
Communications in
Commun. Math. Phys. I l l , 417-437 Mathematical

Physics
© Springer-Verlag 1987

A Topological Investigation
of the Quantum Adiabatic Phase*

Elias Kiritsis

California Institute of Technology, Pasadena, CA 91125, USA

Abstract. Using algebraic topology, the appearance of the Quantum Adiabatic
Phase over various parameter manifolds is investigated. The relation with non-
trivial gauge bundles (both abelian and non-abelian) is studied and it is shown
that the phase appears as a result of homotopically non-trivial mappings,
induced by the Hamiltonian in the space of wave-functions. The cohomological
picture is developed and some topological considerations concerning field
theory anomalies in the Hamiltonian picture are presented. A proof of the
Nielsen-Ninomiya theorem is given inspired from the notion of the adiabatic
phase.

1. Introduction

Recently, M. Berry found that the usual form of the Quantum Adiabatic Theorem
was not exactly correct, [1]. He showed that when the Hamiltonian depends on
several parameters that change adiabatically with time and the topology of the
manifold spanned by the parameters is non-trivial (usually induced by accidental
degeneracies), there is another contribution to the phase acquired by the wave-
function of the system (under adiabatic transport). This is topological in nature and
it is related to the first Chern class of the natural hermitian (abelian) connection in
the Hubert bundle over the parameter manifold [2].

Later, Wilczek and Zee, [3], generalized the notion of the adiabatic phase to the
non-abelian case corresponding to adiabatically transporting an n-ΐo\ά degenerate
state over the entire parameter manifold.

This discovery turned out to be very fruitful in a lot of situations, including
applications to diatoms [4], modifications of the Bohr-Sommerfeld semiclassical
quantization in some special cases [5], the explanation of the quantum Hall effect
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[13,14], and an appealing interpretation of gauge anomalies (in the Hamiltonian
picture) [6,7], as well as the successful calculation of anomalous commutators in
chiral gauge theories [8,9].

The motivation for the present work is the following: since gauge structures
appear as a result of adiabatic transport over various parameter spaces, we can
classify the non-trivial Quantum Adiabatic Phases by topologically classifying the
respective gauge bundles.

It turns out that in the most interesting cases the classification of the Berry phase
is equivalent to classifying gauge bundles over spheres. The topology of the sphere is
induced in the parameter space by degeneracies (level crossings). The picture
involving level crossings gives an appealing intuitive way to understand the global
obstructions responsible for the adiabatic phase. There are situations though
(outside the stable range, in most cases) where not every non-trivial gauge bundle
can appear as a result of adiabatic transport. Some examples are discussed in the
main body of this paper. These non-trivial gauge bundles are characterized by their
Chern classes, built out of the curvature 2-form F, which generates the "Quantum
Holonomy". The Chern classes above when integrated over the parameter manifold
give integers associated with the winding number of the map, (induced by the
Hamiltonian), from the parameter space to the appropriate space of wave
functions.

The structure of this paper is as follows: In Sect. 2 we review the correct form of
the Quantum Adiabatic Theorem following [1,2]. In Sect. 3 we identify the global
obstructions to smoothly defining the phase of the wave-function on the parameter
manifold and present a theorem that classifies completely the existence of a
topologically unremovable phase over a compact manifold. In Sect. 4 we discuss the
situation of transporting degenerate levels (non-abelian structure relevant here) and
in Sect. 5 we identify the obstructions to the global definition of the phase as non-
trivial Chern classes of the parameter manifold generated by the gauge connection
of the appropriate Hubert bundle. In Sect. 6 gauge anomalies in the Hamiltonian
picture are revisited as obstructions to defining the phase of a gauge invariant
vacuum state over the manifold of gauge transformations. In Sect. 7 we present a
proof of the Nielsen-Ninomiya theorem, [12], inspired from the notion of the
Quantum Adiabatic Phase. Finally Sect. 8 contains the conclusions.

In Appendix A some pertinent results on the homotopy theory of fibre bundles
and obstruction theory are presented. In Appendix B we prove the theorem used in
Sect. 3 to classify the obstructions that lead to an irremovable adiabatic phase. In
Appendix C we examine some examples illustrating how to trace the possible
existence of a non-trivial phase.

2. Review of the Quantum Adiabatic Theorem

Suppose that we have a hermitian Hamiltonian H(f) which depends on time
through some parameters λ^t) /=1,2,... ,n that parametrize some manifold M.

We will work in the adiabatic approximation, which means that the change of
these parameters with time is slow enough so that if the system was originally in
some eigenstate of the Hamiltonian, it will continue to remain in that state.
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The Schrόdinger equation is:

(2.1)

at any instant, which means that at each point of M we can choose an orthonormal
basis that diagonalizes the hamiltonian.

H(X)\nφ} = En(X)\n(X)} . (2.2)

The adiabatic approximation states that if \ψ(0)} = \n(X(0))}, then \φ(t)}
= \n(X(t))} up to a phase. To find the phase acquired by the wave-function under
adiabatic transport we will separate the dynamical phase from anything "else":

\φ(t)} =exp j -/ j ΛΈπ(X(r))|^(ί)l«(X(0)> (2.3)

Substituting this form in (2.1) we find an equation for yn(t):

j 7 0 *

jt yn(t) = Kn(X(t))\ ?x\n(X(t))}-- . (2.4)

Suppose we trace a closed contour C in M. Then solving (2.4) we get:

yn = H(n(X)\Vχ\n{X)y-dX , (2.5)
c

which is the additional contribution to the adiabatic phase.
Defining

A = (n(X)\Vχ\n(X)} , (2.6)

it is easy to realize that A is a connection in the nth level Hubert subbundle and for
this connection the Schrόdinger equation is the equation of parallel transport. In
this sense this connection is natural.

