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Abstract. A class of vacuum configurations in the superstring theory obtained
by compactification of physical dimensions from ten to four is constructed. The
compactification scheme involves taking quotients of tori of semisimple Lie
algebras by finite symmetry group actions. The complete list of such
configurations arising from actions by a Coxeter transformation is given. Some
topological invariants having physical interpretations are calculated.

1. Introduction

One of the most important aspects of the Green-Schwarz superstring [1] and the
heterotic string [2] theories is the compactification of the six space-time
dimensions. One possible solution of consistency for the theory is that the internal
six-dimensional space be Kahlerian and Ricci-flat, i.e. the so-called Calabi-Yau
space (CYS). The structure of CYS is essential in determining the form of the low-
energy lagrangian of the theory. So breaking the gauge group by the holonomy
group of the CYS leads to a model in which the number of generations is equal to
ί/2\χ\, χ being the Euler characteristic of the CYS [3] (the more deep breaking
pattern links the number of generations to the third Chern class of some vector
bundle on the CYS [4]). The number of massless scalar modes is expressed in terms
of Betti numbers of the CYS [3]. The resulting breaking of the great unification
gauge group depends also on the fundamental group πι (CYS) [5]. The Yukawa
couplings are essentially topological as well; they are simply intersection indices of
four-dimensional surfaces in CYS [6]. At present some examples of CYS are
known, but there is no general classification. The further progress in superstring
theory depends on our understanding the structure of CYS. It is useful to have the
largest possible list of CYS containing simple examples as well as phenomenologi-
cally acceptable cases. A more detailed study of superstring dynamics will indicate
the one which leads to the observed spectrum of chiral fermions.

In the present paper we construct new examples of CYS using one of the known
methods [7]. It consists of the following. Let us take a three-dimensional complex
torus 7J?. This is a simplest CYS since its group of holonomy is trivial. Therefore
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the compactifϊcation on the torus will not lead to the gauge symmetry breaking.
However in some cases it becomes possible to "spoil" it in such a way that the
"spoiled" torus has all of SU3 as its holonomy group. For this it is necessary that
the torus have some additional symmetries. Suppose that there is a finite subgroup
Γ of SU3 acting linearly on the torus. The fixed points of this action give rise to
singularities in the quotient space Ko = 7J?/Γ, which is called an orbifold. The
algebraic-geometrical tools make it possible to smooth out these singularities
(or to resolve them) [8]. After desingularization we get a smooth manifold K.
The choice of the subgroup Γ and of the procedure of desingularization
depends on the assumption that the resulting manifold be a CYS, i.e. a
Kahlerian and Ricci-flat manifold. The class of CYS constructed in this way
is extremely convenient for studying the behaviour of the superstring. One can
consider the string propagating in the singular orbifold Ko whose structure is
better understandable; one gets from such considerations the correct answers to
some questions (for example, the one concerning the number of generations [9]).

The initial tori in this paper are real tori T^on which large symmetry groups
act. They all ι are maximal tori of semisimple Lie groups of rank 6. The Weil group,
and even its extension generated by exterior automorphisms of the Dynkin
diagram, acts on such tori (see [10]). As the real reflections, generating the Weil
group, are not SU3-transformations, the Weil group is not contained in SU3. But it
has some subgroups contained in SU3. In particular, the cyclic subgroup
generated by a Coxeter transformation [11] proves to be such a subgroup. There is
sufficiently much known about Coxeter transformations to describe explicitly the
construction of CYS and evaluate some of their topological invariants. We give the
list of all the semisimple Lie algebras of rank 6, such that their quotients under
Coxeter automorphisms desingularize to give a CYS.

The paper consists of five parts (not counting the introduction). In the first one
we give some generalities of CYS and expose the main construction. At the end we
give the table of all the CYS which can be obtained by our method. This table
contains 14 examples of CYS, of which only the first one has been known before
[3]. For resolving singularities we use methods of toric geometry. We describe the
toric desingularization method in the Appendix.

The next section contains calculations of some topological invariants of the
constructed CYS. At first we give a proof of the formula for the Euler characteristic
suggested in [9]. With the help of this formula we evaluate the Euler characteristics
of CYS from our table. In all the cases excluding the one known before it turns out
to be 48. It is interesting to note that all the values of the Euler characteristic are
multiples of 24 (namely, 48 and 72). It is not clear whether it is an accidental or a
natural phenomenon. If we apply the same method to the two-dimensional case we
shall obtain the three types of the so-called Kummer K3-surfaces [8], all of which
have the Euler characteristic 24. In this context, observe that our CYS have the
same Euler characteristic as that of the fibre-bundle over the projective line P 1

with a JO-surface as a fiber [the Euler characteristic is multiplicative in fiber-
bundles: χ(K) = χ{Ψ1) χ(K3) = 2-24 = 48]. Indeed, most of our CYS have a
structure of a "bundle" over IP1 whose generic fiber is a X3-surface, but this

1 Note that not all complex tori with discrete symmetries from SU3 are obtained in this way
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"bundle" has degenerate singular fibers which may even contain several compo-
nents (mutually intersecting complex surfaces) and so the multiplicativity of χ can't
be applied.

