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Abstract. The development of bounds on the complex effective conductivity
tensor σ * (that relates the average current to the average electric field in a
multicomponent composite) has been hindered by lack of a suitable continued-
fraction representation for σ*. Here a new field equation recursion method is
developed which gives an expression for σ* as a continued fraction of a novel
form incorporating as coefficients the component conductivities and a set of
fundamental geometric parameters reflecting the composite geometry. A
hierarchy of field equations is set up such that the solutions of the (j +1 )th-
order equation generate the solutions of the jth-order equation. Consequently
the effective tensor Ω(j) associated with the jth-order field equation is
expressible as a fractional linear matrix transformation of Ω o + 1 ) . These
transformations combine to form the continued fraction expansion for
σ* = β(°) which is exploited in the following paper, Part II, to obtain bounds:
crude bounds on Qu\ for j^ί, give narrow bounds on σ*. The continued
fraction is a generalization to multivariate functions of the continued fraction
expansion of single variable Stieltjes functions that proved important in the
development of the theory of Pade approximants, asymptotic analysis, and the
theory of orthogonal polynomials in the last century. The results extend to
other transport problems, including conduction in polycrystalline media, the
viscoelasticity of composites, and the response of multicomponent, multiter-
minal linear electrical networks.

1. Introduction

A central problem in Physics is the evaluation of the macroscopic response of a
system given the formulae governing its microscopic behavior. Here a new field
equation recursion method is introduced for estimating the effective transport
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coefficients of composite materials. This development will likely have wide
mathematical significance and open new areas for study in the analytic theory of
continued fractions [1,2] the analysis of functions of several complex variables
and possibly in the field of multivariate Pade approximation [3].

Although the formalism set up in Sect. 2 extends to many transport problems,
our prime focus is on estimating the effective conductivity tensor σ* of a
macroscopically homogeneous d-dimensional composite constructed from n
isotropic components, or phases, with scalar conductivities σa9a = ί,29...,n. Note
that because of the standard mathematical analogies [4] all the results derived
here apply to the effective diffusion constant, dielectric constant, thermal
conductivity, and magnetic permeability of such composites. The extension of the
results to composites with local anisotropy (i.e. polycrystalline media) and to the
effective elasticity and viscoelasticity tensor follows from the work of Dell-Antoni
et al. [5] and is not examined until Sect. 15. Similarly we defer until that section the
consideration of the electrical response of multiterminal, multicomponent, linear
impedance networks.

It is assumed the component phases are distinct and separated by sharp
boundaries. In addition, the microstructure is required to be much larger than the
atomic scale so the equations of classical physics can be employed. Examples of
such composite materials include fluid-filled porous rocks, reinforced construction
materials, colloidal suspensions, foams, fibrous thermal insulators, multiphase
fluids, and granular aggregates.

The effective conductivity σ* is specifically defined as the tensor of proportion-
ality relating the average current flow j in the composite to the average electric
fields e via the equation . * •, ^

In principle σ* can be computed by solving Laplace's equation, V2φ = 0, for the
potential φ in each phase subject to the boundary conditions of continuity of both
φ and the normal component of the current flow, — σVφ, across each interface: the
boundary conditions imposed on φ at infinity must ensure that the electric field
— Vφ is on average uniform and equal to e. Accurate numerical calculations of σ*
have thus been obtained for periodic arrays of spheres and lattices of cylinders of
one component embedded in a matrix of a second component [6-9]. When the
geometry is more complicated we need other methods for estimating σ*. One
successful approach has been to obtain bounds on σ*: a historical survey of work
on estimating σ* through bounding techniques is given in the introduction to
Part II, which follows this paper.

The field equation recursion method introduced here applies to composites
having any given periodic microstructure. In various underlying respects it is a
generalization of the Jacobi tridiagonalization method for deriving a continued
fraction expansion for the leading diagonal coefficient i n o f the inverse A of a
given symmetric real matrix A and thus is related to the method of minimal
iterations (the Lanczos method) for finding the eigenvectors and eigenvalues of a
matrix [1,10]. To understand the basic idea let us regard the elementary equation
relating the local current field to the local electric field as a field equation in the
Hubert space Jf" of square integrable fields. This Hubert space contains a d-
dimensional subspace % of uniform fields and various other subspaces £", f, and
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SP'a, α = l,2, ...,n, of curl-free electric fields, divergence-free current fields, and
polarization fields that are non-zero only in component a.

The relevant fields in Jf' can be ordered according to the sequence in which
they appear in perturbation expansions of the solutions to the field equation in
powers of the differences between the component conductivities in nearly
homogeneous materials. The zeroth order fields are the uniform fields. Next come
the first-order polarization fields that are uniform in one component and zero
elsewhere. In general the jth-order electric fields and current fields (or more
correctly, the analogous electric displacement fields) are generated from the
"surface charges" associated with the jth-order polarization fields. In turn the
(j + l)th-order polarization fields are obtained by taking each jth-order electric
field or current field and keeping it unchanged within one component while setting
the field to zero elsewhere. The infinite hierarchy of fields thus defined spans some
subspace ^f = ̂ f(0) C 3tf'. The remaining fields in #e\$e are unimportant.

After some analysis we find it natural to introduce a hierarchy of subspaces
J f ( O b ^ f ( 1 ) D ^ ( 2 ) . . . , where Jfϋ\ j=ί,29..., oo, is the orthogonal complement in
ffl(0) of the space spanned by the polarization fields of order j or less. The relevant
information about the composite microstructure is embodied in the inner products
between the various fields and consequently these subspaces incorporate succes-
sively less of such information because they contain progressively fewer fields. The
geometrical information contained in Jtif°"1) but not in Jf 0 ) is represented by a
real d(n — l)7-dimensional normalization matrix, Nu\ and by a set of n real
d(n—\y~ ^dimensional weight matrices, l/t^7'""1*, a = ί,2,...,n, satisfying

£ 1/|£/-!) = /<•/- x\ where lu~1} is the d(n - l)j~ ^dimensional identity matrix. The
α = l

weights and normalization matrices are symmetric and positive-semidefinite and
are defined in terms of the inner products between the jth-order fields in 3tfu~1}.

In essence the sequence of weights and normalization matrices describes the
orientation of the three subspaces °U> $', and f , with respect to the n subspaces &'a,
a = \,2,...,n. Conversely, any such sequence of normalization and weight matrices
describes the orientation in some Hubert space 3tf" of three appropriately chosen
orthogonal subspaces °U, $', and f spanning ffl' with respect to n other mutually
orthogonal subspaces SP'^ a = 1,2,..., n, spanning Jf'. In a composite material the
normalization and weight matrices can in principle be calculated from the 2j-ρoint
correlation functions characterizing the microstructure. The elementary weights
satisfy l/l^0) =fal

{0\ where fa is the volume fraction of component a and when the
composite is isotropic we find N{1) = (d —1)/(1).

The lowest order fields in jfij) span a d{n — l)j-dimensional subspace °UU\ A
field equation is easily set up in jf(</) that has exactly the same form as the original
field equation in ^ ( 0 ) : the associated "effective tensor," Ωo), maps %{i) into %u\
The key observation, made in Sect. 11, is that the solutions of the field equation in
2tfU) generate all the solutions of the field equation in J f ί 7 ~ 1 } . This is remarkable
because it allows us to obtain recursion relations that link together the effective
tensors: we are able to express Qij~1}, as a fractional linear matrix transformation
of Ω0 ), incorporating as coefficients the weights l/l^J~1}, a = l,2,...,n, the
normalization factors Λ/ω, and the component conductivities σω α = l , 2 , ...,n.
Since σ* = Ω(0), these fractional linear matrix transformations combine to form a
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continued fraction representation for σ*, with matrices of increasing dimension as
its elements. This is the basis of the field equation recursion method. The continued
fractions, denoted as Ώ-functions, or Ω-fractions, have some fascinating analytic
and invariance properties which will be explored in Sect. 3 of Part II. They
converge for any reasonable set of finite non-zero component conductivities: the
dependence of σ* on Ω(J) becomes negligible when j>\.

The continued fraction expansions are useful for two reasons. By truncating
the continued fractions in an appropriate manner one obtains a sequence of
rational approximants for the conductivity function σ*(σ1? σ2,..., σn) each having
the correct analytic form. The weights and normalization matrices that enter the
truncated continued fraction can be adjusted to fit known values of the function
and the rational approximant thus obtained can be used to extrapolate beyond the
given data points. A second application of the continued fraction expansion is in
deriving bounds on the effective conductivity tensor. These result from the
observation that a crude estimate of Qϋ\ for j ^ 1, generally gives a good estimate
of σ* and wide bounds on ΩO) imply rather narrow bounds on σ*. Thus we only
need to obtain rather elementary bounds on Ω0) to give good bounds on σ*. As will
be seen in Part II, the field equation recursion method gives bounds on σ* for
anisotropic composites constructed from arbitrarily many components which may
have complex conductivities. Complex conductivities, or complex dielectric
constants, are needed for a description of the response of the composite when the
applied field e = e(ω) oscillates at a fixed frequency ω such that the wavelengths
and attenuation lengths exceed the largest scale of inhomogeneities in the
microstructure. At higher frequencies, outside this quasistatic regime, VσVφ is
non-zero on the length scale of the microstructure and scattering becomes
important.

For two-component isotropic composites, various continued fraction expan-
sions for σ* = σ*/ already exist. They were obtained solely on the basis of the
analytic properties of σ*(σuσ2). Bergman [11] studied these analytic properties
and from his work we now know [12,13] that σ*(σuσ2)/σ1 = σ*(l,σ2/σi) is a
Stieltjes function of σί/σ2, analytic except on the negative real axis and satisfying
β*lσγ >0 when σ1/σ2>0. Stieltjes functions have been extensively studied in the
mathematics literature and their continued fraction expansions are well-known:
see for example Wall [1] and Jones and Thron [2]. Thus the continued fraction
representation for σ*(σ1? σ2) obtained by Golden [14] (which was based on earlier
work of Bergman [15]) is equivalent to the S-fraction expansion of a Stieltjes
function. Another type of continued fraction representation for σ*(σ1? σ2), implicit
in [12], has the appealing advantage of treating both components on a symmetric
basis. It turns out that the field equation recursion method, for two-component
isotropic composites, reproduces this expansion. We thereby gain an interpre-
tation of the coefficients in the continued fraction in terms of overlaps between
fields in the composite.

These continued fraction expansions for σ* were limited to two-component
composites. Significant progress towards solving the multicomponent problem
was made by Golden and Papanicolaou [16] who derived integral representations
for the diagonal elements of σ*. However, unlike the two-component case, this
approach has not yet yielded any continued fraction expansions. Consequently the
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progress in deriving bounds on cr*(σ1? σ2,..., σn) when the component conductiv-
ities are complex and when n ̂  3 has been rather slow until now.

The outline of Part I is as follows. Section 2 sets the problem in a simple
mathematical framework. Perturbation expansions that serve to introduce the
field hierarchies are developed in Sect. 3. From these fields the Gram-Schmidt
orthogonalization is used in Sect. 4 to construct basis sets of fields in which electric
fields of different orders, or current or polarization fields of different orders, are
orthogonal but in which fields of the same order need not be orthogonal. Inner
products between the various fields capture the relevant features of the composite
geometry and define block-diagonal matrices of basic geometric parameters. In
each basis the projection operators onto the relevant subspaces of Jf are
represented by block-tridiagonal matrices of supplementary geometric param-
eters. Sections 5-7 explore relations between these geometric parameters and
expressions are obtained for the supplementary geometric parameters in terms of
the basic geometric parameters. The identities between the basic geometric
parameters motivate us, in Sect. 8, to introduce a new basis set of fields for Jf: in
fact we obtain a special set of orthonormal fields, denoted as a canonical basis set.
From these fields we define the weights and normalization matrices. They are
biased with respect to one of the components, called the reference medium, and
determine the basic and supplementary geometric parameters. (A simpler, more
direct, way of defining the canonical basis set of fields and the associated weights
and normalization matrices is given in Appendix 1.) Section 9 shows that the two
sets of weights and normalization factors associated with two different choices of
reference medium are related by orthogonal transformations that in turn are
determined by the lower order weights. In Sect. 10 we find that the duality of
electric and current fields in two dimensions implies identities amongst the
geometric parameters: the normalization factors of isotropic two-dimensional
composites are simply identity matrices while anisotropic composites with d = 2
and n = 2 have isotropic weights and have normalization matrices of unit
determinant.

The continued fraction expansions for σ* are developed in Sect. 11 first from
variational principles and subsequently from the field equation recursion method.
The recursion relations that generate these continued fractions are manipulated in
Sect. 12 into other equivalent forms that generate other continued fraction
expansions. Various types of terminating continued fractions are examined in
Sect. 13 and the simplest of these correspond to well known variational bounds on
σ* [17-22], denoted as Wiener-Beran and Hashin-Shtrikman variational bounds.
Bruggeman's effective medium approximation [23] for σ* is found in Sect. 14 to be
generated from a very simple choice of weights and normalization factors. Finally
the extension of the results to related transport problems is discussed in Sect. 15.