Using the language of forms we can write:

A = (n(X)\dn(X)> , F=dA , yn = \ F , (2.7)
s

where S is a surface that has C as boundary. In the above form the extra phase is
given as an integral of the first Chern class of the connection and thus is of a
topological origin [2].

Berry, [1], also pointed out the importance of accidental degeneracies on M
which are essential for the existence of a non-trivial topological phase. Thus, the
adiabatic phase is due to the non-trivial topology of the parameter manifold,
induced by degeneracies, which obstruct the smooth definition of the phase of the
transported wave-function.

In the following we will renormalize the Hamiltonians so that the adiabatically
transported state has zero energy over M, assuring in this way that there is no
dynamical phase.

There is a simple example which shows all the important features of the
adiabatic phase and also gives hints for a general topological classification of
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parameter manifolds that will cause such a phase to appear. We will consider a two
level system described by a two-by-two hermitian hamiltonian matrix depending on
three parameters assembled in a 3-d vector x. Suppose that at x0 the two eigenvalues
are degenerate, but if we depart from x0 in any direction the degeneracy disappears.
Near the degeneracy point we can write to first-order in x— x0 :

where σι are the standard Pauli matrices and Qj is a non-singular matrix.
Renormalizing the energy such that H(xo) = 0 and shifting coordinates such that

JLΓ/rΛ D v-i _]_/° -V1Λ-J'_]_ S}(Λ2'\ d O\

£1 \X) — JJiX "T l^ijX (J i L/\x) . \Δ.y)

Now it is easy to calculate the adiabatic phase in this case: Changing
coordinates, pi = Cijx

j, and using (2.6) we can compute the "magnetic field"
corresponding to A:

B+ = + sign (det C) —3 ,

where ± labels the two levels, and

y± = ± sign (det C
1

J - τ = ± - s i g n ( d e t C ) ί 2 s ,
s zp z

(2.10)

(2.11)

where Ωs is the solid angle subtend by the contour C as seen from the degeneracy
point, x = 0. In particular for the contour shown in Fig. 1:

y+= ±sign (det C)π ,

and both wave-functions pick up a minus sign after coming back to the initial point
of the parameter manifold (which has the topology of a 2-sphere due to the
degeneracy point at x — 0).

Consider a sphere of unit radius surrounding the degeneracy. The eigenstates of
the Hamiltonian can be written in spherical coordinates:

u+ =

cos - e

s m -

(2.12a)

Fig. 1
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U- =

cos -

(2.12b)

It is obvious that the phase of u+ is ill-defined at the North-pole (respectively at the
South-pole for w_), or that the mapping from the 2-sphere to C2 is 1-1 but not well
defined at the North (South)-pole. The C/(l) gauge potentials are:

I + = i c o t ^ , (2.13)

i_^tan^φ , (2.14)

and they have a string singularity going through the North ( + ) or the South ( - )
pole. Multiplying the wave-functions with a phase induces a C/(l) gauge transfor-
mation on A, thus moving the singularity around the sphere. The above gauge
connection is the same as that of a magnetic monopole of strength one-half situated
at the origin.

The curvature form F though (the magnetic field), is well defined everywhere
(with the exception of the origin). In this case it is apparent that cohomology plays
an important role; we have a closed (dF=0) but not exact 2-form (due to the
singular nature of the gauge potential). As we will see in the sequel this feature
persists in the more general case.

The adiabatic phase in this case arises due to the impossibility of defining
smoothly and globally the phase of the adiabatically transported wave-functions of
the Hamiltonian over the parameter manifold (which is a two-sphere).

The above results are generalized in the case where a state is n-folά degenerate
over the entire parameter manifold M, [3]. Then an adiabatic transport around a
closed curve in M can induce a U(n) rotation of the n degenerate levels.

3. Topological Classification of the Adiabatic Phase

In this section we will formulate the problem in mathematical terms using the
formalism of fibre bundles and obstruction theory.

We are interested in topologically irremovable adiabatic phases because in the
opposite case we can redefine them away by redefining the Hamiltonian and the
states in the Hubert space.

Let's consider the simplest example of a two-level Hamiltonian, to give a feeling
about the general situation. The wave-functions in this case are two-dimensional
complex vectors. As in the previous section the Hamiltonian depends on certain
parameters that parametrize a compact manifold M. The adiabatic transport of an
eigenstate of the Hamiltonian defines a mapping from a submanifold of M to the
space of two-dimensional complex vectors of unit modulus, up to a phase ( = CP1).
The space of two-dimensional complex vectors of unit modulus is topologically
equivalent to S3. We will suppose for the time being that the state in question is not
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degenerate with any other state over the entire parameter manifold (but there may
be accidental degeneracies).

In this case the Hamiltonian defines a mapping/: M->CPX. If a global definition
of the phase of the wave-function is impossible over M then adiabatic transport will
give a Berry phase. So the question of appearance of a non-trivial adiabatic phase is
equivalent in this case to the possibility (or not) of lifting/: M-^CP1 to/ : M-»S3.
Then, since S3 is a deformation retraction of C2, the global definition of the phase is
possible if and only if such a lifting / exists.

There is a relevant fibration in this case (Hopf fibration), which is crucial in
deciding about the possibility of lifting /

U(l) Λ S3 A CP1 . (3.1)

An example of a mapping that cannot be lifted when M=S2 is one belonging to
a non-trivial class of π2(CP1) = Z. If such a mapping could be lifted, then since
π2(S3) = 0 there would be a homotopy h such that h(0) =/, λ(l) =/o the trivial map.
Then poh is a homotopy connecting / to the trivial map/?o/): S2->CP1 which is
false by assumption.