We also compute the fundamental group. These computations can be done in
the orbifold limit, because the desingularization does not change the fundamental
group.

A separate section is devoted to the computation of Yukawa couplings. This
computation, in contrast to the above, requires the knowledge of the explicit
resolution of singularities, and we go through it for one of our CYS. Observe that
most Yukawa couplings vanish. Analysis of other examples shows that in general
85-95% of them vanish.

Finally, in the closing section we consider possible generalizations of the
suggested construction and discuss some other topological invariants having a
phenomenological meaning.

2. The Main Construction

ί. Generalities on Calabi-Yau Spaces

By a Calabi-Yau space (CYS) we mean a compact complex manifold K admitting a
Kahlerian metric with zero Ricci tensor. By the Yau theorem [12], the existence of
a Kahler Ricci-flat metric is equivalent to the vanishing of the real first Chern
class: cf(K) = 0. Note the first Chern class in H2

DR{K,ΈC) is represented
by the differential two-form

oί = Rijdxι Λdxj >

where Rtj is the Ricci curvature tensor. The condition cf(K) = 0 means that the 2-
form α is exact, i.e. that a = dβ for some β. Yau's theorem says that for an
appropriate choice of a metric the form a is identically zero. Such a metric is
uniquely determined by its cohomology class in the Hodge group H1Λ(K9(ϋ).

From known results on CYS one can deduce that c^(K) = 0 iff the canonical
bundle Ωκ has finite order in the Picard group of K, i.e. Ωf m^Θκ, Θκ being the
trivial line bundle (see, for example, [13]). We recall that by the canonical bundle
one means the vector bundle of holomorphic differential forms of the highest
degree on K, or "holomorphic" volume elements. This criterion is the most
convenient for our purposes, because holomorphic objects (such as meromorphic
sections of Ωκ) are easier to deal with than those built from a metric
[such as c^Kj]. If Ωκ has a non-zero meromorphic section ω, then we
have in each open set (7, with coordinates (zl5 ...,zw), the representation
ω = g(zι> •> ,zn)dz1 A ... Λdzn, and the divisor of ω is defined by defining its
restrictions to coordinate open sets: {(o)υ = (g)υ. The triviality of Ω®m means that
m(ω) = (f) for some meromorphic function / (meZ, m^l). In particular, Ωκ is
trivial (m=l) if there exists a form without poles or zeros, or such that (ω) = 0.

It is appropriate to remark here about the relationship with the holonomy
group. If K is an arbitrary compact riemannian manifold with a metric g, then we
have the Riemann connection on the tangent bundle TK. Its holonomy group,
referred to a point x0 e K, is the group of automorphisms of the tangent space,
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TXoK, which send each tangent vector at x0 to the result of its parallel translation
along some closed path starting and ending at x0. Generically HcO(n\ where
n = ά\mK. If HcU(p\ n = 2p, then there is a complex structure on K, and g is
kahlerian with respect to this complex structure. Let Ho denote the component of
the identity in H. If furthermore Ho C SU(p), then the Ricci tensor of the metric g
vanishes identically. The conditions Rij = 0 and iϊcSU(p) are equivalent. A
kahlerian manifold for which H0 = SXJ(p) is called an irreducible special unitary
manifold. If at last HocSp(r)cSU(2r) (here n = 2p = 4r), then K is a symplectic
manifold, and if the equality occurs, Ho = Sp(r), then K is an irreducible symplectic
manifold. The decomposition theorem for Ricci-flat manifolds [13] says that some
non-ramified finite covering of K is holomorphically isometric to the direct
product Γ f c x F 1 x . . . x F ? x I 1 x . . . x X e , where Tk is a fe-dimensional complex
torus (whose holonomy group is trivial), V{ are irreducible special unitary
manifolds, and Xj are irreducible symplectic ones, Vj and Xj being compact and
simply connected. This decomposition corresponds to the decomposition of the
representation of Ho on TXoK into the direct product of fundamental
representations

Ho~ lκ x S U K ) x ... x SU(mk) x Sp^) x ... x Sp(r,).

We will mention some corollaries. Firstly, for Ricci-flat manifolds we have
[H: HQ] < oo. Secondly, if H has no invariants in TXoK, then π^K) is a finite group.
In particular the fundamental groups of irreducible special unitary or symplectic
manifolds are finite. The fact that the fundamental group of K is infinite implies
that K is a locally trivial fibration by tori which becomes trivial after pull-back to
some finite non-ramified covering.

Thirdly, from the decomposition theorem we can deduce the above statement
on triviality of Ωfm for some m^l . This follows from the Bochner principle:

Bochner Principle. Let K be a compact kahlerian manifold having zero Ricci
curvature tensor. Then each holomorphic tensor field on K is parallel with respect
to the Kahler connection and, consequently, its value at x0 is invariant under H.
Conversely, every holomorphic tensor at x0 which is invariant under H has a
unique extension to a parallel holomorphic tensor field on K.