In Part II, which follows directly after Part I, the analytic properties of the
continued fractions are investigated and a comprehensive set of bounds on σ* is
derived. When the component conductivities σa, a = 1,2,..., n, are complex, finite,
and located in an open half of the complex plane it is found that each diagonal
element of σ* is confined to a hierarchy of nested inclusion regions in the complex
plane which converge to the exact value of the diagonal element as successively
higher order weight matrices and normalization factors are incorporated in the
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bounds. The boundary of each region is piecewise analytic, comprised of at most n
circular arcs joined by sections which are not circular.

Those readers only interested in grasping the results should turn to Part II and
read the Introduction and Sects. 2 and 4 in that part. Other readers who seek more
details (but who don't want to follow the full treatment) should in addition read in
Part I all of Sect. 2, the first few paragraphs in Sects. 3-8, and all of Appendix 1 and
Sect. 11, and in Part II all of Sects. 3 and 4, and the first few paragraphs in Sect. 5-8.

The definitions given in Sect. 11 for the scalar weights w[j) = 1 — w2

j) and
normalization factors nU) of two-component isotropic composites differ slightly
from the definitions of weights, w1? ; = 1 — w2, p and normalization factors, nj9 given
earlier in [12]. They are, however, related via the identities

w^ = wUj9 wψ = w2tj9 n^^l/nj^. (1.2)

Also given any symmetric positive definite matrix A, such as W^j) or Nu\ we will let

A=A-\ Ά=A112, Λ=A-i'\ (1.3)

denote the inverse, square root and inverse square root of the matrix A to avoid
clashes between exponents and superscripts.

2. Projection Operators and Hubert Spaces

This section is concerned with defining projection operators onto various Hubert
spaces associated with fields in composite materials. Similar formal approaches
have been introduced by Willis [21], Kohler and Papanicolaou [24], Kantor and
Bergman [25], and Dell-Antonio et al. [5]. The formalism leads to an elegant
geometrical interpretation of the effective conductivity tensor σ*.

Consider a d-dimensional periodic composite material with unit cell Θ of
volume V(β) and let Jf" denote the Hubert space of square-integrable complex
vector fields that have the same periodicity as the composite. On this Hubert space
the standard norm

<P|F> Ξ Λ^ J dxP(x)τP'(x) (2.1)

is defined for any two fields P, P' e Jf', where P denotes the complex conjugate
of P.

Three subspaces of 3tf" are of prime importance: these are (i) the Hubert space
% of uniform fields, (ii) the Hubert space $' of curl-free, average zero (electric)
fields, and (iii) the Hubert space β' of divergence-free, average-zero (current) fields.
The subspaces are real-symmetric in the sense that if they contain a field P then they
also contain its complex conjugate P. Associated with these Hubert spaces are the
projection operators Γo, Γl9 and Γ2 defined through the equations

|P0>ΞΓ0|P> iff P 0 = - J ^ μ χ P ( χ ) , (2.2)

|E> = r t |P> iff P x E = 0, F ( E - P ) = 0 , Γo|E> = 0, (2.3)

|J> = Γ2|P> iff F J = 0, P x ( J - P ) = 0, Γo|J> = 0. (2.4)
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By the divergence theorem, it follows that Γo, Γl5 and Γ2 project onto mutually
orthogonal spaces (%, S\ and /') and hence satisfy the identities

Ή=Vί ( 2 5 )
Also, since any average-zero vector field can be split into divergence-free and curl-
free parts, we have

I, (2.6)

in which I is the identity operator. Because of this last identity it is only necessary
to introduce the operators Γo and Γ1? and Γx is in fact just the integral operator
VΔ~1V, where Δ ~1 is the inverse Laplacian [24]. (In Fourier k-space the operator
Γx is local with elements fc fc/fc2 when k Φ 0 and with zero elements when k = 0.) To
preserve symmetry, we will also use the operator Γ2.

The composite is assumed to be composed of a finite number, n, of components,
each with homogeneous, isotropic conductivity σfl, a = 1,2,..., n. The structure of
the composite is represented by the characteristic functions,

χa = 1 in component a;

χa = 0 elsewhere,

which can each be regarded as a projection operator mapping any field
onto the real-symmetric Hubert space Θ>'a consisting of all those fields which vanish
outside component a. Since no two components overlap, these operators satisfy

and because the components occupy all space we have

Σ L=/ (2.9)
α = l

The operators χa and Γt do not commute.
In terms of these operators χa, the local conductivity, σ, of the composite is

given by

* = Σ Xa<ra, (2.10)
a=ί

and relates the equilibrium current field, j + J*(j), in the composite [where j e % and
J * ( j ) e / Ί t o the equilibrium electric field, e + E*(e) [where e e f and E*(e)e<f ],
via the field equation

e)>. (2.11)

As Papanicolaou and Varadan [26] and Golden and Papanicolaou [27] have
established on the basis of the Lax-Milgram lemma [28], this field equation has a
unique solution for j , J*(j), and E*(e) as a function of the average applied field e
provided the n component conductivities σa,a = l,2,...,n, are finite and lie in an
open half of the complex plane, and provided the characteristic functions are
measurable. Under these conditions, (2.11) similarly has a unique solution for e,
E*(e), and J*(j) as a function of j .
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Once the field equation is solved the effective conductivity tensor σ* can easily
be computed from its defining equation (1.1). The function σ*(σl5σ2, .-.,σn) thus
obtained is merely determined by the orientation of the three orthogonal
subspaces %, $', and f relative to the orthogonal family 0>'a, a = 1,2,..., n. In the
ensuing analysis of Sects. 3-8 we strive to obtain a concise way of representing the
relative geometrical orientation of these subspaces.

3. Perturbation Expansions and Field Hierarchies

Perturbation expansions for electric fields and current fields within nearly
homogeneous materials have been studied since the pioneering work of Brown
[29]: see also [30, 31] among others. Here we show how the perturbation
expansions can be naturally expressed in terms of hierarchies of electric fields and
current fields: these real fields depend on the structure of the composite and not on
the material properties of the constituents. The approach serves to introduce the
field hierarchies, which form the foundation for developing a suitable basis set of
fields that can be utilized to characterize the relative orientation of the subspaces
and subsequently to obtain a continued fraction expansion for σ*. We also define
two hierarchies of polarization fields.

Let us first derive a perturbation expansion for the electric field E*(e) for any
applied field e. Since j + J* is orthogonal to the space $' we have

r l f f |e + E*(e)> = 0. (3.1)

To solve this for E*(e), choose one of the components, say component q, as a
reference medium and define the conductivity differences

σa-σq, (3.2)

which are small for a nearly homogeneous material. From (2.10) it follows that

q Σ J ) ( 3 - 3 )

where we have introduced the variables

s?>=-σβ/δσ*'> = σ,/(σβ-σβ)s (3.4)

as defined by Bergman [11]. Substituting (3.3) in (3.1) gives

U- Σ ΓlZβ|5i">]|E*(e)>= Σ rlXa\e)/s^, (3.5)

which can be solved by taking the inverse in $' of the operator on the left-hand side
and applying it to the right-hand side. Alternatively, to obtain a perturbation
expansion (3.5) can be solved by iteration to yield the expansion

|E*(e)>= Σ *!/»/#> + Σ AXaAz6|e>/s?)s?>+... (3.6)
aΦg a,b + q

for the fluctuating part of the electric field.
To simplify the form of this result we define the new variables

(q) _ Jq)Jq) Jq) — Jq)Jq) /"J Ί\
Sab—Sa Sb •> baa — ba ba •> \J'')
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where α = b, be, bed,..., represents a string of component indices, each taking values
1,2,..., n. Also we choose a basis set for % of orthonormal real-valued uniform fields
Xj, ί=l,2, ...,d, and define the hierarchy of real-valued electric fields

|E2,> = Γ l Z β |x,>, lE^ΞΞ/ χ J E ? ) , (3.8)

where τ = aί = bί, bci,... represents a string, α, of component indices followed by a
single direction index f.

To avoid confusion, italic subscripts (=M, 7 or /z) are reserved for component
indices, script subscripts, such as ί, A, and ^ , represent direction indices, and Greek
subscripts stand for strings of indices: the subscripts α and β signify strings of
component indices while all other Greek subscripts represent a string of
component indices followed by a direction index. We adopt the summation
convention that sums over repeated Greek or script subscripts are implied, while
sums over repeated italic subscripts are not implied. Given any string τ or α we let o(τ)
and o(α) denote the number of component indices they contain, which we define as
the order of the string.

With these definitions, the perturbation solution is simply

E*(e) = <e |x,>EW>. (3.9)

Thus the electric field E* can be expressed in terms of the fields E°.
A perturbation expansion for the current field J*(j) as a function of the applied

current j , is obtained by similar steps. We introduce Bergman's complementary
variables

^}^σa/(σa-σq) = l-s^, (3.10)

and define

together with the hierarchy of real-valued current fields,

l«e> = Γ2 Z α |x,>, |Jfl°t>EE -Γ2χβ |J τ°>, (3.12)

in which the minus signs are introduced to simplify subsequent calculations.
Starting from the field equation

0, (3.13)

the analysis yields the perturbation expansion

« 1 ) (3-14)

for the fluctuating part of the current field.
We have thus defined suitable hierarchies of electric fields and current fields.

The definitions suggest we define a hierarchy of real-valued polarization fields,
either via the recursion relations

or through the complementary recursion relations

ipOO\ _ ι γ \ i p O O \ _ f ipOO\
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These two sets of polarization fields P°τ and P°τ° are equally suitable for our
analysis.

From the commutation relations (2.8) satisfied by the operators χa it
immediately follows that

<Pa

o

τ|PL> = <Pa°I°|P6

o°> = 0 if aφb. (3.17)

Likewise the commutation relations (2.5) for the operators Γt imply

<Eτ°|J°> = 0. (3.18)

The hierarchies of fields E°, J°, and P°τ (or P°t°), with τ ranging over all possible
strings span spaces S, f, and &a that are subspaces of S\ f\ and 3P'a. Since the Lax-
Milgram lemma [28] implies the field solutions E*(e) and J*(j) of (2.11) actually lie
in the Hubert spaces $ and /, there is no need to consider the larger spaces S\ f

4. Block-Orthogonal Field Basis Sets

The fields E°, J°, and P°τ (or P°τ°) defined in the previous section do not have any
special orthogonality properties apart from (3.17) and (3.18). Hence they are
unsuitable as basis sets of fields. In this section, following the spirit of the Jacobi
tridiagonalization method [10], we use the Gram-Schmidt orthogonalization
process to construct a new set of real fields Eτ, J τ, and P f l τ which are block-
orthogonal to the extent that

<Eτ |Eμ> = <J t |Jμ> = <Pβ t |Pβ μ> = 0 whenever φ ) Φ o ( τ ) , (4.1)

where the order o(ω) denotes the number of component indices a string ω contains.
For each component index a = 1,2,..., n and each integer h ̂  2, let $^ -> βh \ a n d

8P^h denote the Hubert spaces spanned by the sets of fields

U {E?}, u {J?}, U TO
τ τ τ

o{τ) < h o(τ) < h o(aτ) < h

respectively. To establish an appropriate basis set for these Hubert spaces, first
define the first-order fields,

Eαzf = Eα<f, J f l ^ J f l ^ 5 ¥a£ = ¥ae = ¥a6 , (4.2)

for all component indices, α, and direction indices, /. Next, for h = 2,3,..., oo, and
for all strings τ and ω with o(τ) = o(ω) + 1 = h let the Λth-order fields Eτ, J τ, and Paω

denote the components of E?, Jf, and P^ω that are orthogonal to the Hubert spaces
$h -> $h:> a n d ^a,h respectively. [The field Paω can alternatively be defined as the
component of P°° that is orthogonal to 0>£h: the equivalence of these two
definitions follows from (2.6).] By this process of construction, the fields Eτ, J τ, and
P α τ are necessarily block-orthogonal.

Now from the summation relations (2.9) satisfied by the characteristic
functions χa it follows that

ΣK=K, ΣJa°τ=-J?, (4-3)
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which implies « n

Σ E« = 0, Σ J « = 0 . (4.4)
a=X a=l

More generally, by the same reasoning given above, we have

Σ E t = Σ J«= Σ P«, = 0 (4.5)
b=l b=ί b=ί

for any component index, b, in the string τ.
Thus the fields Eτ, J τ, and P α τ are not independent. To remove this degeneracy

and obtain basis sets of (generally) independent real fields, we exclude those fields
Eτ, J τ , and PΛ τ for which τ contains a component index taking the value q. The fields
in the remaining basis sets will be denoted by E^}, J^\ and P ^ Note that the index
a in P ^ can take the value q.