In the general case of adiabatic transport of a single non-degenerate level of an
NxN hermitian Hamiltonian, the wave-functions are vectors in CN and the
Hamiltonian induces maps/: M-^CP^"1, so that the relevant question in this case
is the possibility of lifting/ to /, p oj—f.

To classify the possible obstructions we will make use of the following theorem
(the proof is given in Appendix B).

Consider a general principal fiber bundle B = (B, A, F), where B is the base space,
A is the bundle space, F is the fibre and at the same time the structure group of the
bundle and a manifold M along with a mapping/: M-»B,

M -4 B I- A I- F . (3.2)

We will try to find the condition for the existence of the lifting/of/ (p of=f)
/ : M-»A. The projectionp induces a mappingp1: [M, A]-+[M, B] ([M, B] is the set
of homotopy classes of mappings from M to B. In all of our applications it will have
the structure of an abelian group.)

Theorem./can be lifted if and only if it belongs to a class in Im/?*, the image of[M, A]
under p**.

The information concerning Im/?* can in general be found by analyzing the
exact homotopy sequence of the respective fibration.

A comment is in place here. The possibility to lift a map/: M->B to/= Λf-> A is
equivalent to the ability of finding a global cross-section in the cofibration over M
induced by the pullback off. If such a lifting exists, the pullback bundle is a trivial
one. So, the classification of mappings that cannot be lifted is equivalent to
classifying all non-trivial bundles over M which are the pullbacks of B. These
obviously are a subset of all possible non-trivial bundles over M (having the same
fibre as B).

1 For a proof see Appendix B
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Let's now analyze our first case pertinent to a single non-degenerate level. The
structure in this case is:

M Λ O P * " 1 £ S 2 * - 1 J- U(l) , (3.3)

where M=Sn for some n ^ 1. Using the exact sequence of the bundle (π n (U( l ) )« 0
for n = 0 or

0 £ πΛS2"""1) £ πΛCP"'1) Λ 0 for n^3 , (3.4)

which means that p* is onto and consequently there is no obstruction in the
global definition of phase over parameter manifolds S" with « ^ 3 . For n = 2
and N>l:πί(S2N~ί)π0 and ^ ( C P * " 1 ) ^ , whereas π ^ S 2 * " 1 ) ^ and
n2{CT?N~1)wZ. So there is no obstruction on S 1 but for M = S 2 if the induced
mapping belongs to a non-trivial class of π2(CPN~ι) then an adiabatic phase will
appear. This corresponds exactly to the situation of the example discussed in Sect. 2.
The phase in this case is due to the non-triviality of π 2 (CP i y ~ *). (This remark helps in
providing an easy alternative proof of the Nielsen-Ninomiya theorem, see Sect. 7.)

The situation above is alternatively understood as follows: The first Chern class
F, which after integration over a surface gives the adiabatic phase, is the winding
number density of π 2 (CP N ~ *). In particular the integral of Fover S 2 gives 2π x (the
winding number of the map) \ri) : S 2 ->CP N ~ 1 . This also shows that to calculate the
phase picked-up after a diabatic transport around a closed contour C we can choose
either Sx or S 2 (see Fig. 2):

2πn= f dA=\ dΛ+ J da-+\ dA=-\ dA + 2πn , (3.5)
S 2 Si S2 Si S2

so both equations for the phase:

y = $ A = l d A o r -\dA (3.6)
C Si S 2

give the same result for eιγ. In particular for the case of the 2-level degeneracy
it's easy to show that the possible π 2 (CP i V ~ 1 ) winding numbers are ± 1 so that

J = ±2π.

These global obstructions can be viewed physically in terms of level crossings
(two levels becoming degenerate somewhere on the parameter space). Two-level
degeneracies occur as points generically in spaces of dimension 3, so that by
surrounding the degeneracies by two-spheres we encounter the obstruction on S2's.

When the Hamiltonian is real (system symmetric under time reversal), the
Hubert space has a real structure and the non-degenerate wave-functions are
defined up to a sign. In particular a 2-level real Hamiltonian defines a mapping

Fig. 2
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(under adiabatic transport),/: M-^RP1, (RP1 is a real projective space, the space of
real 2-vectors of unit norm, up to a sign). The ability of globally defining the sign of
the wave-function is equivalent to the ability of lifting / t o / : M-^S1, S1 being the
space of real 2-vectors of unit norm.

From the exact sequence of the following bundle:

Z 2 = O(1) Λ S1 Λ RP1 , (3.7)
we learn that:

for i>ί (3.8)

Λ πo(0(l))->0 ,

and since ^(S X )^Z, π ^ R P ^ Z , π0(O(l))^Z2 we find that Im/?*^2Z.
So a non-trivial phase exists only on S1, generated by maps that have an odd

winding number in π^RP1). In this case the phase is a Z 2 phase (a ± sign), and the
gauge connection a Z 2 connection.

4. The Non-Abelian Case

As it was mentioned in a previous section, when a state is w-fold degenerate over the
entire parameter manifold, then adiabatic transport may cause in general a V(n)
rotation among the n degenerate levels.

In this case we have n degenerate states \i}λ, λ specifying the point in the
parameter space M. Defining the U(n) connection 1-form:

A < j \ \ i y d

it's easy to show that after tracing a loop C in M, the n degenerate states will be
rotated by a U(n) matrix given by the Wilson loop, [3]:

Suppose that the Hamiltonian is an N x N Hermitian matrix. At each point of
the parameter space we can always make the wave-functions of the n degenerate
states orthonormal. The question is: is it possible to have a smooth global system of
orthonormal eigenstates over the entire parameter manifold?

