodic ones
(corresponding to all nonperiodic tilings of the plane) with all bonds "satisfied." The
Peierls' condition is not satisfied. To see that let us insert an island of a nonperiodic
ground state configuration into the periodic one. The energy of this excitation is
proportional to the length of the boundary of the island. On the other hand
following Pirogov-Sinai definition one has to include the nonperiodic ground state
configuration in the contours. This makes the area of the contour in our example
equal to the area of the island.

g is nondegenerate in the sense of Dobrushin and Shlosman [1], where
nondegeneracy means the following. Let G be a ground state configuration and X
equal to G except at the finite number of lattice sites denoted by supp (X \ G). Then X
is a "local excitation" of G. The excitation X is said to be /t-connected if supp (X \ G) is
tt-connected, where two lattice sites are n-connected if their distance is less than n.
Let us denote the set of all local n-connected excitations of G by Σn(G). If

HΛ=ΣUA (2-1)
A<=Λ

is the finite volume A Hamiltonian then

E(X\G)= Σ(UA(X)-UA(G)) (2.2)

is the excitation energy.
The ground state configuration G is nondegenerate if for any n > 0, E > 0

max (diam. supp(X | G)) < oo. (2.3)

E(X\G)<E

It is easy to see that Q is nondegenerate.

3. The Instability of the Periodic Ground State Configuration Q

Using the contour method developed by Bricmont and Slawny [10,11] we will
prove the following theorem.

Theorem. In any translation invariant Gibbs state of our model the probability of
having the square particle at any fixed lattice site goes to zero as /?-> oo.

This means that the unique nondegenerate periodic ground state configuration
of our model is not stable. It does not give rise to a low temperature phase. The
hypothesis of Dobrushin and Shlosman should therefore be modified.

First we define the restricted ensemble corresponding to the nonperiodic ground
state configurations. We follow [10] closely.
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Let & = y* be the configuration space of the model; | ̂  \ = 1 13. Q is the unique
periodic ground state configuration: Q(d) = q (the square particle) for all ael2. Let

#£ - {Xε&:Xor(a) = ± 1, and if Xor(a) = - 1,

then Xor(b) = + 1 for every adjacent b}.

^>Λare the sets of restrictions to A c=Z2 of the configurations of ̂  .
For Ye3PχtΛc and a fixed arrangement Z of the tile components of the particles

in A

(3.1)

where the sum is over all XeX^ such that X(a) = Y(a) for all aεΛc = Z2\Λ and
X\ά) = Z(ά) for all αeΛ; 3/i is the set of the sites in the complement of A which have
nearest neighbors in A . Z£ (A \ Y, Z) is a partition function of a hard-square lattice
gas (at each lattice site we can have a particle with — 1 orientation and no two
particles can be adjacent) with the activity of the particle equal to e~4E+~β. Let

βPί (β) = - lim -i- log Z + (A \ Y, Z\ (3.2)
Λ-*!2 I /l I

We have a convergent low-temperature expansion:

βP^(β) = e~4E+~β + 0(e~*E+-β). (3.3)

Observe that there are no local excitations of the ground state configuration Q with
energy less or equal to E+ _ .

Let X be a local excitation of any configuration with the orientations of all
particles equal to + 1. We define its retouch by changing the orientation of a particle
at a to 4- 1 if Xor(a) = - 1 and Xor(b) = + 1 for every adjacent b. Now following an
idea of Bricmont and Slawny [10] we introduce two kinds of contours: small-scale
contours and large (temperature-dependent) scale contours. A small-scale contour γ
of a configuration X is a pair γ = ([y], X^)9 where [y] is a maximal connected subset
of the set of nearest neighbors (a, b) such that

(ret X(a))or / (ret X(b))or or (ret X(d))or = (ret X(b))or = - 1.

Now let

£(0) is a square of side L(β) centered at the origin; B(a) = B(0) + (l/2)L(jff)α, αe/2.
B(a) is a "regular box" of a configuration X if X\B(a)E^κ,B(a) and it is irregular
otherwise. We have two types of irregular boxes B(ά) of a configuration X:

type 1 if X \B(a) = Q\B(a),

type 2 if the support of a small-scale contour of X intersects B(ά).

A large-scale contour Γ is a connected family of irregular boxes. || Γ \\ is the
number of boxes in 7". Given the above definition of contours and having the
convergent low temperature expansion (3.3) one can repeat the proof of Bricmont
and Slawny [10] and have the following lemma.
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Lemma [10]. If β is large enough there exists a constant c such that for all finite
A c Z2, all boundary condition SE^^AC and all contours Γ cz A,

where PΛ(-\S) is the finite volume A Gibbs state with the boundary conditions S.

Sketch of the proof. The proof is based on the fact that the interaction between two
particles decouples into the sum of the interaction between the tile components of
the particles and the orientations of the particles. We will use the conditional
probabilities with respect to all arrangements of the tile components of the particles
and reduce everything to the system with the ground state configuration Q and
another dominant periodic ground state configuration corresponding to + 1
orientation of the particles. That system can be handled by the method of Bricmont
and Slawny [10].

Let ω be a family of small-scale contours in \_Γ~\ = (J B, [ω] = (J [y], and
Be Γ yeω

DΓ]\[ω] = (jMί5 be the decomposition into connected components. Let
t

A = \jMί9 where the union is over all Mf's on which we can have the restricted
ensemble 3^RιMι. First we condition on the particles in d[Γ~\\

')PA(Γ9S'\S), (3.4)

where the sum is over all S'e^5[r], and the ensembles defining the probabilities are
indicated after the vertical bar. Now we have

m(Γ2,ω|S,S'), (3.5)
Γ2,ω

where the sum is over all possible families Γ2 of type 2 boxes of/" and families ω of
small-scale contours in [/"] such that for each box of Γ12 there is a contour of ω with
support intersecting the box. We do not include the type 1 boxes in the sum in (3.5).
These boxes are, however, included in the definition of [/"] and they are taken into
the account to estimate P[Γ](Γ2,ω|S,S', W) when using (3.10) [10]. Now we
condition on W9 the tile components of particles in A9

'), (3.6)

ι n ω , , =

Now we have the following estimates:

Γ2,ω, S,S',W) ^e~βE(ω) f] Z^(Mt\Sh W)e-^A-dA(w^\ (3.8)

where St is the configuration on dMt determined by 5, S' and W and E(ω) = ΣyeωE(y)
and energy is calculated with respect to Hor;
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where in Z' the sum does not include the square particles, and W is the configur-
ation of the tile components of particles in [7"] constructed in the following way:

W'\A = A\A9

is such that H W = °

This can introduce an energy with respect to H* not bigger than |δ[ω] \Et. Because
E(ω) ^ E+ _ I ω |, where | ω \ is the number of bonds in ω, and | ω | ̂  (1/6) | d [ω] |, then if

+ _ then |d[ω]| Ef ^(l/2)E(ω). Finally

e-βE™12

Now to prove the lemma we proceed exactly as in [10].
Following the technique in [10, 12] we may then prove the theorem.
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