5. The Basic and Supplementary Geometric Matrices

Not all geometrical features of a composite are relevant in determining the effective
conductivity: there is considerable degeneracy in the sense that many different
composites share the same effective conductivity, even as the component
conductivities are varied. Thus it is important to define a set of geometrical
parameters, that characterize the relevant structural features of the composite.
One candidate is the set of coefficients in the series expansion for σ* in terms of the
differences δσ^ between the component conductivities. This set, however, is
unsuitable because it is difficult to calculate the constraints these coefficients must
satisfy to give a sensible conductivity function with the right analytic properties.
Golden and Papanicolaou [16], in a major advance, expressed the relevant
structural aspects in terms of a positive measure μ that occurs in their integral
representation formula for the effective conductivity. Unfortunately the measure
must satisfy certain Fourier constraints that are hard to manipulate and lead to
some unsolved problems in mathematics concerning the characterization of
extremal measures of analytic functions [14].

Clearly the fields Eτ, J τ, and Pα τ contain a tremendous amount of geometric
information. We now assert, and prove in Sect. 11, that the relevant geometric
information is contained in the various real inner products,

!/,,, = <EA |E,>, Vλ^(Jλ\Jη}, Zβ > J l i l ί = <Pβ j l |Pβ I I>, (5.1)

which we denote as basic geometric matrices and in the real inner products,

t / U , , = <EJ Z e |E,>, ^ A , , = <JA |χ β |J,>,

ZΪ.A,, = < P A I / Ί | P , > , Zt , Λ i , = <PA |Γ2 |P,>,

which we call supplementary geometric matrices. These real geometric matrices
characterize the relative orientation of the n orthogonal subspaces ^ α , a = 1,2,..., n
with respect to the three orthogonal subspaces %, $, and f. We will see, however,
that much of the information they contain is redundant. Our eventual aim is to
obtain a minimal set of invariants (namely the weights and normalization
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matrices) that characterize the relative orientation of the subspaces and, most
importantly, that satisfy simple constraints.

As discussed elsewhere [22,29-31] geometric parameters such as these can be
expressed as multiple integrals, with appropriate kernels, of the /ι-point correlation
functions characterizing the geometry of the composite: Uλtη9 Vλtψ Z\tλtη, and
zl,λ,η depend on o(λη)-pomt correlation functions while Z f l f λ > i p Ultλtη9 and V£λtη

depend on o(aλη)-point correlation functions. The ft-point correlation functions
each give the probability that a configuration of h points placed randomly in the
composite lands with certain points in component 1, other specified points in
component 2,..., and the remaining points in component n: see Beran [31],
Corson [32], Torquato and Stell [33], and Gillette [34] for a discussion of these
correlation functions. The tremendous amount of statistical information con-
tained in the /ι-point correlation functions currently makes their measurement
prohibitive for h>3. Nevertheless, the automated measurement techniques of
Berryman [35] and the Monte-Carlo computer simulations of Haile, Massobrio,
and Torquato [36] hold great promise. Even if few of the geometrical parameters
can be evaluated, the important point is that they are well-defined and lead to a
continued fraction representation for the effective conductivity, from which a
comprehensive set of bounds can be derived.

The geometric matrices have some obvious properties. By construction of the
fields Eτ, J τ , and P α τ [see (4.1)] the basic geometric parameters are block-diagonal in
the sense that

Uλ,η=Vλtη = Zatλ,η = 0 when o(λ) + o(η). (5.3)

In the special case where o(λ) = o(η) = 0 the elements of ZOyλtη can be directly
evaluated from (3.15) to give

where fa is the volume fraction of component α, satisfying

Σ/- = l (5-5)
a=ί

Although not needed in subsequent analysis, we remark here that the elementary
submatrices Uλ>η and Vλ>η9 with o(λ) = o(η) = l, have the additional property

VatM = ψ-\Y"VatM = δabfa-fafh, (5.6)

which directly follows from the observation that the trace of Γu taken over the
direction indices, acts as the projection operator onto the class of scalar functions
with zero mean: see [37].

Now noting from (2.6) that the operators Γt sum to the identity operator and
recognizing that

Za,x,*Zb,t,η (5.7)

[which vanishes unless o(λ) = o(η) = 0], we easily deduce the identity

2 , a λ , bη + ̂ α , λ , t^b, έ,η = °a, b^a, λ , η >
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in which summation over the direction index £= 1,2, ...,d is, of course, implied.
Similarly the formulae

Σ U:,, , ,= 17A,,, Σ Va]λ,η=Vλ,η (5.9)
a= 1 α = 1

follow from (2.9).
The geometric matrices and the supplementary matrices are, in fact, singular.

From the relations (4.5) amongst the fields we have

Σ u^= Σ ^ . , = Σ Z«.A.,=O> (5.10)
c=l c=l c=l

Σ <κ«= Σ Kx.n= Σ Ά M = Σ Zi,βΛifcf = 0 (5.11)
e = l c = l c = l c = l

for any component index c e λ or c e η. This suggests we choose some component,
say our reference medium q, and let

denote truncations of the full geometric matrices, defined with respect to the basis
fields E^}, i^\ and P ^ : each component index, c e λ or c e η in these matrices runs
over the set {1,2,..., q — 1, q +1, . . . , n], skipping the value q, while the indices a and
b can equal q.

We will assume, unless otherwise explicitly stated, that the truncated basic
geometric matrices U, V, and Zα, a = 1,2,..., n, are non-singular with inverses 0, V,
and Za satisfying

V$!M% = V$V$ = Z^τZ^η==δλη, (5.13)

in which summation over a is not implied, by our summation convention. This
generic non-singularity condition is not serious and avoids exceptional cases that
would prolong the discussion of the main point.

Note that the truncated geometric matrices contain the same information for
any choice of reference medium q as the full matrices: one can easily deduce the
remaining elements in the full matrices from the identities (5.10) and (5.11).

6. Expressions for the Supplementary Matrices

Here we establish expressions for all the supplementary geometric matrices U\, i/J,
Z\, and Z\ in terms of the basic geometric matrices U, V, and Za. This shows that
only the basic geometric matrices are needed to describe the relative orientation of
the subspaces. The argument is simple and hinges on various relations between the
hierarchies of fields Eτ, Jτ, and Pατ.

By construction Paτ and Eτ are the components of χaΈτ and Γ1Pτ that are
orthogonal to the fields in ^ o ( τ ) and $^τ) respectively. The appropriate linear
combinations of fields necessary to ensure this orthogonality are, in fact, easy to
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find: given any τ with o(τ) ̂  1, let us establish the identities:

,<PJEτ>, (6.1)
μ, σ <τ

^ / E ί l | P τ > s (6.2)
μ,σ<τ

where the inequality μ,σ<τ implies the sum extends only over those sets of indices
μ, σ with o(μ), o(σ) < o(τ). To prove (6.1) it is only necessary to show that Pα τ given by
(6.1) is orthogonal to all the lower order fields in ̂ 0 ( α τ ) . By taking the inner
product with any field P ^ such that o(ω) < o(τ), we obtain the result

<Piβi|Pat> = « E τ > - Z ^ Z ^ <P JEτ>, (6.3)

which clearly vanishes and thus establishes (6.1). The relation (6.2) is proved by
similar argument.

Now by taking the inner product of (6.1) with any field P α ω with o(ω) ̂  o(τ\ we
deduce

<Pβ ω |Eτ> = Z β f β ) f τ when o(ω) = o(τ)

= 0 when o(ω)>o(τ). (6.4)

Similarly, the second identity implies

<Pτ |Eω> = (7τ?ω when o(ω) = o(τ)

= 0 when o(ω)>o{τ). (6.5)

We have thus obtained a complete expression for the inner product matrix
<Pμ |Eσ> in terms of the basic geometric matrices U and Za. Now by taking the
inner product of (6.1) with an electric field E ω rather than P f l ω and by taking the
inner product of (6.2) with P ω rather than Eω 5 we obtain two more important
relations, namely

tfI,t,ω = <EJP(II>+ Σ ( E J P ^ Z l / P J E , ) , (6.6)
μ,σ < τ

, > H/E.IP,). (6.7)
μ, σ < τ

When combined with the above expression for <PJEσ> the first relation gives

Ul,τ,ω=UaτίωΛ-Uτfaω + Za^ω+Uτ^^μUaμίω, (6.8)

or equivalently, in symbolic form,

, (6.9)

where U\ and Za are matrices that have elements U\{^ω and Z^}

τ ω labelled by τ and
ω, while for each a = 1,2,..., n, Ua, with transpose UΎ

a, is the submatrix of U that has
elements UaZi(0, which are non-zero only when o(ω) = o(τ) + \. In this sense Ua is
block-super diagonal matrix, Uτ

a being a block-sub diagonal matrix. Thus the matrix
U\ is block-tridiagonal: its block structure is of the Jacobi form [1, 10].

Similarly, the second identity (6.7) implies

" aτ,bω ~f~ ^a,τ,σ^ σ,μ^b,μ,ω ? (O.IU)
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unless o(τ) = o(ω) = 0, in which case

Z\M,M=Ua,ίM. (6.11)

Equation (6.10) can be written symbolically as

Zl.a,>=Zb.a + %b + Ua<b+ZaU-1Zb, (6.12)

in which Zbta is, for each pair of component indices a and b, a block-superdiagonal
submatrix of Zb, with elements Zbaτω labelled by τ and ω.

By considering the fields J τ and P α τ we similarly deduce that

<PJJ t > = ̂ , t - Z a , ω , τ , (6.13)

and thereby arrive at the block-tridiagonal expression

Vl=-Va-VT + Za+VjZ^Va (6.14)

for I/J in terms of Za and V and at the block-tridiagonal expression

Zia^-Zh>a-Zlh+Va,h + ZaV-"Zh, (6.15)

2 U . M = K * . M (6 1 6 )
for Z\ in terms of Za and I/. Thus we have obtained formulas for all the
supplementary geometric parameters in terms of the basic geometric parameters.

An additional useful relation,

<JJz. |E τ> = Vω,m-Za,ωιτ- Uaω,τ+ Vaι<J^β,μUaμ,x, (6.17)

is obtained by taking the inner product of (6.1) with the current field Jω.

7. Relations Between the Basic Matrices

The basic geometric parameters themselves are not, in fact, independent. From
(6.8) and (5.9) [and from (6.14) and (5.9)] we deduce

n n

Σ zajλtη=uλίη— £ uλaωz£ωτuaτη
a-1 a= 1

n

= F, — V V, 7{q) V (1 \λ
Vλ,η ZJ Vλ,aωz^a,ω,τvaτ,η^ K''1)

a= 1

and (5.8) with (6.12) and (6.15) implies
Uath+ Va,b = δabZa-Za(U+ V)Zb, (7.2)

while (5.8) with (6.11) and (6.16) gives the result

These relations are somewhat complicated and it is not obvious how we can
generate sets of positive definite basic geometric matrices compatible with them.
Our aim here is to reexpress the relations in a simpler form and to develop a
scheme for generating all such sets of allowable basic geometric matrices.
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From (7.1) and (5.10), U and V are solutions for X of the quadratic matrix
equation

XHX-X+G = 0, (7.4)
in which n

G = ΣZa, Ha^Z^ + δabZ^. (7.5)
a= 1

By completing the square we obtain

lft(X-±R)ft]2 = il-ftGft, (7.6)

where H and ft are the inverse and square root of H. This has multiple solutions for
X, namely

x=\ft±ft^i-ftGft]ll2ft, (7.7)
in which ft is the inverse of ft and Ψ is any symmetric, block-diagonal matrix
commuting with ftGft, such that

Ψ2 = /. (7.8)

Hence Ψ must share a common set of eigenvectors with ftGft, with
eigenvalues + 1 .

The matrices U and V in fact correspond to opposite roots of Eq. (7.4), unless
the roots of the equation happen to coincide. That is, for an appropriate choice of
Ψ, we can identify the + sign solution in (7.7) with U and the — sign solution with
V. This result is a consequence of the relations (7.2) and (7.3) satisfied by U and V
and is established by induction. Let Uu\ Vu\ Z{J\ Gu\ and HU) denote those
submatrices along the block diagonals of U, I/,..., and H, with elements U[^ω, Vτ

{*l,
Z(a?τ,ωi G^ω, and H[fω satisfying o(τ) = o(ω)=j. To show U and V correspond to
opposite roots of (7.4) we need to prove that for all j ,

j). (7.9)

First we establish that any symmetric matrix D of the form

Ϊ-'Bt (7.10)
has inverse D given by

( Γ 1 . (7.n)

This is accomplished by taking the product of Da h with Db c, given by (7.11), and
summing over b (φ q) to obtain the expression

(7.12)

which is clearly an identity. Now H, defined by (7.5), is of this form (7.10) with
Aa = Z~ί, C = Zq, and Ba = l (for all a) and hence its inverse is

Fίa,b = δabZa-ZaGZb. (7.13)

It thus remains to prove
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for all j. Clearly (7.3), (5.4), and (7.5) imply this relation is satisfied when j = 1. So
suppose (7.14) and hence (7.9), holds when j = g for some g. By substituting (7.9)
in (7.4) and taking X=U we have

) _ U{9\U{9) + Vi9))"1 l/β), (7.15)

which implies
G(9)=υ{9)+\/{9K (7.16)

By inserting this back in (7.2) we establish that our proposed relation (7.14) holds
when i/ = g + 1 . By induction on j, (7.9) and (7.16) are satisfied for all integers j and
g. Conversely, the initial equations (7.1)—(7.3) must hold whenever U, V, and Zα are
chosen compatible with (7.9) and (7.16).