The Hamiltonian in this case, (in analogy with the abelian case in Sect. 3),
defines a mapping, from the parameter manifold into the Grassmann manifold

G(N, «)=——— ΓT7ΓT which is the set of w-planes in CN. Then ability to globally
\J(N—n)\]{n)

define the orthonormal systems is equivalent to the ability of lifting the map

/ : M-+G(N, ή) to/: M-+Y(N, n) Ξ ^ the set of rc-frames in C* Intuitively it

can be understood as follows. Starting from a fixed n-frame we can generate any
other possible «-frame by U(JV) rotations of the initial frame. But rotations in the
orthogonal complement do not change the «-frame, so we must divide \J(N) by
\J(N—n). The Hamiltonian also does not distinguish between two ^-frames
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differing by a \J(n) rotation so that the Hamiltonian really defines a mapping in

—-—. The abelian case discussed in the previous section is a special case of
TJ(N—n)\j(n)

U(N)
the above for n = \. Then -— r = S

\J(N—n)
We have the following principal fibration in this case:

and the theorem used in Sect. 3 applies here, giving the conditions for the ability to
lift/to/.

Again the obstruction can be viewed as due to level crossings. These introduce
non-trivial topology in the parameter space and twist the Hubert bundles.

For example, consider the transport of an «-fold degenerate level of a complex
Hamiltonian and suppose that it becomes degenerate with another non-degenerate
state at some point in the parameter space. The relevant part in the Hamiltonian
near the degeneracy is the (n +1) x (n +1) sub-matrix describing the crossing
levels. This sub-Hamiltonian is generically parametrized by In parameters lying in

————- = CPn. This means that such crossings occur generically at points in a

(2« + l)-dimensional space. So we have to look what happens on parameter
manifolds being Sm, 1 ̂  m ̂  In, which encircle the degeneracy points. As it's shown
in Appendix C, the only obstruction arises on 2-spheres in this case.

For an n-ϊo\ά degenerate state, (n > 2), crossing a 2-fold degenerate state we have
to look on spheres Sm, l^m^4n. It is also shown in Appendix C that non-trivial
holonomy arises on 2-spheres but also on 4-spheres (and possibly also on higher
spheres).

If the Hamiltonian is real then the Hubert space has a real structure, so that we
have to consider the real Stieffel and Grassmann manifolds instead:

Λ RV(N,n) A RG(N,n)

7 O(N-n)

The connection in this case is an O(n) connection.
As an illustration, for the real case, consider the example given in [3], where

an n-fo\ά degenerate state of a real Hamiltonian is becoming degenerate at some
point of the parameter space with another non-degenerate level. The relevant
(n + l)x(n + \) part of the Hamiltonian depends in general on n parameters lying in

We have to look then on M=S m , l^m^n. As we show in

Appendix C a non-trivial phase2 appears only for m = n and for n =t= 7 (mod 8). For
n = l (mod 8) no phase appears.

For a detailed discussion of some interesting special cases see Appendix C.

' By "phase" here, a U(n) rotation of the degenerate subspace is meant
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5. The Relation to Cohomology

Our discussion of the representative paradigm of a non-trivial adiabatic phase in
Sect. 2 hints the possible connection to cohomology.

We have a connection 1-form, which has a string singularity somewhere on the
sphere and which we cannot remove by a gauge transformation, but we can just
move it around the sphere. The curvature 2-form is well-defined globally.
Integrated over the S2 gives an integer which is the winding number of π2(CPN~1):

T- ί F = n

We would expect these features to persist in the non-abelian case, too.
Our setting of the existence of a non-trivial adiabatic phase in terms of the
impossibility of liftings of maps, gives the hint for an answer. This can be achieved
using Obstruction Theory which is formulated in terms of Cohomology.

We will state the mathematical result, pertinent in our case:
Consider the following fibration and a map/from a manifold M to the base

space of the bundle.

J l ί i B ί A i F .

We will suppose that M is an Sm.
The obstruction to lift the map/to/: M->A is represented by the non-vanish-

ing of the obstruction cochain c(f), which is an element of Hn+i(M,πM[F]),
(the coefficient bundle in our case is trivial). In the complex case, n = l since
πι[U(N)] = Z whereas in the real case, n = 0 since π0[O(N)] = Z2.

Using the results of Appendix A on obstruction theory we can conclude that in
the complex case, the primary obstruction is in general non-vanishing only on S2

corresponding to the first Chern class of the complex Hubert bundle over S2 while in
the real case the primary obstruction is generically non-vanishing on S1 correspond-
ing to the first Stieffel-Whitney class of the real Hubert bundle over S1.

The forms that can represent the obstruction cochain c(f) in the non-abelian
case are the pullbacks under/* of the corresponding cohomology generators of the
Grassmann manifold, which integrated over Sm will give integers (when they can be
represented by differential forms).

To understand better the higher obstructions, let's consider the case where the
primary obstruction vanishes, Tr(F) = 0. In this case our U(n) bundle is equivalent
to an SU(n) bundle. Since SU(ή) is 3-contractable the obstruction in this case is
represented by the second Chern class, Tr (F2), which is a 4-form and arises on S4.
The generalization to higher obstructions is thus obvious. When the cohomology
coefficients are torsion no interpretation using differential forms is available.

These non-trivial Chern classes, in the stable range, correspond to instanton-like
configurations characteristic of non-trivial gauge bundles. Upon integrating them
over M we get integers which classify the respective U(n) bundles.

The same reasoning applies to the real case. The corresponding obstruction
cochains are the Stieffel-Whitney classes of the real Hubert bundle.

It is just a routine check in order to verify that the cohomological picture gives
the same results as the homotopy picture developed in Sects. 3 and 4. The advantage
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of the cohomology approach is that it displays explicitly the role of the curvature
2-form, F, the homotopy picture being easier to do computations with.