Indeed, each tensor τXo from det T*0K = Λ£T*0K is invariant under Ho, since
elements of Ho have determinant 1. As [if :i/ 0]<oo, the tensor τ^0 is invariant
under H, where m is the exponent of the finite group H/Ho (i.e. gm = 1 for all
g e H/Ho). According to the Bochner principle τ^0 extends to a holomorphic tensor
field τm; it yields the trivialization of Ωf m = (detTx*iC)®m, since it has no zeros or
poles on K (if it had, it could not be parallel with respect to a metric connection).

One-dimensional CYS are complex tori 7̂ ? (algebraic geometers say "elliptic
curves" instead). For tori m = 1. Two-dimensional CYS are 7J?, or K3-surfaces, or
Enriques surfaces [8]. For surfaces, m ̂  2 and m = 2 only for Enriques surfaces. For
three-dimensional CYS m S 66, and there are examples with m = 66 [13]. To within
finite non-ramified coverings, three-dimensional CYS are divided into three
classes: (1) three-dimensional complex tori (having the trivial holonomy group);
(2) the products E x S of an elliptic curve E and a X3-surface S [here the holonomy
group is SU(2) = Sp(l)] (3) simply connected irreducible special unitary manifolds
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[with the holonomy group SU(3)]. The structure of the classes (1), (2) is well-
known. As for manifolds from the third class, there are only some examples known.
Below we describe a construction giving a series of new examples of CYS from the
third class.

2. Description of the Construction

The initial manifold is the real six-dimensional torus T 6 =]R 6 /A where L is a
complete period lattice of the torus in R 6 . We consider tori whose period lattices
are root lattices of semisimple Lie algebras of rank 6. Such a lattice is defined by
basic roots α l 5 . . . , α6. The Weil group W9 generated by the reflections sj9j=ί,...,6
in the hyperplanes orthogonal to the simple roots acp acts on the lattice. This action
defines the action of W on the torus T6. Consider the group Γ c W generated by the
so-called Coxeter element c = sί s2 ... s6:

Γ = {l,c,...,cfc-1} (c f c =l),

where h is the Coxeter number (the order of c). Instead of sγ... s6, one can also
consider the generalized Coxeter element twisted by an exterior automorphism of
the Dynkin diagram [11].

We obtain CYS by taking quotients of a three-dimensional complex torus
under Γ. In order to demonstrate the idea of taking quotients of a torus, we
describe a model example, the one considered in [3]. (Let n = 3. In particular,
n = l . . . .)

Consider the lattice L of roots of the algebra A2 in the complex plane C. It is
generated by two basic roots, ω = exp2πi/3 and 1. The action of c has the form
z->ωz. A point z o e C determines the point of the torus T=(C/L, which will be
denoted by [z 0 ] . The point [z 0] is fixed by c if there exists a point y e L, 7 = a + bω
(a,beΈ) such that

czo = zo + y.

It is obvious that in order to determine all the fixed points, we can restrict ourselves
with examining points of any basic parallelogram Π; let us take, for example, the
one spanned by 1 and ω (see Fig. 1).

One can easily verify that there are three fixed points of c on the torus T, whose
representatives in Π are:

We have

ca2 = α2 — 1, eα3 = α3 + (1 — ω).

The hatching covers the fundamental domain of the symmetry group generated by
L and c. To obtain T/<c>, one should fold the rhombus [α l 9 α2,1 + ω, α 3] along the
diagonal α 2 α 3 and glue together the sides a^a2 and α2(l +ω), as well as α x α 3 and
α3(l -hω). In this way one obtains the topological sphere. At first sight, the sphere
seems to have three singular points, or angles, from the C0 0 (and the more, from the
complex-analytic) point of view. But it is not true, as the quotient T/Γ can be
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Fig. 1. The Coxeter transformation on the torus of type stf2

defined in the complex-analytic category as a smooth Riemann surface by
specifying the set of its local coordinates wP in the neighbourhood of each point P:

P=T/Γ,
z, if

if = (x1, α2, or α 3.

It is not so in the three-dimensional case, where the quotient T^/Γ is a singular
complex space, and it is necessary to resolve its singularities. Let us return to our
construction.

Step ί. The description of all complex structures on T6 which are invariant under
Γ. This does not cause any difficulty. There are three complex coordinates zk in
R 6 + zΊR6 and the three conjugates zk, each zk corresponding to the eigenspace of c
with the eigenvalue λjk, k= 1,2,3, where

2πi

ΊΓ1 (1)

and zk corresponding to the conjugate subspace. The choice of three from the six
complex coordinates, say, z1,z2,z<i, specifies the complex structure on T 6 and
turns Γ to a group of holomorphic isometric automorphisms of the torus

Step 2. The choice among all possible complex structures of that with respect to
which the holomorphic 3-form dzx A dz2 A dz3 is invariant under Γ. In that case, it
descends to the quotient-space Ko = T^/Γ as a holomorphic 3-form; let us denote
the resulting form on Ko by ω0. The assumption that such a complex structure
exists prohibits quite a number of algebras.

Proposition 1. Let G be a finite group acting on a CYS M, and ωeΓ(ΩM) a
holomorphic volume element on M. Let x0 be a fixed point of G. Then the action of G

2 One could have started from the beginning with complex tori 7J? having non-trivial symmetries.
Such tori are completely classified [14]
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defines the subgroup G(x0) C GL€(TXQM), where TXoM is the tangent space to M atx0.
For ω to be invariant under G, it is necessary and sufficient that G(x0) be a subgroup
of SLc(TXoM).