From the definitions (5.1) it is clear that the basic geometric parameters are
positive semidefinite matrices. Any set of (block-diagonal, symmetric, real) basic
geometric matrices that satisfy the posίtίvίty conditions,

ί/^0, 1/^0, Zα^0 Vα, (7.17)

the consistency relations (7.9) and (7.16) [which imply (7.1)—(7.3)] and the
additional orthogonality constraint that

α = l

will be called allowable. Clearly any actual composite corresponds to an allowable
set of basic geometric parameters. Thus the set of allowable geometric parameters
encompasses the set of physically realizable geometric parameters. The converse,
however, is not true. In particular, an allowable set of geometric parameters need
not satisfy (5.4) or (5.6): clearly the orthogonality constraint (7.18) is a weaker
condition that (5.4). Nevertheless, as we will see in Sect. 8, any set of allowable
geometric parameters does describe the orientation in some Hubert space Jf of
three appropriately chosen orthogonal subspaces %, $, and β, spanning Jf, with
respect to n other mutually orthogonal subspaces ^ α , a = 1,2,..., n, spanning jήf.
Thus the "effective tensor"σ (σ1? σ2,..., σn) is still well-defined [via (2.11) and (1.1)]
for any allowable set of geometric parameters, and for any set of variables
σω a = 1,2,..., n, located in an open half of the complex plane.

It is now apparent from (7.7) how we can generate all possible allowable sets of
basic geometric parameters. We begin by choosing any set of n positive
semidefinite symmetric real d x d matrices Z^\ a = 1,2,..., n, satisfying (7.18). Next,
supposing the matrices Z{J~1} have been specified, for some j ^ 1, we choose any set
of n symmetric real d(n — l)J-dimensional matrices Z{

a

j) satisfying the inequalities

i # Λ £ Σ Z<;>, Z < ^ 0 , (7.19)

where HU) is calculated from the matrices ZSJ~γ) via (7.5). This constraint is
necessary to ensure (7.7) has real, positive definite solutions for U{j) and VU) in
terms of the matrix Ψ0 ), that is in turn selected to be any matrix sharing a common
set of eigenvectors with ftij)Gij)f)U) having eigenvalues ± 1 . By repeating this
procedure for successive values of j , starting from j — 1, we obtain an allowable set
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of basic geometric parameters. Conversely, any allowable set of geometric
parameters can clearly be constructed in this manner for an appropriate choice of
the matrices Za and Ψ.

In this scheme for generating allowable basic parameters we need to know the
matrices Z{J~1} before selecting a possible set of matrices Z{J\ Thus, the constraints
on the geometric parameters are coupled between different levels in the hierarchy.
In the next section we show how these constraints can be decoupled by choosing a
different basis set of fields (or "vectors") in f̂. The set of allowable basic geometric
matrices are parametrized in terms of a block-diagonal, symmetric set of
fundamental geometric matrices, comprised of normalization factors, N=N^η and
weights Wa = W^fλη, satisfying the relatively simple constraints

Λ/^0, 1/1/̂ 0, Σ Wa = /. (7.20)

These normalization and weight matrices represent a minimal set of invariants
that characterize the relative orientation of the subspaces. In Sect. 9 we establish
that the eigenvalues of these matrices are preserved under a change of reference
medium which demonstrates that an allowable set of geometric parameters
remains allowable under a change of reference medium.

8. The Fundamental Matrices and a Canonical Basis Set of Fields

To isolate the essential geometric properties characterizing the relative orientation
of the subspaces we need to simplify the form of the relations between the basic
geometric parameters. This is accomplished by transforming the basis sets E<β), J{«\
and Pjjf into three new block-orthogonal families Έ'τ

{q), J'τ
iq), and P'}*\ related to the

old fields via the special linear transformations,

E f(q) — T (q) J?(q) T?(q) _ Ύ(q) J?'(q) Ί'(q) _ T («) Ί(q) T(«) _ f(

p'ta) _ χ{q) p(q) p(q) _ j^(«) p'(q)
A ax j t vτ,ω J- aω ? x aη -tvfj,τr aτ i

where the not necessarily symmetric transformation matrices L = (L)~1,K={K)~ι

are selected to be block-diagonal to preserve the block orthogonality of the fields.
Note that the electric and current fields are transformed by the same matrix L,
while the matrix K transforming the fields P^τ

} is independent of the component
index a. Under this mapping the basic geometric parameters U, V, and Za are
transformed into a new set W, V', and Z'a. We seek a set of transformation matrices
L and K such that the new basic geometric parameters have the summation
properties n

U'+V=/9 ΣZ'a = '> ( 8 2 )
α = l

which is a natural requirement considering that the relations (7.9) and (7.16) that
n

we wish to simplify incorporate the matrix combinations U+V and £ Za. Any
a=ί

such set of matrices satisfying (8.2) can of course be replaced by a set of
normalization factors, N{£η, and a set of weights, W^\tψ defined implicitly through
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the equations
1 (8.3)

(8.4)

Z'a=Wa, (8.5)

where

ΣWa = l. (8.6)
a=l

The motivation for introducing these normalization factors and weights is simply
that they appear to play a natural role in continued fraction expansions of the
effective conductivity: they are the generalizations, to anisotropic multicomponent
composites, of the weights and normalization constants introduced for two-phase
isotropic composites [12].

One significant consequence of the requirement (8.2) is that it ensures the fields

, (8.7)

when taken together and defined for all strings ω and τ with o(ω)7tO and
form an orthonormal basis set for jf, which we denote as a canonical basis set.
(Other canonical basis sets are obtained by selecting a different reference medium
or by choosing a different basis set of uniform fields x ,̂ t = 1,2,..., d) To prove this
first note that the orthonormality

<xg>|x?>> = δωη, <y<«>|y?>> = δτλ, <xg>|y?>> = 0 (8.8)

of these fields is established by substituting (8.7) in (8.8) and using (8.2), (8.1), and
(5.10) together with the expressions (6.4), (6.5), and (6.13) for the inner products
<PS£|E?>> and <P?i|J<e)>. Next note that the d independent uniform fields
xψ = Kf}x4, / = 1,2, ...,d, clearly span °lί. Subsequently, a simple counting
argument establishes that for any given integer g ^ 1 the 2k~2d(n—l)g indepen-
dent fields x(f} and yψ with o(τ) = o(λ) = g span the same subspace oϊβ@# that is
spanned by the 2k independent fields E^} and J<?} with o(σ) = o(μ) = g. Therefore the
fields x^} and γ^ with o{ω)^0 and φ ) ^ 1 span jf.

It is not a priori clear from the definitions (8.7) why the fields x^} and y^} should
form an orthonormal basis set. In fact there exists a much simpler way of defining
these fields and the weights and normalization matrices that avoids much of the
lengthy analysis of Sects. 3-8: this alternative formulation is discussed in
Appendix 1.

Of course, we still need to establish that suitable transformation matrices L
and K exist. From (7.9), (7.16) and the defining equations (7.5) for G and H we have

~]L, (8.9)

"-.*= Σ LlcLc^KτΫa,hK, (8.10)

where

Ϋ^W^ + δ^W-^ (8.11)
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and Ha b and La b, for each pair of component indices a and b, are those submatrices
of H and L with elements H^λM and L{«lM. To ensure the relations (8.9)-(8.11) are
satisfied we make the obvious choice and select K and L such that

K = (ti + N)L; /ίΞf/Vj-^/V1'2, (8.12)

La,h=Ϋa,hK, (8.13)

where / = Ϋ^τ denotes the positive definite symmetric matrix that is the square
root of Ϋ, satisfying

Σ ΫaΛc=?β.c (8-14)
b*q

These equations, together with the identities

N^iLUL7)-1-/, (8.15)

Wa = KZaK\ (8.16)

implied by (8.1), (8.3), and (8.5), serve to define by recursion the transformation
matrices K and L, the normalization factors Λ/, and the weights Wa. To see this, let
Ϋ{j\ Ku\ Lu\ Nu\ and W^ denote those submatrices along the block diagonals of
/, K, U /V, and Wa that have elements Yτ% K^ω9 I^ω9 N™ω9 W^ω with
o(τ) = o(ω)=j. Now if K^ is known for some integer j then (8.16) enables 1/1/£J) and
hence Ϋu+ υ to be calculated, via (8.11). Then from (8.13) Lu+1} can be determined,
which with (8.15) gives Λ/ϋ+1). Subsequently through (8.12) we deduce Ku+1\

To complete this definition the initial matrix K{0) needs to be specified: for
simplicity, the natural choice

Kf^δe, (8.17)

is made, which with (8.7) implies that x^} = x/5 for £ = 1,2,..., d. This gives a set of
elementary weights

W$,Λ = #&it (8.18)

satisfying (8.6) as a consequence of (7.18).
Conversely, by similar inductive reasoning, if N and Wa are known, then the

initial equation (8.17) and the relations (8.12), (8.13) with the identities

LT, (8.19)

y1LT, (8.20)

(8.21)

which follow from (8.3)—(8.5)? enable the basic geometric parameters U, 1/, and Za

and the transformation matrices K and L to be recovered. Moreover, any block-
diagonal choice of N and Wa satisfying (8.6) will yield a set of basic geometric
parameters consistent with (7.1)—(7.3): this can be verified by direct substitution,
and has been ensured by the choice of K and L compatible with (8.9) and (8.10).

Now the positivity of the matrix U implies the eigenvalues of N lie in the
interval ( — l,oo), while the positivity of V implies the eigenvalues of Λ/"1 are
similarly confined to this interval. Therefore N must be a positive-semidefinite
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matrix. Also, the positivity of the matrices Zα directly implies, via (8.5), the
positivity of the weights Wa. Conversely, any choice of positive-semidefinite N and
I/I4, leads via (8.19)—(8.21) to a positive-semidefinite set of geometric parameters, U,
1/, and Za.

Thus we have obtained a complete characterization of the set of allowable
geometric matrices: they are the set of basic geometric matrices which follow from
any choice of symmetric, positive-semidefinite, block-diagonal matrices N and Wa

satisfying (8.6). For this reason the normalization factors and weights are called
fundamental geometric parameters.

From (5.4) and (8.18) the elementary weights for a real composite material take
the values

Wίl,/=/Λ/, (8.22)

and (5.6) in conjunction with (8.15), (8.13), and (8.17) implies that the elementary
matrices ί/(1) and l/'(1) satisfy

U'ΆMd-\)-^% = δab. (8.23)

Consequently when the composite is isotropic the elementary normalization
factor is given by

N&6, = ( d - l ) δ β A , , (8-24)

while for an isotropic two-component composite (8.23) implies that the eigen-
values nγ\ £ — 1,2,..., d, of the elementary normalization factor /V(1) are related via
the identity

f 1/(41> + 1) = 1. (8.25)

The projection operators Γi9 i = 0,1,2, and χa, a=ί,2,...,n, have an elegant
matrix representation in the canonical basis set (8.7) in terms of the normalization
factors and weights. Let us introduce the geometric matrix

v η η , (8-26)

with positive square root Ϋ defined by

Σ ttΛ{?U=YΆa- (8-27)
bΦq

These matrices Ϋ and / are in fact the inverses of Ϋ and Ϋ, defined by (8.11) and
(8.14): this clearly follows from a relation analogous to (7.13). Consequently from
(8.12) and (8.13) we have

LK={N+N)-1 = 0'Ϋ, (8.28)

KΪa,b=Kb- (8-29)

Now by using (8.7) and (8.1) to express the fields x^} in terms of the fields P ^ we
deduce that for all strings τ and λ with o(τ),o(λ)> 1,

Σ Σ ^ ^ M ^ f ] ^ f ι n ^ (8.30)
a= 1 b= 1
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where the latter identity follows from (6.10), (5.10) and the definition (7.5) of G. In
conjunction with (8.9) and (8.28) this implies

The same approach gives the expressions

(8.31)

(8.32)

for the remaining matrix elements of the operators Γx and Γ2? and in conjunction
with (6.8), (6.14), and (6.17) gives the expressions

(8.33)

yaω,ηr>

\Jω\λa\jη /— 1τ,aσyγaμ,λ1aμ,λ'>

(x{q)\y \\(q)^ = Ϋ
x^ω \Λa\Jτ / xaω,τ)

for the matrix elements of the operators χa: these formulae even apply when a = q,
provided that we define

Ϋ = - Y Ϋί:q) (8 34)
bΦ q

Since the elementary fields x{/} — x^ span °lί, the matrix representing Γo is especially
simple. The only non-zero elements are

In summary these matrix representations of the operators T{ and χa have the
block structure illustrated in Figs. 1 and 2. They can be expressed in terms of the

0

\ u ' ( 1 )
y

0

y'(2)

Q'(2)Q'

0

U 1/ '

(2) ί y /(2) :

ί

Fig. 1. Block structure of the matrix representing the projection operator Γλ in the canonical basis
set (8.7). The matrix representing Γ2 can be obtained from this matrix by interchanging U'ij) and
V'U) and switching the signs of the off-diagonal matrix elements 0'{J)9'U)



Composites and Continued Fractions I 303

Xa =

U(1)T

ϊ a

: l a

: O n ) T M J ( D ) 0 ( 1 )

ϊa Wa la

0
= a |

U(2)T !
— 3 :

0
U(2)
—a

ϊa U'a ϊa

Fig. 2. Block structure of the matrices representing the projection operators χa in the canonical
basis set (8.7)

normalization factors and weights by substituting (8.3), (8.4), and (8.11) in the
above formulae. Furthermorό it can be checked, by direct matrix multiplication,
that the matrices represent projection operators satisfying (2.5), (2.6), (2.8), and (2.9)
for any choice of allowable normalization factors and weights.