To conclude, whenever the obstruction cochain belongs to a cohomology group
with integer coefficients, we can represent it with a differential form built out from
the curvature form, i7, corresponding to instanton-like configurations and which
integrated over the parameter manifold will give integers related to the winding
numbers of the map it obstructs.

When the obstruction is torsion, more clever techniques are needed to trace it.
As was pointed out to me by L. Alvarez-Gaume, the possible answer is using
"generalized" ^-invariants, capable of "seeing" torsion. Prototypes of such
techniques where used by E. Witten in tracing the SU(2) anomaly, [17] and global
gravitational anomalies in ten dimensions, [18].

6. Another Look at Anomalies

As discussed already by [6,7], the quantum adiabatic phase gives an elegant way of
interpreting anomalies in the Hamiltonian picture.

The situation can be set as follows: Consider a chiral gauge theory with three-
dimensional space compactified to a sphere (or a product of spheres). The spectrum
is discrete and we are working in the temporal gauge. Our aim is to construct a
physical Hubert space that is gauge invariant. The residual gauge transformations
that respect the temporal gauge are time independent gauge transformations which
are mappings from space (S3) to the gauge group G of the theory. We will consider
G3 = {maps:S3-»G} and A3, (the space of static gauge potentials in the A° = 0
gauge), as our parameter space.

By adiabatically transporting around the parameter space G3 the vacuum state
of the theory |0> we'd better not acquire a phase because that will indicate loss of
gauge invariance. Otherwise stated the phase of the vacuum state should be globally
defined over G3.

Let's suppose that the vacuum state is non-degenerate over A3 (with the possible
exception of some submanifold), and is an element of CP00. From the analysis of
Sect. 3 we know that in this case a non-trivial adiabatic phase arises due to the
impossibility of global definition of phase over only the S2. There are non-
contractable 2-spheres in G3, if π2 [G3] is non-trivial (if a sphere is contractable then
it obviously creates no obstruction). Since π2 [G3] = π5 [G] under suitable boundary
conditions for the gauge transformations, theories with π5(G) being non-trivial
have a potential danger of having anomalies. To establish their existence though we
have to show that either the map induced by the Hamiltonian of the theory belongs
to a non-trivial class of π2(CP°°) or to show that there is an accidental degeneracy
somewhere that triggers a non-trivial adiabatic phase and thus a loss of gauge
invariance in the theory. The existence of such a degeneracy in chiral gauge theories
was established through an index theorem by [15].

If the vacuum state turns out to be gauge invariant, then the full Hubert space
can be constructed to be gauge invariant [6].

The U(l) anomaly can be viewed in the same spirit, by looking for non-
contractable tori in G3. We already know that [S1 xS 1 ,CP 0 0 ]»Z and under
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suitable boundary conditions [S1 x S1, G3]«[S1 x S4, U(l)]« Z. The non-triviality
of the later homotopy group shows that there are non-contractable tori in G3 while
the non-triviality of the former shows that an adiabatic phase is possible. The
existence of a degeneracy that makes the phase to appear in a chiral U(l) theory was
shown by [16].

In the case of the non-perturbative SU(2) anomaly the Hubert space has a real
structure and the vacuum state is an element of RP00 which is again an Eileberg-
Mc Lane space: RP00 = K(Z2,1), so that the only case we have to worry about is that
of S1. Since π 1(G3)^π4(G) if π4(G) is non-trivial then there exist non-contractable
S1?s in G3, and thus there is a possibility of a non-trivial adiabatic phase to exist.

That this is true was shown by [17] by establishing the degeneracy giving rise to
the non-trivial adiabatic phase in this case. Now the phase is a Z2 phase, it cannot be
represented by differential forms, and it is "non-perturbative," because there are no
infinitesimal closed paths on S1.

A comment is in order here. We supposed that the vacuum state is not
degenerate over A3. If the vacuum state is actually degenerate, then from our
previous analysis we can conclude that there may be obstructions on higher spheres,
in defining a gauge invariant Hubert space. To assert that such cases are realizable
requires some further analysis which we will carry out in a subsequent publication.

7. The N-N Theorem and the Quantum Adiabatic Phase

In this section we use the notion of the adiabatic phase and the underlying gauge
structure to give an alternative easy proof of the N-N theorem, [12].

The theorem states that a lattice theory of chiral fermions in 3 +1 dimensions is
impossible (due to species doubling), under the following assumptions:

(i) Locality of the Hamiltonian.
(ii) Translation invariance.
(iii) Hermiticity of the Hamiltonian.
(iv) Exact conservation of chiral charges.
(v) The fermion fields are complex.
(vi) The charges are bilinear in the fermion fields, locally defined an quantized.

Locality ensures the continuity of the fermion wave-functions in the Brillouin
zone. Translation invariance makes the surface of the Brillouin zone a 2-torus,
which is essential in the proof as can be seen below. Requirement (iv) means that
energy-momentum eigenstates are also charge eigenstates. This along with local
definition and quantization of charges are important for the identification of 2-level
degeneracies in the Brillouin zone as RH and LH Weyl excitations in the continuum
limit. The fermion wave-function being complex implies that the gauge field
induced by adiabatic transport is non-zero. (Remember that in the real case the
adiabatic phase on S1 is torsion and the connection form vanishes.)

The strategy of proving the claim above is, going to momentum space (Brillouin
zone) and counting topologically the number of LH and RH fermion species which
are associated with two-level degeneracies.

To see this, let's analyze the situation near a two-level degeneracy point,/=/ d e g,
(these are the only generic degeneracies that occur in a 3-dimensional space). Near
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Aieg> w e c a n res t r ic t t o t h e r e l e v a n t 2 x 2 p a r t o f t h e H a m i l t o n i a n .