Applying the proposition to ω = dzί Λdz2Λdz3, we get the condition
mh + mh + mh = h> where m} are the numbers introduced in formula (1) 0 ^ m̂  < h.

Step 3. Resolving singularities. Let M be a three-dimensional CYS, and G a finite
abelian group acting on M. Suppose that the fixed point sets of elements of G are of
codimension > 1. Then the union of orbits of all the fixed points of elements of G is
the singularity set of the quotient variety M o = M/G. Denote it by S, S = SingM0.
By a resolution of singularities one means a surjective holomorphic map
f:M0^M0 with connected, compact fibers, such that M o is a smooth (non-
singular) complex variety and f:M0—f~ι(S)-+M0 — S is an isomorphism (see
Fig. 2).

The resolution of singularities is not unique. In the case under consideration,
the arbitrariness is restricted by the assumption that M o be a CYS. This occurs if
the 3-form ω 0 on M o having no zeros or poles lifts to a 3-form on M o which
possesses the same property, i.e. which does not acquire zeros or poles along
divisors glued in place of singular points. The possibility of such resolution is based
on the following proposition.

Proposition 2. Let dimM = 3, xeπ~1(S), where π:M^M0 =
projection. Let Gx = StabG(x\ and

is the natural
suppose, that

G(x)cSLc(TxM) for all the points xeπ \S). Then we have:
1) There exists a CYS K and a map f: K-»M 0, which is a desingularization of

Mo. 2) For any point xeπ~1(S),

where χ( ) denotes the topological Euler characteristics. 3) // there is a holomorphic
3-form ω0 on Mo which has no zeros or poles, then the form / * ω on K is holomorphic
and nowhere vanishing, so the canonical bundle Ωκ is trivial.

For the proof see the Appendix, Sect. 5.

Fig. 2. The resolution of the conic singularity
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Table 1

Type of symmetry

1. AψxAψxAψ
2. Aψ x D%\ A[1] x Aψ
3. B{2] x B{4], Bψ x D^2 )

4. DψxDφ
5. Aψ x D(^\ A4υ x F^\ JE(

6

1}

6. AψxGψxGψ
7. D(

2

1)xF^1)

8. A6

Exponents

4(iii)
4(123)
4(125)
4(134)
1 (̂147)
4(114)
3^(156)
4(124)
4(112)

N

27
12
4
8
3
3
4
7

16

X(K)

72
48
48
48
48
48
48
48
48

36
35
27
28
27
29
31
24
31

From Part 1 of Proposition 2 we deduce that if Step 2 is executable for the
given group Γ, then automatically Step 3 is executable, i.e. there exists a resolution
of singularities f:K = K0->K0 in which K is a CYS.

Step 4. Calculation of invariants of K. Formula (2) and the additivity of the Euler
characteristic make it possible to evaluate χ(K) (see Sect. 3). The calculation of the
fundamental group is described in Sect. 3 it turns out that π^K) = 0. In Sect. 4 we
calculate the Hodge numbers of the 3. CYS from our table.

Theorem. The following table contains the complete list of CYS that can be obtained
with the help of the described procedure.

Explanation of the Table, (i) In the first column, the superscript is equal to the order
of an exterior automorphism of the Dynkin diagram, by which the Coxeter
element is twisted. Λ

(ii) In the second column, the entry of the form γ{aί,a2,a3) shows that the
h 2τd

action of c can be written in the form c:(z1,z2,z3)\-+(εaίz1,ε
a2z2,ε

a3z3), z — e h in
coordinates zί9z29z3 defining the complex structure on T6.

(iii) N is the number of fixed points of c9 which is, according to the Lefschetz
theorem, equal to the value of the characteristic polynomial of the linear map
ceEnd(IR6) at unity. It coincides with the number of fundamental weights of the
algebra.

(iv) Another important invariant is the Hodge number h2Λ{K). It can be
obtained from the table and the formula hίΛ — h2Λ =

3. Calculation of Topological Invariants

/. Euler Characteristic

Now we want to prove the Dixon-Harvey-Vafa-Witten formula for the Euler
characteristic χ(K) of a CYS K [9]. This formula reads as follows. Let G be an
abelian group acting on a two- or three-dimensional CYS M, and suppose that the
quotient M/G admits a resolution of singularities with the trivial canonical bundle
Ωκ. Let us denote by M(g,h) the set of points in M which are fixed under both
elements g and h of G, and by χ(g, h) its Euler characteristic. Then

= i i r Σ χfe,λ) (3)
1̂ 1 hG
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Lemma 1. Let xeM and StabG(x) = F (the subgroup of all elements of G which fix
x). Then the fiber of the map K^M/G (resolving singularities) over the orbit of x
has Euler characteristic \F\.