Thus when the geometric parameters are allowable (but not necessarily
realizable by a real composite material) we can consider J f as an infinite
dimensional vector space and define °U, S, f, and ^ f l, for a = ί,2,...,n, as those
subspaces onto which the matrices representing ΓQ.Γ^,^, and χa project. The field
equation (2.11) and the effective tensor σ* are perfectly well-defined in this
Hilbert space. Note that the matrix elements of Γγ and Γ2 only depend on the
normalization factors while the matrix elements of χa only depend on the
weights.

Representations for the fields Ef

τ

iq) and Jf

τ

iq) in this canonical basis set are
obtained by projecting y{q\ defined by (8.7), onto the subspaces $ and f. From
(8.31) and (8.32) this gives

(8.36)
>(q) _ T/'(«)v(«) ff'(q) p'(q)Ύ(q)

Rather than working with these fields which have an awkward representation let
us define

J"(9) — T/'ίί) J'(β) — γ(β) _ Λ/(«) χ ( ί )

as two new sets of basis fields for S and β, that have the advantage of a concise
representation in the canonical basis set. Similarly we can define the polarization
fields

αco ' α,(α,x α,τ ω ' α,co,x ατ,μjμ '

with o(ω)^0, as a new basis set for 3Pα.
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9. Effect of Changing the Reference Medium

The fundamental geometric parameters, Wa = W^η and N = N^η9 were defined
with respect to a specific reference medium labelled by the index q. Here we
consider the type of transformations these parameters and matrices undergo as the
reference medium is changed from component q to say component p=¥q.

When the reference medium is changed the vector basis sets E[q\ Jiq\ and P^t

}

are replaced by new vector basis sets

_ TiJίiP, q)γ(q) j(p) _ ]ί/f(p, q) Ί{q) p (p) _ Λ/f{p, q)j>(q) (Q 1 \
~lvlτ,ω ^ω •> ϋ τ ~Ivlτ,ω °ω •> Γ aτ ~Ivlτ,ω Γ aω ? \ y Λ )

where the block-diagonal transformation matrix Mis given from (4.5) through the

recursion relations MiP,q)_δ M^~δ δ
Me,t —°eA^ 1V1a,b =°ab~°aq> ,g *,

%:& %tfω\ fif> = 0 for o

which apply when p + q. In conjunction with (8.1) this implies

E '(P) _ τt(P,«)F'(«) τ(p) — T UP, q) j>(q)

(9.3)
P ' ( P ) — Ίζΐ(P>4)τ>'(<l)x aτ x^τ,ω x aω ?

where

^ ^^:fi^ω δτω if φ ) = o(ω) = 0

are block-diagonal linear transformations. From these relations we deduce

and by substitution in (8.2), the result

T t(P,q)fUP,q)T _ £
^τ,η ^η,ω —°τω>

follows. Thus U and /ft are block-diagonal orthogonal matrices. Consequently,
from (9.5) and the definitions (8.3)—(8.5), the weights and normalization factors
must transform linearly, satisfying

Furthermore, since Z.1^ and IC are orthogonal, ί/ze eigenvalues of Λ/(J) and i/l/JJ)

fee preserved under changes of reference medium.
Now note that (8.28) and the transformation rules (9.7) for the normalization

factors imply
(«) τUp,q)T /π o\

By substituting (9.4) in this expression, we obtain the identity

L\^q) = Kl^q) (9.9)

that equates the two transformation matrices.
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Such a simple result does not in general follow from (8.29) because the
transformation

i2ft, = Σ κγ^Mί%n%\hM%9)Tκyp

η'
q)T ( 9 1 0 )

satisfied by the matrix Y is not an orthogonal transformation for composites with
more than two components because M is not an orthogonal matrix. Nevertheless,
(8.29), (9.7), and (9.9) imply

Άn= Σ K\^M^fY^τK\%^\ (9.11)
g*q

and by comparing this with (9.10) we deduce

(9,12)

where Knj\ M(1), and YU) are those matrices with elements K\%q\ M%\,q\ Yjfy such
that o(λ) = o(ω)=j. Hence Knj) is that orthogonal matrix which transforms

i n t 0

Assuming the eigenvalues of γ^^M(1)TΫij) do not happen to be degenerate, this
relation is sufficient to specify the matrix Kni) given Knj~1}. By induction on j (and
recalling that Kno) = I{Q)) we can thereby determine the transformation matrix K1

without reference to the intermediate transformations K[^η and K^ω. It is thus
apparent that IC depends on the weights but not on the normalization factors.

By substituting (9.3) and (9.9) in (8.7) we find that the canonical basis set x^} and
y^} transforms into the new canonical basis set

χω = KjίS«>x£\ y(/> = K ί W (9-13)

via the transformation matrix AT*".
Aside from switches in sign the matrix M for a two-component composite

merely acts to interchange the component indices 1 and 2 and is obviously
orthogonal. Hence the transformation (9.10) for Ϋ is orthogonal and implies a
similar transformation law for Y which with (9.11) implies

Kl%$ = MWK%>f for n = 2. (9.14)

This, in conjunction with (9.4) and (9.9), completely specifies the matrices U and
10: by induction we deduce that

l_ϊ = Kϊ = M when n = 2. (9.15)

Consequently, for two-component composites, the fundamental geometric
matrices Wa and N remain invariant under a change of reference medium, apart
from a relabelling of indices.

10. Geometric Matrices for Two-Dimensional Composites

On the basis of a phase-interchange relationship due to Keller [38], Dykhne [39],
and Mendelson [40] it has been established [12] that the normalization factors are
unity for any two-dimensional, two-component isotropic composite. Here we
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show this property extends to multicomponent isotropic composites. In addition
we establish that two-dimensional anisotropic, two-component composites have
isotropic weights and have normalization factors with unit determinant.

Let Φ be the transformation that maps any two-dimensional field P = (P 1,P 2)
into its orthogonal counterpart,

ΦP = ( - P 2 , P 1 ) . (10.1)

Now for any given polarization field P, the associated current field J = Γ2P satisfies

F J = 0, F x ( J - P ) = 0, ΓoJ = 0, (10.2)

and consequently we have

F x Φ J = 0, F (ΦJ-ΦP) = 0, ΓoΦJ = 0, (10.3)

which implies ΦJ = Γ1ΦP, and subsequently that

ΓίΦ = ΦΓ2. (10.4)

This property of the two-dimensional operator Φ has been discussed in detail by
Mendelson [40] and Kohler and Papanicolaou [24] and provides the key step in
proving the phase-interchange relationship.

Now since χa and Φ commute,

χaφ=φχa, (io.5)

for all components a, the fields Jτ, E t, and Paτ defined in Sect. 4 must from (10.4)

s a t i s f y Φ j β l = - ( - i r ( β ) E β 2 , Φ j α 2 = ( - i ) o ( α ) E α l ,
(10.6)

Φ P — (— 1 Y>(α)p d ) P — _ (— 1 V>(α)p

for all strings, α, of component indices. This implies the identity

W.βi = <J£?I J?i> = <ΦJS?|ΦJ?i> = <ESS|E?ί > = U%,f2, (10.7)
and similarly we have

(10.8)

These relations are, of course, consistent with (5.4) and (5.6). Next, by noting that
the inner product of any vector with its orthogonal counterpart is zero, we deduce

<c 1Pα α l + c2Pα / ? 1 |Φ|c1P f l α l + c2Pα/?1> = 0 (10.9)

for all real constants c1 and c2 and thereby conclude that

n . (10.10)

For an isotropic material the identities (10.7) and (10.8) imply U=V and from
(8.19) and (8.20) we see that this can only occur when

N = l. (10.11)

Thus for any two-dimensional isotropic composite the normalization factor is simply
the identity matrix, and therefore all the matrix elements (8.31) and (8.32) of the
operators Γx and Γ2 are completely determined in the canonical basis set.



Composites and Continued Fractions I 307

For a two-component anisotropic composite the strings α, β in (10.7)—(10.10)
represent either a chain of Γs if q = 2 or a chain of 2's if g = 1. If α and β have the
same length, then a = β. Consequently (10.8) and (10.10) together with (7.5) imply
that the matrices Z^\ Hu\ and G ( 7 ) are multiples of the identity matrix /{j\ By
applying the principle of induction, it follows from (8.12H8.17) that Ku\ Lu\ \Ma

j\
and NU) + {NU))~x are likewise multiples of lu\ In addition 0 and (7, given by (8.3)
and (8.4), must satisfy relations directly analogous to the relations (10.7) and (10.8)
satisfied by U and V. Hence each normalization factor Nu\ 7 = 1,2,..., oo, must
have unit determinant.

Thus, for any two-dimensional, two-component anisotropic composite the
weights W[j\ Wy\ 7 = 0,1,..., oo, are sequences of isotropic 2 x 2 matrices
expressible in terms of positive scalar weights w[j) = 1— wψ through the
equation

l/l̂ ) = w(/)/ω f0Γ α = l , 2 , (10.12)

while the normalization factors Nu\ 7 = 1,2,..., oo, form a sequence of positive
definite 2 x 2 matrices each with unit determinant. This extends earlier work of
Golden [41] who obtained some elementary relations amongst the geometric
parameters of anisotropic two-dimensional composites.

In summary, we have found simple constraints on the normalization factors
and weights of two-dimensional isotropic multicomponent composites and two-
dimensional anisotropic two-component composites. The question of what (10.8)
and (10.10) imply about the fundamental geometric parameters of anisotropic
multicomponent two-dimensional composites is left unresolved.

11. The Continued Fraction Representation for σ*

In the first part of this section we demonstrate how a continued fraction
representation for σ* can be developed from the Dirichlet variational definition of
the effective conductivity tensor,

<e|a*|e>=min<e + E| £ σαZα|e + E>, (11.1)

which holds when the variables σa9 a= 1,2,..., w, are real and positive: see Synge
[41]. Although this method sheds light on the connection between the continued
fraction representation and well-known bounds on σ*, it is not the simplest
approach. As we will see in the second part of this section, the continued fraction
expansion can be obtained directly by using the field equation recursion method,
without resort to variational principles and without assuming the component
conductivities are real. In the remainder of the section we show how the expansion
simplifies for two-component composites.

ίί.ί. The Derivation from Variational Principles

The Lax-Milgram lemma [28] implies that the minimum in (11.1) is attained
within the Hubert space $ spanned by the fields E" and so, without loss of
generality, we can restrict attention to fields E of the form

E = Σ θ τ E ? ( β ) , (11.2)
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where sum extends over all strings τ of indices not containing the exponent index q.
Substituting this in (11.1) yields the expression

eΓσ*e=minΓ £ σae
α [_a= 1

β < ; | ^ > + £ δσa{Ey\χa\Ey}\ αω , (11.3)
V a*« / J

which from (8.37) and (8.31)—(8.33) can be re-expressed in the form

e r a * e = m i n j £ (σae
τWae + 2δσae

τYaaί)

tiflJϊti]] (11.4)
where . ^ .