+(p) , (7.1a)

(p) , (7.1b)

where ^(p) are the fermion wave-functions corresponding to the upper ( + ) or
lower (—) level. Expanding to first order in p—pdeg:

H{2\p) = ωdeg(/Γdeg) + (p-pdQg)κσ«CΪ + (p-pdeg)' "α x D[(p-pάeg)] , (7.2)

so that (7.1a,b) becomes:

(p-Pdeg)κσ
CίCκ

au
±(p) = [ω±{p)-ωdeg(pdeg) -(p-pdeg)' ^^(p) (7.3)

Redefining:

ω(p) = ω(p)-ωdeg(pdeg) , (7.4a)

p=p-Pdeg , (7.4b)

and introducing a new coordinate system:

P0 = ω-~*(χ p , (7.5a)

Pa=PκCϊ , (7.5b)

(7.3) becomes the Weyl equation:

σ Pu(p) = Pou(p) . (7.6)

It's easy to see that if det C > 0( < 0) the Pcoordinate system is RH (LH). So that for
Λ) > 0> (+ level), σ-p>0 and if the P system is RH, then σ P>0 (positive helicity),
otherwise σ-P<0 (negative helicity).

In conclusion:

det C>0 the degeneracy represents a LH fermion species,
( + level) and its anti-particle {—level) ,

det C<0 the degeneracy represents a RH fermion species,
( + level) and its anti-particle {—level) .

At each two-level degeneracy (according to Sect. 2), we have a monopole
"magnetic field" which upon integration gives the adiabatic phase:

φ+ = - i - sign (det C)Ω = J dSB+ , (7.7a)
D

φ~ =£ sign (det C)Ω = \ dSB~ , (7.7b)
D

where dD = C is the closed contour around which we adiabatically transport, + and
— refer to the upper and lower level, and Ω is the solid angle subtend by C as seen
from the degeneracy.
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If we now surround the point degeneracies in the Brillouin zone by small
2-spheres we have "magnetic flux" coming out:

Φ + =-i-s ign(detC)4π=J dSB + ,

φ-=^-sign(detC)4π= J dS B~ .
s 2

(7.8a)

(7.8b)

Let's now concentrate on these fluxes. Consider the "magnetic field" generated
by adiabatic transport of the nth level. It is a sum of monopole fields over the various
degeneracies that the nth level participates in, as it moves around adiabatically. As
an example, for the situation depicted in Fig. 4 the magnetic field is:

where the lower index on the right-hand side labels the degeneracies. Then, applying
Gauss' theorem:

J
sB

n = l dVV Bn = 0 , (7.10)

where, SB is the surface of the Brillouin zone, Sf is the 2-sphere surrounding the /th

degeneracy, the sum is over all degeneracies that the nth level meets in its way
around, and V is the volume of the Brillouin zone minus the volumes of the small

Fig. 3

Fig. 4
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spheres surrounding the respective degeneracies. The last volume integral is zero
because the Bn field is divergenceless outside the small 2-spheres, (corresponding to
dF=0).

Denote sign (det C) at the ith degeneracy by σf. From (7.10) and (7.8a,b) we
have:

Σ 2πσt - Σ 2πσΓ = J d§Bn= Σ J dS-Sn= Σ ί dT'A» » ί7-11)
* ./ SB faces faces C7

where we sum over the rectangular faces of the Brillouin zone, Cj is the contour
around the/ 1 1 face, An is the respective gauge potential and the sums in the left-hand
side are over degeneracies where the nth level meets the (n — l) t h, ( + ) , or the (n + l) t h

level, (—) respectively. Now consider, for example, the integral j dΐ-An (see
ABCD

Fig. 3). This is zero because due to the periodicity of the Brillouin zone it's like
retracing back and forth the two principal circles of a 2-torus. This is true obviously
for every face so:

Σσ f

+-Σ^=0, (7.12)
i j

which states that (using the aforementioned identification of LH and RH fermion
species, that is, σi>0-+LH species, σi<0-+RH species):

NL(n9n + ί)-NR(n,n + l) = NL(p9n-l)-NR(n9n-ί) , (7.13)

where NLfR(n, n +1) is the number of LH, (RH), degeneracies between the nth and
the {n + 1 j t h level. From this then and the fact that iVL(l, 0) = NR{\, 0) = 0 trivially,
(because the spectrum begins from the first level) we obtain:

NL(n,n + l) = NR(n,n+l) (7.14)

by induction. This is the final result of the N-N theorem implying equal numbers
of LH and RH fermion species in a lattice theory.

8. Conclusions

We have taken advantage of the topological nature of the quantum adiabatic phase
to state a rigorous theorem on its appearance over compact parameter manifolds
with non-trivial topology. The existence of the phase is associated to the
impossibility of global definition of phase of the adiabatically transported wave-
function or equivalently to the impossibility of lifting the mapping induced by
adiabatic transport from the space of normalized wave-vectors, (CP^ or G(N,«)) to
CN or Y(N,n) respectively.

The question of topologically classifying the adiabatic phase reduces to
classifying the gauge bundles on spheres which are the pullback of the respective
principal bundles over Grassmann manifolds.

Level crossings during adiabatic transport are responsible for this rich
topological structure. Their presence twists the Hubert bundles over the parameter
space obstructing in this way the global definition of the phase of the wave function
(or the internal orientation of the ^-degenerate levels).
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Using obstruction theory we can link the existence of a non-trivial Berry phase
to the non-trivial cohomology of the parameter manifold generated by the gauge
connection of the Hubert bundle. In particular, in the non-abelian case we have
instanton-like configurations, induced by level crossings, paralleling the appear-
ance of monopole bundles in the 2-level case [1,2]. The whole set-up reduces to the
results of [6,7] when applied to gauge theories with perturbative and non-
perturbative anomalies.