Proof Apply the corollary from Proposition 5 of the Appendix. Let π: M-+M/G
and / : K-+M/G denote the natural maps. The singular point π(x) e M/G is locally
equivalent to the quotient of the neighbourhood of x e M under F, and it is, in its
turn, isomorphic to the quotient <Ln/F (n = 2,3) under a linear diagonal action of F.
Hence we have to prove only that the Euler characteristic of a toric variety is equal
to the number of cones of the maximal dimension n in its fan. This follows from the
decomposition

* * = u ©„»
σeΣ

where © σ - ( C * ) n ~ d i m σ , if n>dimσ, and <Dσ = {point}, if n = dimσ (see Sect. 4 of
Appendix). As χ(((C*f) = χ(C*) x = 0, we have

)= Σ z(©σ) = Σ χ(point) = L,
σeΣ σeΣ

dimσ^n

where L is the number of rc-dimensional cones in Σ.
For any subgroup F c G w e put:

MF:= (J MF, = {xeM: FcStabG(x)} .
FcF'

Then π(MF)=MF/(G/F) and

X(MF)χ(π(MF)) =

Since the resolution of singularities blows up points in π(MF) to subvarieties of the
Euler characteristic |F|, which form a locally trivial bundle over π(MF), we have

Hence

1

) = — Σ \F\2χ(MF).
1̂ 1 G

FZG L ^ ^ J 1̂ 1 FCG

Observe now that

MF) =
\{g,h}cF J {g,h}cF

Substituting this into formula (3) and changing the order of summing, we get

1 , , 1
Σ Σ % ( M F ) = ~ Σ \F\2X(MF),

G {g,h}cF |Cr| FcG

which is exactly the same as written above. Thus the formula (3) is proved.
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2. Number of Fixed Points

The Euler characteristic of the fixed point set of a given transformation on a
manifold M can be evaluated with the help of the Lefschetz formula, which reads as
follows:

where m = dimRM. In the case when M = T m is a torus, we have

H\M9 (C) £ (Cm ̂  CdXi + . . . + <Cdxm,

and

We consider the case when the action of g can be written in the form

g: (xu ..., xJi-K/l!*!,..., ΛmxJ

Then

xβ=ί-Σii+ΣWj- Σ A la7afc+...+(-iri122...im=p,(i),
i i < j i< j<k

where P^ is the characteristic polynomial of the linear endomorphism g e End(Rm).
The characteristic polynomials of Coxeter elements (see Sect. 2) are known [11].

A slight generalization of the Lefschetz formula makes the calculation of χ(K)
by formula (3) purely algorithmic. This is the following formula for

zfeΛ)=τir Σ (-1)1" Σ Tr{s:ff(MHff(M)} ^ Σ
\r\ i = 0 seF \r\ seF

where F denotes the subgroup in G generated by g, h, and s = gktf runs over all
elements of F.

The calculation of the number of fixed curves (in some cases, powers of the
Coxeter elements have fixed curves) reduces to the calculation of the number of
fixed points for fewer dimensions (one should merely forget about the coordinate
changing along a fixed curve).

3. Fundamental Group

It follows from Sect. 6 of the Appendix that the resolution of singularities does not
change the fundamental group, so it is sufficient to know the fundamental group of
the singular quotient-space Ko.

Turn to the proof of the fact that the varieties K of Theorem of 2 are simply
connected. To make it clearer we shall consider the case when h is a prime; then all
powers of c have the same fixed set {P l 5..., Pq} = S in T3 = M. Let M1 =M — S,
K^iM-S)/ΓcK0 = M/Γ;S' = {P\...P'q}=K0-K1=π {SI where π:M^Kois
the natural projection. As Γ acts freely on M 1 ? π^K^ is the extension of π^MΊ) by
Γ. This means that every element ofπ^KJ can be written in the form σy with σeΓ
and yeπ^Mi), and we have

σγσ'γ' = σσ'yσ'y' (the group law),
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where yσ' denotes the image of γ under the transformation σ'. In particular
yσ = σ~1yσ. Thus the lattice π ^ M ^ ^ Z 6 is a normal subgroup in π^K^) of
index h = \Γ\.

Consider the set of punctured neighbourhoods Ul9..., Uq of points P\,..., P'q;
by Sect. 2 they are local-analytically equivalent to the toric variety X{]Rn,NtΣ), where
the fan Σ contains all proper faces of the cone σ = R + (and does not contain σ
itself). By Lemma 3(i), NΣ is the lattice generated by κu κ2, κ3, that is NΣ = N0, and
N/NΣ ^ Γ (if h is not a prime, then it may turn out that κ1,κ2, κ3 do not generate all
of NΣ, since the sides of the triangle Hnσ may contain points of N other than κ3). So
the local fundamental groups π^Uj) are isomorphic to Γ and are generated by one
loop "surrounding" Fp which will be denoted by σ}. We have cή = ί [in π^l/y)]. If
we choose the distinguished point x0 to refer elements oϊπ1 in Uu we shall get the
following set of generators for π^K^:

σ = S1 = σl9 σj = σϊj

1σjσlj (j = 2,...,q), (4)

where σίj is the segment of the straight line leading from x 0 to Uj. Then &j = σyj,
where {jj} is the set of representatives of cosets in Z6/(σ — I)Z6 (the proof is
straightforward). Observe that the elements [σ \ yield a complete system of
representatives of conjugacy classes in π ^ X J . Indeed, one can easily deduce from
definitions the following fact: if the elements σyf and σy" are conjugated by an
element σγy, then y" = y'(y'σiy'~x) - (yσy~x)~λ. Taking additive notation, we get

Note now that σί = σk, and

From (4), it follows that pasting holes in Uj kills the generators GJ of the
fundamental group (the loop Oj can be contracted to a point, and after that σ7- can
be contracted along the segment σι7). Thus Ko is simply connected (and hence, so
is K).