0 Ξ σ ρ / + Σ δσaΫJWaΫa (11.5)
aφq

is a block-diagonal matrix and ^α, with transpose ΫJ, is that submatrix of Y with
elements 7fl

(^ω.
Now define α ϋ ) , 7 = 1,2,..., oo, as that subvector of α with elements ocτ for which

o{τ)=j. Similarly let W^j\ A/(i), Ϋ{J\ and Θ o ) denote those submatrices of i/l/fl, A/, ffl,
and Θ with elements W ^ ω , N{%, Ϋ$ω, and 6)(^ω such that o(τ) = o{ω)
= 1 +o(λ)=j. With these definitions (11.4) implies

e Γ σ*e=min lim
α Λ-»Qθ

+ 2 Σ α(ΛYΣ a η fΣ
\a*q J \a*q

(11.6)

Thus α o ) only couples with itself, α 0 + 1 ) or α (J'~1) (or e if j = l ) , which is why a
continued fraction expansion for σ* can be developed.

We now assume the operations of taking the limit ft-* oo and the minimum over
α in (11.6) can be interchanged. By differentiating (11.6) it is evident that the
optimum choice for α(Λ) is

δσa?ΐ)T\Λ^*-1^*-1), (11.7)

where „
Ω ( Λ ) Ξ ^ ^1/ί/f. (11.8)

To repeat this procedure define, by recursion, the sequence of tensors

Ω ( j - 1 } = Σ OcM3'^- Σ δσaΫ
{J\&j) + ̂ )Q.{j)l^U)y1Ϋ^τδσh (11.9)

a= ί a,b^q

for j = ft, ft-1, ft-2, ..., 1, where Kand Θ are defined via (8.26) and (11.5). (Note
that Ω( j) = hQU) depends on the truncation integer ft.) After substituting (11.7) back
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into (11.6) and minimizing over α ( / ι - 1 ) ,α ( / l ~ 2 ) , . . . ,α ( 1 ) , giving

for 7 > 1 , and

(11.11)

we finally obtain the identity

σ*=Ω ( 0 ) (asft->oo). (11.12)

A continued fraction representation for σ* results when (11.9), or its equivalent
form

n

a—\ a

(11.13)

is repeatedly inserted in (11.12): here Iψ denotes the submatrix of the identity
matrix lu) that has elements Iaλ,ω = δaλ,ω with o(ω)= 1 +o(λ)=j. When h is kept
finite, (11.6) implies

σ*^Ω ( 0 ) (ft finite), (11.14)

and thus the continued fraction expansion, terminated by (11.8), forms an upper
bound on the effective conductivity σ*. We call such a bound a Wiener-Beran upper
bound of order 2h + 1 , in recognition of their pioneering work [17,18] on bounds of
this type: the bounds incorporate information about the composite contained in
(2h + l)-point correlation functions. In fact the overall procedure outlined in this
section [starting from the Dirichlet variational principles and using trail fields of
the form (11.2)] is an extension of earlier collaborative work with Phan-Thien [22]
in which the general bounding method of Beran [31] was implemented to obtain
third-order bounds on multicomponent composites: see also the related work of
Kroner [20] and Willis [21], among others.

Note that the (2h — l)th-order Wiener-Beran upper bounds necessarily get
tighter as ft increases because our set of trail fields includes more and more fields.
Hence the matrices Ω(0) = ΛΩ(0), ft = 0,1,2,..., oo, form a decreasing sequence. Since
they are bounded below by σ* the limiting matrix °°Ω(0) must exist, as implicitly
assumed in (11.12). The question of interchangeability of the minimum over α and
the limit ft->oo in (11.6) therefore hinges on whether the (2ft — l)th-order Wiener-
Beran upper bound converges to σ* in the limit ft-κx). This convergence will in
fact be established in Sect. 7 of Part II, thereby providing a rigorous justification of
(11.12).

11.2. Derivation from the Field Equation Recursion Method

The tensors hΩ{£j) have a very simple interpretation in the limit ft^ oo. Since their
continued fraction expansion is exactly of the same form as the continued fraction
expansion for σ*, the matrix Q.u\σuσ2, ...,σn) must be the effective tensor in the
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Hubert space
jpM=wUΊ®δul®fiJ1=&[jΊ@0>i

2

J)®...Θ&>}ι

j) (11.15)

that is associated with the truncated set of geometric parameters W^9) and N{9+1)

with g^j.
To prove this directly, thus by-passing the need to use variational principles,

consider the Hubert space Jf(1). From the structure of the matrices (8.31), (8.32),
and (8.33) representing Γu Γ2, and χa in the canonical basis set (see Figs. 1 and 2) we
deduce that J-f(1) is a subspace of Jf, namely the orthogonal complement of the nd-
dimensional subspace spanned by the orthonormal fields x^ and y<$,£ = l,2,...,d,
a = l,2,...,q — l,q + ί9...,n. The d(n — l)-dimensional space °U{1) is spanned by the

fields x<# while δ(1) = Sn Jf (1) and / ( 1 ) = / n J^ ( 1 ), respectively, are spanned by the
fields E(

η

q) and J{

η

q) (or E<f} and Jjf}) with o(η)^2. The component Hubert spaces
0>w = 0>ar\j4?(1\ α = l,2, ...,n, are spanned by the fields P f̂ (or ?<£>) with o(τ)^l .
Since the canonical basis set satisfies the transformation (9.13) under a change of
reference medium (where Kf is block-diagonal) it follows that the Hubert spaces
je(1), %{γ\ S{1\ / ( 1 ) , and ^ υ , a = 1,2,..., n, are in fact all independent of our choice
of reference medium, q.

In the canonical basis set the matrices representing the projection operators
Γ^\ Γ2

(1), and χ(

a

ί] that project onto £{l\ / ( 1 ) , and βPp are obtained from the
matrices representing Tγ,T2, and χa by setting to zero those blocks of elements that
incorporate Λ/(1) and W^0): see Figs. 1 and 2. Consequently from (9.33) we have

Σ *aXa= Σ °aήi}+ Σ ^
α = l α = l α = 1

+ Σ K^U
6Φ

where the Θ ^ i ^ are elements of the matrix Θ ( 1 ) defined via (11.5).
Now suppose the field equation

(11.17)
a=ί

is solved for j ( 1 ) e ^ ( 1 ) , J* ( 1 ) ( j ( 1 ) )e/ ( 1 ) , and E* ( 1 ) (e ( 1 ) )e^ ( 1 ) as a function of

e(i) e <%(i)t Lê - u s d efm e Q(i) a s the associated effective tensor relating j ( 1 ) and e ( 1 ) via

Of course, it remains to show that this definition is consistent with (11.9).
Given any uniform field e e f , with components e^ = {e\x^}, we seek to find

some field e α ) = e ( 1 ) (e)e^ ( 1 ) , with components 4? = <e ( 1 ) |x$>, such that

is the solution of the field equation (3.1). Note that the last term in this expression
ensures, via (8.37), that Έ*eδ. From (11.16)—(1119) we have

n
1 / (J
l JL-I a

α = l

(11.20)
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which, according to (8.37), vanishes when we set

" 1 Σ δσbY?e. (11.21)

The field equation (2.11) is thereby solved and (11.19) implies

\)} = Γ0 Σ σαχα|e + E*>
α = l

= Σ σβWJe>+ Σ \^yδσaYaeN
w^\ (11.22)

1 Φa=1

where Yfl/ is that row of the matrix Y with elements Y$M. By substituting (11.21)
into (11.22) we conclude that σ* = Ω(0) is indeed given in terms of the conductivity
matrix Ω(1) via the relation (11.9). By repeating this argument and successively
introducing the conductivity matrices Qu\ j = 2,3,..., oo, we obtain the same
continued fraction expansion for σ* as implied by (11.9) and (11.12). In contrast to
the variational approach, this derivation of the continued fraction expansion
applies even when the variables σa9 α = l,2, ...,n, are complex.

Note from (11.18) and (9.13) that when the reference medium is changed from
component q to component p, the fundamental conductivity matrices Ω(

τ

p'ω
j) and

Ω{

η

qjλ

j) are related via the orthogonal transformation

Q^ = K\^Ω^K\^T, (11.23)

and are both just different representations of the same effective conductivity
tensor, Qu\ in J f °λ

Any matrix-valued function σ%9 / , / = l , 2 , ...,d, that can be expressed as a
continued fraction of the form implied by (11.12) and (11.9) for some allowable
choice of normalization factors and weights will be denoted as an ^-variable
Ώ-function of rank d and its associated continued fraction representation will
be called an β-fraction.

113. The Recursion Relation for Two-Component Composites

For a two-component isotropic composite the recursion relation (11.9) simplifies
considerably since the weights, normalization factors, and conductivity matrices
take the form

where w{j\ n(j\ and σ*U) are scalars with

wϋ) + wφ = \. (H.25)

The constants w(

1

0) and w(

2

0) can be identified via (8.22) with the volume fractions fλ

and / 2 . Also (8.24) implies n° = d—ί and w^ and w(

2

0) in fact correspond to the
fundamental geometric parameters ζγ and ζ2 introduced in [43], which in turn are
related to a parameter λ defined by Brown [29] that depends on the three-point
correlation functions. These parameters ζ1 and ζ2 = \—ζ1 have been accurately
evaluated for cell-materials [43, 44], for regular arrays of spheres and cylinders
[45], and for random distributions of penetrable spheres and cylinders [46-48]
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and have been estimated for random distributions of impenetrable spheres [49,
50]. In fact, following earlier work of Corson [32], a procedure has recently been
developed by Berryman [35] for calculating ζι directly via digital image
processing techniques from a cross-sectional photograph of the microstructure.
Ideally all this work should be extended to anisotropic two-component com-
posites: such a scheme has already been initiated by Gillette [34].

By substituting (11.24) in (11.9) we obtain the recursion relation

that agrees exactly with the expression [12] derived on the basis of the analytic
properties of σ*(σlJσ2)J following the approach developed in Appendix 4 of
Part II. The form of the recursion relation was originally motivated by the
structure of simplified expressions for Beran's variational bounds [18] obtained
independently by Torquato and Stell [46, 51] and Milton [43], and by work of
Berryman [52] establishing a connection with Bruggeman's effective medium
approximation. (This connection is developed further in Sect. 14.)

For an anisotropic two-dimensional, two-component composite the recursion
relation again simplifies due to the special structure (10.12) of the weights and we
have

j 2

where the 2 x 2 matrices A/o), j = 1,2,..., oo, have unit determinant.

12. Equivalent Continued Fraction Representations

The recursion relation (11.9) can be expressed in three other equivalent forms that
help shed light on the analytic properties of Ω-functions (see Part II). Let us
introduce the variables

= ίσj(σβ - σaψ
2 (12.1)

and the matrix

(12.2)

By manipulating (11.13) we have

Q ^^ ' i (X Q,b b ? \ * /

where l/^J"1} is the square root of 1/I/5J'~1) and Δ + o ) is the matrix defined by

JLJ C C

which is expressed in this cumbersome manner so its inverse

(12.5)

x
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can be readily calculated using the identity

(/-Ay1-I = {A-1-/)"1 ( 1 2 6 )

which holds for any symmetric matrix A. Specifically we find that

KίΛ = W-vWn+uφty-V-s/ά, (12.7)

where W^j~l) denotes the inverse of i/tίJ~1}, i.e. the square root of lA^"1^
Thus by inserting the definition (12.2) of Π + ( j ) in this formula and substituting

the resulting expression for Δ + o ) in (12.3) we obtain an alternative continued
fraction expansion for σ*. For a two-component isotropic composite the form of
the resulting recursion relation is particularly simple: the expression

is, for example, obtained when σq = σ2. A slightly different form of this continued
fraction expansion (12.8) was derived by Golden [14, 41] and is essentially
equivalent to the well-known expansion of Stieltjes functions as ̂ -fractions [1, 2].