Appendix A

In this appendix we give some pertinent mathematical results useful for Sect. 3-5.
More details can be found in [10,11].

1st Covering Homotopy Theorem. Consider two fibre bundles B and B' having the
same fiber and group. Let the base space XofB be a Cσ space (normal, locally compact
and such that any covering ofXby open sets is reducible to a countable covering). Let
h0 :B->B' be a bundle map and h:XxI-+Xf be a homotopy of the induced map
h0 : X-+X'. Then there exists a homotopy h:Bx I^B' whose induced homotopy is h
and h is stationary with h.

2 n d Covering Homotopy Theorem. Let B' be a bundle over X', let XbeaCσ space and
f0 : X^B' a map.f: X x I-+X' a homotopy offQ =p' of0. Then there exists a homotopy

B' covering f (i.e. f=p'of) andf is stationary with f

The Exact Homotopy Sequence of a Principal fibratίon. Let B = (X, B, F,p) be a
principal fibre bundle with base space X bundle space B fibre and group F and
projection p.

F Λ B A X .

Then the following sequence is exact:

. . .

terminating at:

.. . $ πi(X) Λ πo(F) £ πo(B) .

Below we give some results on obstruction theory in fibre spaces [11].
Let i 7 A B Λ j b e a fibration, K a CW complex, and a map/: K-+X. Suppose

we were able to lift the map/to fn-1: Kn-1-^B, where Kn-γ is the (n — l) t h skeleton
of K. The obstruction of lifting the map to/ π : Kn-*B (that is extending the map to
the next 72-cell) is represented by the obstruction cochain cn(f) e Γ"[^,/*πn_!(F)].
We have assumed that the fibre is (n — l)-simple so that πn_ λ (F) is a system of local
coefficients in B and/*^_!(F) is a system of local coefficients in K.

The main theorem is as follows: Consider a fibration, F -^ A^ B, and a map
/ : M^B. Let the fiber be (n — l)-connected (that is, the first non-trivial homotopy
group is πn[F]). lϊHq + ί(M, π^F])&0ΐorn + lSq<dimM, then the map/can be
lifted to a map/: M-+A, p o/=/5 if and only if the primary obstruction cochain
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vanishes:

Hn+1(M9πn[F]) cn + \f) = 0 .

Higher obstruction cochains become meaningful only when the primary obstruc-
tion vanishes.

Appendix B

In this appendix the theorem used in Sect. 3 is proven.
Consider a general principal fiber bundle B = (B, A, F) where B is the base space,

A is the bundle space, F is the fibre and a a the same time the structure group of the
bundle and a manifold M along with a mapping/: M->B.

We will try to find the condition for the existence of the lifting/of/ (j>oj=f)
/ : M-• A. The projection p induces a mappingp* : [M, A] -• [M, B] ([Af, B] is the set
of homotopy classes of mappings from M to B. In all of our applications it will have
the structure of an abelian group).

Theorem, f can be lifted if and only if it belongs to a class in Imp*:

Proof Suppose that/belongs to a class [f]elmp*. Then there is a map ge[f]
which can be lifted to g, (if there is not such a map then [/] does not belong to
Imp*). Underp* [g] is mapped to [/]. By assumption we can connect/and g with a
homotopy h such that h(0)=f h(l)=g: Then by the second homotopy covering
theorem (see Appendix A) there is a homotopy ϊί such that /?(0)=/ K(l) = g and
obviously/is the lifting of f since poh = h.

Suppose now that/does not belong to Imp*. It/could be lifted to a map
/ : M->A,po/=/ then/belongs to some class in [M, A] and there is a homotopy h
connecting / to some other map ge[f]. The projection of h is a homotopy
connecting / to g=pog which in turn means that [f]elmp*, false by
assumption. Q.E.D.

Corollary 1. If [M, A]« 0 and [M, B] is non-trivial then any map belonging to a non-
trivial class in [M, B] cannot be lifted.

Corollary 2. If [M9 B]« 0 any map can be lifted.

Corollary 3. IfM=Sn and ππ(F)^0 thenp* is 1-1.

Proof From the exact homotopy sequence of a fibre bundle:

... Λ πn(F) ϋ πB(A) £ πB(B) Λ ^ _ X ( F )

we get: Imι*«0 so Kerp*^0.

Corollary 4. If M=Sn and πw_!(F)«0 ίλew p* w onto.

Proof From the same exact sequence above, Im d«0, Ker <
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Appendix C

In this appendix we work some examples showing when a non-trivial adiabatic
phase arises in certain cases.

Consider first the case of a real Hamiltonian, which is (n + l)x(n + l)
dimensional, with n degenerate over the parameter manifold. It describes the system
near a degeneracy where the n degenerate levels cross a single non-degenerate level.
(This is the example discussed in [3].) As it was pointed out in Sect. 4 we have to look
on parameter manifolds being spheres, Sm, l^m^n. The relevant fibre bundle
picture is:

O(n) Λ RV(/ι + l,/i) A RG(/i + l,n) , (C.I)

where RV(/i + l ,/ i )=^^«50(/i + l) and

so that πi\RG(n + Uή)]wπi(Sn) for z^l and
On the sphere, M=Sm, m < n since πw[RG(« + l,ή)] is trivial, there is no phase,

for every mapping/: Sm->RG(« + 1 , ή). But for M=Sn the situation is different. The
relevant exact homotopy sequence of the fibration is:

Λ πn[SO(n)] £ πH[SO(n + ί)] 5 πM(S") Λ π

]^0 . (C2)

(i) For /i = 0,4 (mod 8), nH^[SO(n + i)]^Z9 π^ΛSOin^πZ + Z and (C.2)
becomes:

. . . -• πn[SO(n + l)] £ Z -• Z + Z -• Z ^ 0 ,

which shows that/?* is the zero map, so every map being homotopically non-trivial
will give a non-trivial phase.