4. Calculation of Yukawa Couplings

It has been shown in [6] that triple couplings between fermionic massless 27 — E6-
multiplets can be calculated by purely topological methods; they are merely
intersection indices (Fj Ft Fk) of triplets of cohomology classes in H1* 1(K, C). In
this section, we treat one example in detail and explain the method for calculating
the group H1Λ(K,<ϋ) and the trilinear intersection form on it. We shall identify
elements of H1Λ(K,(£) with the corresponding sums of 4-surfaces in K.

Let π: T^K0 = T/Γ be the quotient map, and f:K-^K0 that of desingular-
ization. Then

H2(K, C) = H2(T, (CfQΣCEj, (5)

where {Ej} is the set of all exceptional divisors of the resolution of singularities [i.e.
all the divisors on K for which f(E) is not a divisor on Ko~]. As H2'°(K,<£)
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= H°'2(K,(E) = 0 (there are no holomorphic or antiholomorphic 2-forms on T),
one can write HlΛ instead of H2 in (5).

We shall illustrate the calculations for one example, namely Bψ x B^\ The
action of c has the form

2πi

(z l5 z2,z3)h->(εzl5 s
2z2, ε 5z 3), ε = e 8 .

Here H1Λ(T, (C)Γ is generated by three elements άz{ A dzt, ί = 1,2,3, so
dimJϊ l f l (Γ,C) Γ = 3. To observe all the divisors Ep we decompose the transforma-
tion T-+K into the chain of three similar transformations, each one including
taking quotient under TL2 (the first ΊL2 is {1, c4}, the second one is {1, c2 mode4} and
the third one is {l,cmodc2}):

τl = T >κ0

Here π l 5 π 2 , π 3 denote the quotient-maps and π 2 , π 4 , π 6 denote the resolutions of
singularities.

Stepi. T/Έ2 = KuZ2 = {l,c*},c4 = |(4,8,20) = £(1,0,1). There are lόfixed curves
{ z 1 = ω J , z3 = ωk}, i,j = l,...,4. Replacing z1 — ωj and z 3 - ω f c by z : and z3

respectively, we get the local description of the resolution of singularities in the
neighbourhood of these points

( \ quotient map / 2 2 ^
^Z l 5 Z 2 , Z 3 j >{Zl9 ZγZ^ Z 3 , Z 2 j

x y

So we get the quadratic singular point. The desingularization is covered by two
coordinate maps:

U,

Over each point of the complex z2-curve,

zj = O, z2 = const (in U^ or z3 = 0, z2 = const (in ί72),

there is a complex curve covered by two coordinate maps: u = z3/zx and 1/w. Such a
curve is isomorphic to (DP1. Thus the resolution of singularities glues in 16 divisors
of the form Bj x (DP1 in place of 16 singular elliptic z2-curves Bj(j = \,..., 16).
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Step 2. K3 = K2/Z2, Z2 = {1, c2}, c2 = ^(1,2,1). The element c2 has 16 fixed points
in T£,

which lie on four of sixteen curves defined in Step 1. On K2 the fixed points of c2 lie
over these sixteen points, or on sixteen curves (CP1 over them. In correspondence
with (6), we have:

,: c2: 4 - , .

• -2 ' i ,~,z 2

We see that C P 1 is fixed under c2. The resolution is covered by four maps
Uιu U12, U21, U22. For example, we have

Z 2
(7)

Again we have (CP1 glued in over each point of the old (CP1, with two coordinates
z z2 1

u=-i and « = — = - . We shall call the four divisors glued in over fixed points of
z\ z2 u

c2 divisors of type (*). Those 12 exceptional Bj x (CP1 which do not contain fixed
points of c2 are permuted by c2 in orbits of length 2, so after applying the quotient
map they give 6 divisors isomorphic to B x (DP1 (see Fig. 3).
Step 3. K5 = KJZ2, Z 2 = {l,c}, c = £(l,2,5). The element c has 4 fixed points,

z 2 = (Dj, z ι = z 3 = ωk, j , k = 1 , 3 .