Some additional continued fraction representations are obtained by defining

Π-o ) Ξ ( Π - o ) ) - i Ξ / θ ) _ π + ^ , (12.9)

the matrix,

Δ-^Ξ-^-^^ -̂ -Δ^̂ , (12.10)

and the inverse matrices

fi 5 ZΓ^ΞΞίΔ-^Γ 1 , (12.11)

which, in fact, satisfy relations analogous to (11.9), (12.2), (12.3), and (12.7). To see
this first note from (12.2) and (12.6) that the equation

π -(i) = q ( )

is satisfied. Second, by substituting (12.7) in (12.10) and using (12.9) and the
defining equation (8.26) for Yah we deduce

Δ ~ίJ) = W~ ιW>ft-MWτW-X)-t/J\, (12.13)

in which ta = t%) is defined by (3.10). Third, the relation

σ<(β(j-i) = / θ - - i ) + Σ l^-i>£-o-)l/if-t> (12.14)
a,bΦq

follows directly from (12.3) and a general property of matrices; namely that any
symmetric matrix of the form

D=A+ Σ Bτ

aCatβh (12.15)

in which A and C are symmetric matrices, has the inverse

Σ ", (12.16)
where a'b*q

Bl-C^ C = ( C ) - \ C'ΞίC')"1. (12.17)



314 G. W. Milton

This property can be checked by taking the product of (12.15) with (12.16) to obtain
the result

/=/+ Σ BtfCa<b+ Σ Ca^BhA-1Bf + CbjC'e,i\BiA-1, (12.18)
«,rfφq [_ b,cΦq J

which is obviously satisfied. These three relations (12.12)—(12.14) of course imply a
continued fraction expansion analogous to the one that results from (12.2), (12.3),
and (12.7). For a two-component isotropic composite this continued fraction takes
the form implied by the recursion relation

σ2/σ*U- *) = 1 + w[j~ 1}{ - tx + w(

2

j~ 1}[1 + σ2/(rcO)σ*(i))] ~i}~\ (12.19)

when the choice σq = σ2 is made.
Lastly, note that the steps in the argument leading to the expression (12.7) from

(11.9), (12.2), and (12.3) can be reversed to obtain (11.9) from (12.2), (12.3), and
(12.7). By similar analysis, and by defining

σ;'-σ^ = -σ-qX\ (12.20)

the recursion relation

Σ
a,bΦq

(12.21)
analogous to (11.9) is obtained from (12.12)—(12.14). For a two-component
isotropic composite this expression simplifies and we find

(12.22)

These recursion relations (12.21) and (12.22), and the associated continued fraction
expansions of σ*, can alternatively be derived from the Thomson variational
principle,

1 (12.23)< J I ( ) | j >
Je

by following essentially the same steps which led to (11.9) from the Dirichlet
variational principle (11.1). If, in this approach, h is kept finite and Q(h) is redefined
through the equation

( ί O \ (12.24)

then the continued fraction generated by (12.21) is found from the variational
principle (12.23) to correspond to a lower bound on σ*, denoted as a Wίener-Beran
lower bound of order 2/ι+1.

Following similar analysis, given in Appendix 2, the continued fraction
expansion that results from the supplementary recursion relations (12.2), (12.3),
and (12.7) is obtainable from the Hashin-Shtrikman variational principles [19].
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When h is kept finite the Hashin-Shtrikman variational principles yield both upper
and lower bounds on σ*. The bounds are biased with respect to one of the
components, say component m, and are generated by substituting

Ω<Λ> = σm/<Λ> ( 1 2 . 2 5 )

in the recursion relations to obtain a terminating continued fraction expansion for
Ω(0): this terminating continued fraction is an upper bound when σm ^ σa, Vα, and a
lower bound when σm^σa, Ma. These bounds depend on the 2Λ-point correlation
functions that characterize the geometry of the composite, and hence are denoted
as Hashin-Shtrikman upper and lower bounds of order 2h.

Countless other continued fraction expansions can be found. For example, it is
clear that by changing reference media from component q to say component p, we
obtain a completely different (but nonetheless equivalent) set of continued fraction
representations for σ*, in terms of the normalization factors N^η and the weights
w(p)

Va,λ,η-

Alternatively (11.9) can be used to express σ* in terms of QU) using the reference
medium q and then a continued fraction expansion for Ω 0 ) can be developed using
the reference medium p. Many other continued fraction expansion for σ* that are
variants of this approach can of course be derived.

13. Terminating Continued Fractions

Here we examine several conditions under which the continued fraction expansion
(11.9) for σ* terminates at some level, g, in the hierarchy. For this to be possible, the
matrices U, V, and Za must be singular, in contrast with the assumption made in
Sect. 5. Thus we are, in effect, exploring the consequences of relaxing this
assumption. When the continued fraction terminates the effective conductivity σ*
becomes a rational function of the component conductivities and the Hubert space
Jf has finite dimension. We find the Hashin-Shtrikman and Wiener-Beran bounds
correspond to terminating continued fractions generated by particularly simple
allowable sets of geometric parameters.

Let us, for simplicity, suppose that the weights W'J"1} and the normalization
factors Λ/(^ are non-singular for j = 1 up to say j = g. Then the dependence of σ* on
Q(9+i) vanishes if and only if the dependence of σ{9) on Q{9+1} vanishes. From (11.9),
this obviously occurs when the matrix Y^9 + 1) vanishes; which according to (8.26)
will happen if and only if the weights Wjf\ a = \,2,...,n share a common set of
eigenvectors and each has a combination of zero and unit eigenvectors (see Fig. 3).
No other eigenvalues are allowed. We call such a set of weights a terminating set
because successive weights and normalization factors do not influence the effective
conductivity: the continued fraction expansion terminates at the gth level in the
hierarchy. When Ϋ{9 +1} vanishes, the expression (11.9) for Q{9) takes the simple form

(13.1)

in which equivalence of the two expressions for Q{9) follows from the structure of
the terminating set of weights, Wf\ Thus, with this set of weights, the upper and
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(a)
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N ( 2 )
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0
0
0
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0
00

0
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0
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(b)

N ( 2 )

=

00

0
0
0

0
00

0
0

0
0

00

0

o"
0
0
00

(c)

Fig. 3. Example of a terminating set of weights (a) and two terminating normalization factors (b
and c) for a field equation with d = 1 and n = 3. The figure is schematic in that the matrices need not
be diagonal. For the normalization factor of c the 4th-order Hashin-Shtrikman upper and lower
bounds coincide and equal the 3rd-order Wiener-Beran upper bound

lower Wiener-Beran bounds of order 2h + 1 , coincide and determinate the effective
conductivity exactly; there is no need to calculate higher order correlation
functions.

These terminating sets of weights, like other sets of terminating geometric
parameters, have a special significance reflected in the structure of the Hubert
space Jf. Since Y{g+ί) is zero, (8.29) implies the transformation matrix Z > + 1 ) is
zero: Ki9) is non-singular because it is determined by the lower order weights and
normalization factors which, by our assumption, are non-singular. Ignoring
mathematical technicalities this implies, via (8.1), that the fields E^ } and J{

η

q) vanish
when o(η) = g + 1 . All higher order fields, including the polarization fields P f̂ with

l, are likewise zero because they are defined through projections and

repeated projections of these fields E^} and J(

η

q\ with o(η) = g + l, onto various
subspaces. Thus the Hubert space J f has finite dimension and is spanned by the
fields (vectors) x,, E<f}, and J^ } with / = 1,2, ...9d and o{η)^g.

Of particular importance are the terminating continued fractions generated by
choosing some component m and taking

/, (13.2)

(13.3)

^ = 0 for αφm and

which implies, via (13.1), that
) = σ J9K

Thus, given any allowable set of non-singular geometric parameters, the Hashin-
Shtrikman bounds of order 2g are obtained from the infinite continued fraction
expansion for σ* by replacing the given weights W^9) with the terminating set (13.2).
The Hashin-Shtrikman bounds therefore correspond to allowable sets of
geometric parameters.

If the weights W^9) are all non-singular, then the dependence oϊΩ{g) on Q{9+1)

can still vanish provided the normalization factor N(g+1) has a mixture of zero and
infinite eigenvalues, and no other eigenvalues (see Fig. 3). In this limit Γ\+i9+1} and
U>{9 +1) defined by (12.2) and (8.3) act as projection operators on the space spanned
by those eigenvectors of N{9 + 1) that have zero eigenvalues, while f Γ ^ + 1 ) and
V'i9 + υ defined by (12.9) and (8.4) project onto the complementary space, spanned
by those eigenvectors of N{9 + 1) that have infinite eigenvalues.
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Consequently, the expressions (12.7) and (12.13) for the supplementary
conductivity matrices take the form

(0 ) = ]/\/(g)γ(g)]/(9 )γ(g)y\/(g)_j /(g i) ^ ' '

which with (12.3) and (12.14) give expressions for Q{9} in terms of the weights,
and the eigenvectors of the terminating normalization factor Λ/(g+1). Since the
dependence of Ω(0) on Q{g+ί) has vanished for such N{9+1\ the upper and lower
Hashin-Shtrikman bounds of order 2g + 2 must clearly coincide and equal the
effective conductivity α* exactly: again there is no need to calculate higher order
correlation functions.

For this set of terminating normalization factors the transformation matrix
K{9+1} given by (8.28) is zero. This implies, via (8.1), that the Hubert space Jf has
finite dimension and is spanned by the fields P^} with o(τ)^g+l.

When N{g+X) vanishes entirely, i.e. has only zero eigenvalues, (13.4) implies

(13.5)

which leads, via (12.14), to the identity

\ -1

(13.6)

So, for any given set of non-singular geometric parameters, the Wiener-Beran
lower bound of order 2g +1 is obtained from the infinite continued fraction
expansion for σ* by replacing N(g+1) with the terminating normalization factor

N{g + 1) = 0. (13.7)

Similarly, the Wiener-Beran upper bound of order 2g +1 is obtained by replacing
the given Nig+1) with the complementary terminating normalization factor,

Nig + 1) = oo/i9+ίK (13.8)

Thus the Wiener-Beran bounds, like the Hashin-Shtrikman bounds, correspond
to allowable sets of geometric parameters.

The dependence of σ* on Q(9 + 1) vanishes under many other circumstances
which we have not investigated. For example, the possibility that the weights W^g)

and the normalization factor N{g+1) are both singular has not been explored.

14. A Simple Approximation for σ *

One of the best known formulae for estimating the scalar effective conductivity, σ*,
of an isotropic composite is Bruggeman's effective medium approximation [23]

Σ / > α - σ * ) K + (d-l)σ*]~ ι = 0 (14.1)
a=\

that applies to a space-filling aggregate of grains, treated as spherical in the
simplest approximation, with various conductivities σ1? σ2, - • , σn. This approxima-
tion, also known as the coherent potential approximation, is in fact realizable and
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has been rigorously shown [53] to correspond to a hierarchical model with a very
wide distribution of sphere sizes, similar to an earlier self-similar model of Sen et al.
[54]. For a review of effective medium approximations see Landauer [55], Watt et
al. [56], Korringa [57], Willis [21], Berryman [58], and Niklasson and
Granqvist [59].

Here we prove that the effective medium approximation formula (14.1) is
obtained from the simple choice

η η η n°δλη (14.2)

of fundamental geometric parameters, where we set

n° = (d-l) (14.3)

so that (8.24) is satisfied. This result extends earlier work of Berryman [52] who
found that the effective medium approximation for two-component composites is
obtained when one substitutes

w σ - i ) = / 1 ? w (

2

y ~ 1 } =/ 2 , nU) = (d-l), σ*<-/-1> = σ *<-'W* (14.4)

in (11.26). Berryman used this special property to prove that the approximation
always lies inside the Beran bounds [18].

With the choice (14.2) of geometric parameters, which is incidentally invariant
under changes of reference media, the continued fraction expansion for Q{

a

l)

b

implied by (11.13) has exactly the same structure as the continued fraction
expansion for δabQ

{0\ Hence we can make the identification

M % σ*δίd. (14.5)

Substituting these in (11.13), and setting j = \, yields the self-consistent equation

**= Σ /Λ- Σ δσfO^δσ^, (14.6)
a— 1 a,b + q

where 0 is the inverse of the matrix

Oa, b = (σq + n°σ*)/f9 + (σa + n°σ*)δjfa, (14.7)

which is of the form (7.10). Hence, from the expression (7.11) for its inverse, we have

δ n h =
(σfl + noσ*)(σ6 + noσ*)

Inserting this in (14.6) gives, after some straightforward algebraic manipula-
tion, the result

(**-*,) Σ fA°c + n°c*)= Γ Σ faδσj{σa + noσ*
c = l L « = l

fb(σq + n°σ* + δσb)/(σb + n°σ*)J, (14.9)
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where the expression between the last square brackets is clearly unity. Thus the
formula simplifies and is equivalent to the effective medium approximation, (14.1):
the dependence on σq drops out of the equation.

It is striking that the standard effective medium approximation formula
corresponds to such a simple choice of fundamental geometric parameters and is a
strong indication that these parameters are natural ones for describing the
conductivity properties of composites.

One obvious generalization of the approximation (14.2) to anisotropic
composites is obtained by taking

j/j/(4) =f§ j\r^ =n° δ (1410)

where the matrix n° determines the degree of anisotropy and has non-negative
eigenvalues n®, / = 1,2, ...,d, satisfying

Σ M K + 1H1, (14.11)

to ensure (8.23) holds. The above set of geometric parameters gives a conductivity
matrix σ* that commutes with n° and is the solution of the self-consistent equation

Σ /> Ω /-σ*)(σ α / + A7°σ*)-1^0. (14.12)
a=l

This, in fact, corresponds to the effective medium approximation [21,59,60] for an
aggregate of aligned ellipsoids of various conductivities σfl, α = l , 2 , . . . , H . The
ellipsoids have a variety of sizes which must extend to the infinitesimal to ensure
they can be packed to fill all space. They all have the same eccentricity and the
principal axes of each ellipsoid are aligned with the eigenvectors of n°. The
eigenvalues n°, £ — 1,2,..., d, of n° are given in terms of the ellipsoid eccentricity
through the relations

? - l , (14.13)

where the constants Iγ, / = 1,2,..., d, are simply the depolarization factors of each
ellipsoid along the various axes [61].