(ii) For w = 1,2 (mod 8), πn_1[5Ό(« + l ) ] ^ Z 2 , and (B.2) becomes:

πn[SO(n + ί)] ^ Z Λ ^-![SO(/i)] ^ Z2 -> 0 .

There are three possibilities for Un-
(a) ^-![SO(n)]«Z. Then Im/* = Z 2 , Ker ί * « 2 Z « I m 3 so that Kerd^O

ί^Im/?*. Every non-trivial map gives a phase.
(b) πΠ_1[5'(9(«)]»Z + Z2 then Kerz'*»Z2 or 2 Z ^ I m δ so that Ker d

» I m ^ * » 0 and the situation is the same as in (a).
(c) πn_1[S<9(«)]^Z2 + Z 2 then Ker z * « Z 2 « I m d, so that Ker

and every map with an odd winding number gives a non-trivial phase,
(iii) For /i = 3,5,6 (mod 8) πn-dSOin + ί^O and from (C.2):

. . . ^ πn[SO(n + ί)] ^ Z Λ π^-JSOί/i)] - 0 ,

and since in this case πn _ x [50 («)] is always non-trivial there are mapping in this case
too, that give a phase.

(iv) For n = Ί (mod 8) ^_![SO(«)]«0 so there is no phase in this case.
For the case of a real Hamiltonian, where a doubly degenerate state crosses with

another doubly degenerate state we can easily see using the procedure above, that
the only non-trivial obstruction exists on S1.
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As a second example consider a complex Hamiltonian with n degenerate levels,
crossing at some point another non-degenerate level. As mentioned in Sect. 4, such
crossings occur generically at isolated points in parameter spaces of dimension
2n + l. Consequently, we have to investigate parameter manifolds being spheres

Sm, l^mS2n. y(n + i9n) = V ^ ^ with:

«0 1 = 0,1,2

Since π, (S2 n +*)« 0for 3^i^2n, the only obstruction exists on 2-spheres, where any
non-trivial map in π2(CP") cannot be lifted.

In the case where an ^-degenerate level crosses a doubly-degenerate level, the
general (n + 2)x(n + 2) relevant part of the Hamiltonian is parametrized in

— which has dimension 4n, so that such degeneracies occur generically

at points in parameter spaces of dimension 4n + l. So we must look on spheres,
Sm, l^m^4n. Using the exact sequence of the bundle:

U(2) A U(/i + 2) A V(/i + 2,rt) , (C.3)

we can get the following information on homotopy groups:

7Ci[V(/! + 2,A!)]«0 for O^z'^4 .

We will distinguish two cases:

(i) n = 2. Then, V(4,2)= and there is a special fibration in this case,

S5 Λ V(4,2) A S7 , (C.4)

which has a global section. Using the information above we can read the relevant
homotopy groups:

π5[V(4,2)]*Z , π6[V(4,2)]*Z2 ,

π7[V(4,2)]*Z + Z2 , π 8[V(4,2)]*Z 2+Z 2 4 .

Using now the fibration,

U(2) Λ V(4,2) A G(4,2) ,

and the fact that (C.4) is a trivial bundle we can infer that p* :πΠ[V(4,2)]
-^πn[G(4,2)] is a map such that πw[G4,2)]^Imjp* + πw_1[S1 xS3]. Non-triviality
of πn-iflS1 x S3] then signals the existence of a topologically non-trivial adiabatic
phase on the ̂ -sphere. Consequently we have no phase on S\ S3, a Z phase on S2
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and S4, a Z 2 phase on S5, S6, S 8 and a Z 1 2 phase on S7. The above list exhausts the
possibilities of a non-trivial phase when a two-degenerate level crosses another
2-degenerate level.

(ii) n>2. We can read some relevant homotopy groups from (B.3),

Using the exact sequence of the bundle:

U(Λ) ± Y(n + 2,n) A G(n + 2,n) , (C.5)

we can get some partial information:

For « = 3, we have non-trivial phases on S2, S 4 and trivial ones on S1, S3, S5.
For « > 3, we have non-trivial phases on S2, S 4 and trivial ones on S1, S3, S5, S6.

Due to incomplete knowledge of higher homotopy groups we cannot say anything
for phases on an m-sphere with 6<m<4n.

It is obvious now that in the general situation when an «-fold degenerate level
crosses an m-fold degenerate level (n^m), we ought to look on parameter manifolds
M=Sr, where 1 ̂  r ^ 2mn. Considerable information is obtained from some known
homotopy groups:

for i^lm and

\ for / ^

We can assert that non-trivial holonomy appears on S2 r, l^r^m. For n>m no
obstruction appears on S 2 m + 1 . For « = m, π2f,[U(«)]«Zn? and by looking at:

. . .-> π2 n + 1[U(/i)] ^ π2n+1[V(2/!,/!)] 5 π2B+1[G(2/i,/i)] Λ Z n ! - 0 ,

we can see that any map which has a winding number not a multiple of «! gives a
non-trivial phase in this case.

Proceeding in this way we can get information potentially for every case.
Let's consider as a final example the case of an infinite dimensional Hamiltonian

(iV-xx), with a countable number of eigenstates). In the real case we know that
RV(oo, ή) is a contractable space so that all its homotopy groups are trivial. Since
πj[RG(oo,/7)]^πi_1[0(«)], whenever this homotopy group is non-trivial we get a
phase for any homotopically non-trivial mapping.

In the complex case, V(αo,w) is again contractable and πf[G(oo,«)]
^^i-i[U(«)], the situation is the same as in the real one.

In particular for n = 1 there is a Z 2 phase only on S1 in the real case and a Z phase
only on S2 in the complex case.
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