CP,

7 CP,

~7 cp,

~ B/

CP

B x P 1

Fig. 3. a The structure of an exceptional divisor of type (*). b The structure of an exceptional
divisor of type BxΨ1
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The six divisors B x (CP1 are permuted in orbits by two, two of the four divisors of
type (*) are also permuted so there are 3 divisors B x (DIP1, 1 divisor of type (*)
and two divisors of the more complicated form in K6 = K. The last two divisors will
be said to be of type (**). They are obtained by applying the quotient map to a
divisor of type (*) under Z 2 and desingularizing it. The action of c permutes two
ruled surfaces which arose at Step 2 [we now consider only one of the two divisors
of type (*)], and the other two are glued to itself. In coordinates introduced in (7),
we have:

U

We see, that the fixed set is the z2/zj-curve which was glued in at Step 2 (it has an
equation, say, in Uίί9 of the form z2 = z3/z1 =0). Similarly, we find also the fixed
curve z^ = zJz3 = 0 in U2ί or U22. The resolution of singularities glues in C P 1 over
each point of the fixed curves. We get the following divisor (Fig. 4).

We introduce the following notation for components of exceptional divisors:
Eu E2, E3 are divisors of type B x C P 1 ; F is the "base" of the divisor of type (*);
FUF2,F3,F4 are the remaining components of the divisor of type (*); Gk is the
"base" of the divisor of type (**); Gk

θ9 G\, G\, Gk

Vj (ί, j,k=ί,2) are defined by the
picture. We see that there are 24 exceptional divisors, so

There are three more generators of H1* ί(K); we shall choose for them the following
4-surfaces: 1) 5, the image of the torus z2 = C (for a generic C) in K; S is a K3-
surface having Picard number 20; 2) Sί, the image of the torus z 3 = C; 3) S2, the
image of the torus zί = C. It is immediate to verify that many Yukawa constants are
zero, because the corresponding 4-surfaces do not intersect. For example:

(fe = 1,2; α = 0,0,1,2, (11), (12), (21). (22))

(α, β, K are multi-indices, K φ 0)

and so on. Here D is any one of the 27 basic divisors. More thorough geometrical
consideration yields the following indices:

(S? S) = 4; (S1 S2 S) = 8; ( E ? - S ) = - 8 ;

(GkGkS)=-2; (F2 S)=-4; (Gf Gfc • G )̂ = 1,
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K = 1,2 ( * * )

Fig. 4. The structure of an exceptional divisor of type (**)

Fig. 5. u9viu1,u2 are primitive vectors of the lattice N (see the Appendix) lying on the edges of
cones from the fan Σ. To each such vector there corresponds a divisor on the toric variety X. The
segment joining u and v corresponds to the curve which is an interaction of divisors DunDv. The
triangle spanned by three vectors, say w, v, and ul9 corresponds to the point of the triple interaction

and so on. To calculate indices containing (Gk)2 or F 2 , one must write out explicitly
the normal bundles of F and Gk. Some cubes can be easily calculated. For example,

The method for calculating intersection indices of the form (D\ D) and (D3) with
D 1 n D 2 , Dί or D2 (respectively D) projecting to a point in Ko is given by toric
geometry.

Remind that to each primitive vector u lying on a one-dimensional edge of the
fan Σ (see Sect. 4 of the Appendix) one can associate the divisor Du. One has
(Du - Dv - Dw) = 1 if the cone <M, V, W> belongs to Σ. Further, if there is a subfan in Σ of
the form depicted in Fig. 5, then

for some a,beΈ and

(Du D2

v) =

To calculate (Dl\ one must replace it by (D2 (Du + (φ)))9 where φ is an appropriate
rational function, (φ) is its divisor. One should choose φ in such a manner that the
divisor Du + (φ) does not contain Du as its component. In toric geometry, it is
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always possible to find a monomial xm with such property. We have

Let us turn to Example 4 from Sect. 4 of Appendix. We have

(Dl DOί) = (Do. D2)= — 1 ; (Dl Da) = (Da Dl) = Q\
(8)

(Dl • DJ = (Dl DJ =-2; (Daι- D2J = (Dai D2J = 0.

For calculating D^, we use the relation

Dα i = - 2DK2 + DK3 - Dκ t - Dα4 + (xm),

where m is defined by its values on the base of the dual lattice: <α l5 m> = 1, <α2, m>
-<oc3,m> = 0.

We need also indices

(Dβ

2

1 D J = - 3 , (Dl-DJ=-2, (D2

aι DJ = (D2

βl DKl) = 0.

Thus we find out:

Dl = - 2(D2

ai • DJ + {Dl • DJ - {Dl -DJ- « DJ = 8. (9)

In terms of the base of H1Λ{K) introduced above, we can rewrite (8) and (9) as
follows:

((Gf)2 G*) = (Gf (G*) 2 )=- l ;

({G\f • Gij) = - 2 (Gf (G?/) = 0 (Gf)3 = 8.

The remaining indices are calculated similarly.

Conclusion

As we have already noted, the table of Sect. 2 does not exhaust all the CYS
constructed of complex tori by means of Coxeter automorphism. There is a large
class of complex tori admitting non-trivial discrete symmetries [14]. For these tori
one can also define the Coxeter transformation and apply the described procedure.

On the other hand, the CYS constructed in Sect. 2 have some residual
symmetries, belonging to the group generated by translations by fundamental
weights of the corresponding Lie algebra. This group is isomorphic to the center of
the Lie algebra. One can take quotients under the action of appropriate subgroups.