15. Application to Related Transport Problems

In this section, following earlier work of Dell-Antonio et al. [5], we give examples
of the applicability of our results to transport problems aside from the effective
electrical and thermal conductivity, dielectric constant, magnetic permeability,
and diffusion constant of composites built from isotropic components.

Clearly the whole analysis applies whenever we have a Hubert space

where °U has finite dimension and where the subspaces ^ , S\ f\ and
α = l,2, ...,w5 are real-symmetric with respect to some conjugation JΓ in 3
conjugation satisfies
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for all P, P' e Jtf and for all constants aγ and α2, with complex conjugates άx and d2

[62]. Actually there is no need to insist upon real-symmetric subspaces. A
continued fraction expansion can still be developed in terms of a set of hermitian
(rather than symmetric real) weights and normalization factors. Of course, this
result is useful only when the field equation (2.11) and the tensor σ* have a physical
interpretation. In the examples given below, the subspaces °U, $", /', and 0>'a9

a = 1,2,..., n are all real-symmetric. Nevertheless, hermitian weights and normali-
zation factors may be needed to describe propagation of radiation in gyrotropic
media [61].

Now consider a periodic polycrystalline material comprised of say j ^ 1 types
of anisotropic crystallite at varying orientations in the material: different grains of
the same type of crystal need not have their principle axes aligned. In each grain we
will assume that the local conductivity tensor σ(x) is such that Reσ(x) and Imσ(x)
share a common set of d (real) eigenvectors. The eigenvectors will, of course,
generally change direction across the boundary between two crystallites. Hence as
x is varied over the unit cell 3) the eigenvalues of σ(x) take n^jd distinct possibly
complex values σ l 5 σ 2 , ...,σn. The Hubert spaces %, S\ and f are defined as in
Sect. 2. We redefine ^ f l , a = 1,2,..., n, as the set of all fields P e Jtf" such that

σ(x)P(xHσαP(x) (15.2)

at all points x e ^ not on the boundary of a crystallite. Thus P(x) is locally directed
parallel to any eigenvector of σ(x) that has eigenvalue σa. When the crystallites are
isotropic the definition of 3P'a given here clearly reduces to the one given in Sect. 2.

Thus, in this polycrystalline material the effective conductivity tensor σ* is an Ω-
function of the eigenvalues σ 1 ?σ 2, ...,σn of the local conductivity tensor. All the
bounds derived in Part II extend to σ*. Note, however, that the elementary
weights and normalization factors need not satisfy the rather special equations
(8.22) and (8.23).

A similar argument shows the results apply to the effective viscoelasticity
tensors of polycrystalline media. As is customary [63], we treat the local
viscoelastic tensor as a d°xd° matrix, σ(x), where d°=^d(d + l) and d is the
dimensionality of the composite. We assume that Reσ(x) and Imσ(x) share a local
common set of eigenvectors and remain constant throughout each crystallite. The
set of eigenvalues, σ l 5 σ2,..., <τn, of the local viscoelastic tensor take real or complex
values. The space °U of uniform strain (or stress) fields has dimension d°, and we
define $' (or f) to consist of those periodic square-integrable strain (or stress)
fields that have zero average value over the unit cell 2. Each component Hubert
space 0>'a, a = 1,2,..., n, consists of the elastic fields P(x) satisfying (15.2) for all x e ^ .
With these definitions the effective viscoelasticity tensor σ* is clearly a rank
\d{d +1) £2-function of the eigenvalues of the local viscoelasticity tensor.

More generally we can consider non-local linear conductivity tensors and non-
local linear viscoelasticity tensors. The non-local operator σ must, however, have a
finite number of eigenvalues σa, a= 1,2,..., n, and the eigenfunctions correspond-
ing to each eigenvalue σa must span some real-symmetric Hubert space of fields,
defined as ^ .

The mathematical framework also applies to multiterminal, multicomponent
linear impedance networks, consisting of d + 1 terminals connected to a net-
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work of h impedances that have various types of complex conductances
σ^ω), σ2(ω),..., σn(ω) as a function of the frequency ω. (Some of the impedances
may share the same conductance and so we have n rg h.) Let us label the impedances
by an index i = l,25 ...,/z and arbitrarily assign a + sign to one side of each
impedance while tagging the opposite side with a — sign. Any field in the network
is represented by a vector P with complex components Ph ί = 1,2,..., h, represent-
ing the directed field in impedance i. We let Jf7' denote the /z-dimensional space
comprised of all such fields and in jtf" we define the standard inner product

< P | F > = ΣPiP't (15.3)
ί = l

for any two fields P, P ; e 2tf, where the bar denotes complex conjugation.
The impedances are joined at a set of say k + ί nodes. Some of these nodes

represent the d+ί terminals. We let an index j = 0,1,2, ...,/c label the nodes,
starting with the terminals. Thus the terminals are labelled by indices j ^ d. The
geometry of the network is represented by the connection coefficients ru j defined
by

fj,j= ± 1 if the + side of impedance i is connected to node j
= 0 otherwise.

Each row, i, of this h x (k +1) matrix rif j contains only two non-zero elements, + 1
and —1, signifying the two nodes connected by impedance i.

The (k — rf)-dimensional subspace <?' consists of those fields E e Jf" satisfying

Et= Σ ritJ4j9 (15.4)
j = o

for some complex potential φj such that

^ . = 0 for all j^d. (15.5)

The (h — fc)-dimensional subspace β' consists of fields J e J*f' satisfying

Σ rUjJt = 0 for all j , (15.6)
i= 1

while the d-dimensional subspace °U is comprised of fields e e Jf' of the form (15.4)
satisfying the additional constraint that

Σ r i f J .e~0 for all j>d, (15.7)
i= 1

where the associated potential φk need not be compatible with the boundary
conditions (15.5). The three subspaces °U, S\ and f are clearly orthogonal, and by
adding their dimensions we deduce that they span Jf'.

Each subspace $P'a consists of those fields P such that Pt is non-zero only in the
impedances i with complex conductance σa. In the Hubert space M" thus defined
the effective tensor σ* gives the electrical response of the network (measured in
terms of voltages and currents at the terminals) relative to the response when σa = ί
for all a. Since $(" has finite dimension the Ω-function σ*(σ l5 σ2,..., σn) must be a
terminating Ω-function. The weights and normalization factors thus provide a
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characterization of the analytic functions that result from multiterminal, multi-
component impedance networks. This may have practical applications to the
design and synthesis of electrical networks [64].

Appendix 1: Simplified Definitions of the Canonical Basis Set of Fields
and the Weight and Normalization Matrices

The definitions given in Sect. 8 of the canonical basis set of fields and the weight
and normalization matrices are awkward because they entail the introduction of
several intermediate basis sets of fields. Here we give simpler and more direct
inductive definitions that help shed light on the physical significance of these
quantities.

Given any basis set of orthonormal fields x Λ £ = 1,2,..., d, that spans % we set
x(/} = x€. Now suppose that for some j the fields x(q) have been defined for all strings
ω with o(ώ) =j: this is clearly true for j = 0. The associated weight matrices W^j) can
be defined via the identity

\χ(q)\

where o(ω) = O(η)=j. The auxiliary fields

K β ) > (A 1-2)

are then of higher order, y + 1 , and orthogonal to the fields x[q) with o(τ)=j. They
are not however normalized. From (A 1.1) and (A 1.2) their inner products are given
by

<aS>|al«)> = δ β 5 ^ 1 t - W J l , ^ . ^ YΆbτ, (A 1.3)

and so to obtain the next set of orthonormal fields in the canonical basis set we take

|y?i>Ξ ΫΆM^y = Ϋ£\iJxMq)> - w£$J<9)» ( A 1 4 )

Similarly starting from these fields, we define the matrices

Uaω,bτ=\yaω\Γl\ybτ/>

yr(q) _ / (q) I p I (q)\ _ c _ Γ7'(«)
vaω,bτ— \Jαωli2ljbτ / ~°aω,bτ uaω,bτ>

and we introduce the set of auxiliary fields

» = « > - Σ Ĵy&'X (Ai.6)

b*q

which are orthogonal to the fields I J ; ^ ) with o(η)=j and have inner products

/h(q)\h(q)\— V U/{q) V'iq)
\uαωlubτ/~"~ L u aω,cη vcη,bτ '

c + g
By normalizing the auxiliary fields we subsequently obtain the set of fields

\Xaω/— L Uaω,cηycη,dτ\1l\ydτ / L Udτ,bλ\jb
c,dΦq \ b + q

at the next level in the hierarchy of the canonical basis set.
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The relations (Al.l), (A1.4), (A 1.5), and (A 1.8) clearly serve to define by
induction the weights and the canonical basis set of fields. The normalization
matrices are defined via (8.3) in terms of the matrix W that is obtained from (A 1.5).

Appendix 2: Continued Fraction Expansion
from Hashin-Shtrikman Variational Principles

Here we show how the continued fraction expansion for σ* implied by (12.2),
(12.3), (12.7), and (11.12) can alternatively be derived on the basis of the Hashin-
Shtrikman variational formulation [19] for σ*,

<e|σ*-σί?/|e>=minΓ2<e|P>-σ;1<P|Γ1|P>+ £ σ;
PeJ^\_ «=1 J

(A2.1)

which holds whenever σq^σa for all components σa. If σq^σa for all σa, then the
variational principle still applies provided the minimum over Pe2tf in (A2.1) is
replaced by the maximum over P e Jf.

Since the minimum in (A 2.1) is attained within the Hubert space spanned by
the polarization fields P f̂, with αφg, we only need consider fields of the form

P = Σ «αtPi9λ (A2.2)

which when substituted in the variational principle (A 2.1) gives

(A2.3)

By defining αj/ + 1), Z{J\ and Z|({^,1} as those subvectors and submatrices of αα, Zα,
and Z\tΛth that have elements αf lω, Z ^ ω τ , and Z\{^ωM with o(ω) = o(τ)=j, we
obtain, via (6.12), the formula

min lim Γ
α Λ-> oo |_«

min £ ^ a

h

j=2

in which
r(j,j) = /s cj(β)7(j-i) 7t(j)

We assume the minimum over α and the limit h-* 00 in (A2.4) can be interchanged.
The best choice of α^} in the square bracketed expression in (A 2.4) is then
obviously

«iΛ)=- Σ Έ.*fZtί)T*rι\ (A2.6)
b,cΦq

where Ξ{Kh) is the inverse of Ξ(h'Λ). This suggests, when (A2.6) is substituted in
(A 2.4), that we should define the hierarchy of matrices

(A2.7)
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for j = h — l,h — 2,...,l. By iterating the optimization procedure, redefining

Q^ = σ/ — σ Y z^^htl^Z^ (A2 8)

a n d taking the limit /ι-»oo, the result

σ * = Ω ( 0 ) (ft-*oo) (A2.9)

is finally obtained. When h is kept finite (A2.9) is replaced by the b o u n d s

σ * < Ω ( 0 ) when σ>σa Vα,
q~~ (A2.10)

σ * ^ Ω ( 0 ) when σq^σa Vα.

To express the continued fraction that results from (A2.8) and (A2.7) in terms of
the fundamental geometric parameters, let us introduce, for j ^ h — 1, the matrices

A +(l)__l/jXO)τ(Λ,l)|/ίΛO)
α ' b " α " α ' & ) u ' (A2.l l)

i)Γ/(/)+

which remain to be shown equivalent to the conductivity matrices Δ+ and Π+

defined in Sect. 12, for Q{h) of the form (12.25) with σm = σq.
First note that (A2.9) with (A2.8) directly implies the formula

Ω<°> = <7,/-<x, Σ tff'ΔiHtfΓ, (A2.13)

which is consistent with (12.3). Next by substituting (A2.7) in (A2.ll) and using
(A2.5) with the expressions (6.10) and (6.11) for the matrix Z\ we deduce that

^fl,b ba'a,b^ vva A va,b^ h *-χ,a—x,y *-y,b / v

L *>y*<i J
(A2.14)

This expression with (8.28) and (8.29) clearly yields the recursion relation (12.7)
which now links Δ+ defined by (A2.ll) with Π+ defined by (A2.12).

Lastly, since the expression (A2.12) for Π+ is of the form (12.15), its inverse can
be readily calculated, via (12.16), and for j<h we find

(A2.15)

This with (12.7) and (A2.13) clearly implies a continued fraction for Ω{0) that is
identical to the continued fraction resulting from (12.2), (12.3), (12.7), and (11.12)
and enables us to identify the matrices Π+ and Δ+ defined through (A2.9)-(A2.11)
with the matrices defined in Sect. 12, when Ω w has the form (12.25) with σm = σq.
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