Some of our CYS have non-zero i/1(EndT). This provides the possibility to
deform the complex structure of the tangent bundle TK (while keeping the
complex structure on K fixed). Speaking more precisely, the second, the fourth, the
seventh, and the ninth strings of the table give CYS with non-zero if1 (End T). This
easily follows from the fact that the elements of H1(EndT) are harmonic tensor
fields of the form sίa

u so, to show that Hι(ΈndT) is non-zero, it is enough to
find such Γ-invariant fields on the torus. The desingularization can add some
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new such fields. One can use deformations of the complex structure on TK to
obtain new vacuum states. One can also take an arbitrary stable vector bundle
E instead of TK, having SU(3) [and even SU(4), SU(5)] as its structure group
and satisfying the single condition c2(E) = c2(K) (see [4] for more details). In
that case, the number of generations depends on the third Chern class of £, but
not on the Euler characteristic of K.

All the harmonic tensor fields of the form s$h

aΈ give rise to superfields on the
CYS which are £6-singlets [4]. The existence of such superfields makes it possible
to give a mass to the right neutrino, while keeping the left one massless. One can
also use the non-triviality of H^EndT) to break deeply E6 preserving supersym-
metry, as we know is important from phenomenology.

Appendix. Resolution of Singularities (Toric Method) by D. G. Markushevich

1. Generalities

Toric geometry is the field of algebraic geometry which reduced many algebraic
geometrical problems (for example, such as the construction of a resolution of
singularities, calculation of intersection indices, mixed Hodge structures, funda-
mental groups and other invariants) to purely combinatorial questions on lattices
and convex polyhedral cones in R". Toric geometry is concerned with a relatively
small class of algebraic varieties, the so-called toric varieties. Suffice it to say that
all of them are rational. A variety Xn (all varieties here are complex ones) is said to
be rational, if there is a dense open subset UcXn, and n meromorphic functions
/ l 5 ...,/„ on Xn regular on U, such that the map (/ l5. ..,/„): U->(C" is an embedding
(an equivalent definition: the field of meromorphic functions on Xn is isomorphic
to the purely transcendental field (C[/1? ...,/J over (C). Among curves, only the
curve of genus 0, or the Riemann sphere (DP1, is rational. However, in spite of the
fact that the class of toric varieties is very small, they serve the fundamental testing
ground for conjectures, theorems and proofs concerning more general varieties.
Moreover, they give an effective tool to investigate the local structure of singular
varieties. Toric method can be applied to build a resolution of singularities of a
complete intersection variety (we will not dwell on this construction, see for it [16])
and of a quotient under a finite abelian group. For toric varieties see [15].

As general algebraic varieties are obtained by gluing together affine algebraic
varieties, playing the role of coordinate charts, the general toric varieties are
obtained by gluing together affine toric varieties. An affine variety is a variety
whose points are in a 1-to-l correspondence with maximal ideals of its function
ring. To each point P of a variety X there corresponds the maximal ideal m of the
function algebra A = C[X] consisting of regular (polynomial) functions on X
vanishing at P. The variety X is said to be affine if the map P \-> m from X to the set
of maximal ideals of A is bijective.

Let A be any commutative finitely generated algebra with unity over C without
nilpotents. Then the set of maximal ideals of A is an affine algebraic variety. One
uses the notation

(1)
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An affine variety can be represented as a closed subvariety of some affine space (£N.
To see this, we choose a set w l 5...,% of generators of A and write down all the
relations between them; let

be a complete set of the relations. Then A is isomorphic to the quotient of the ring
of polynomials by the ideal generated by F l 5 . . . , F f ,

and X is naturally identified with the common set of zeros of Ft:

NFι{zl9...9zJ = O9i=ί,...9t}. (2)

To obtain the definition of an affine toric variety one must specify that A in (1) is a
semigroup algebra. Recall that by the semigroup algebra associated with a
semigroup H, one means the algebra generated by symbols {xh}heH, whose
products are defined by xhί > χh2 = χhι + h2 (as we consider only commutative
semigroups, we write the semigroup law additively). Any finitely generated
semigroup without torsion is isomorphic to a semigroup of the form τnZn, where τ
is a convex rational polyhedral cone in IRΛ The rationality condition means that
any face τ of codimension k spans the linear subspace in R n that is given by k linear
equations with integer coefficients. This condition implies that the semigroup
τ n 2 " is finitely generated. One can think of the semigroup algebra <C[τnZn] as of
the algebra of Laurent polynomials generated by monomials T m = T 1

m i . . . T™n

whose exponents m = (m l 5..., mn) e τnZn. Of course, the set of exponents m depends
on the choice of a basis in the lattice V. To eliminate this dependence, we shall give
a more abstract definition.

Let us consider a triple (F=R M , M, τ), where M is a complete lattice in V, τ a
convex rational (with respect to M) polyhedral cone in V with the origin as its
vertex. Consider the variety

X ( F ' M ' τ ) = Xτ = Spec(C[τnM]. (3)

The algebra of regular functions on Xτ is the semigroup algebra <C[τnM]. One can
represent Xτ as a closed algebraic subvariety in some (CN as follows. Let
m ( 1 ),..., m(N) be a set of generators of the semigroup τr\M,uί = Tm(1\ . . . , % = Tm(N)

a set of generators of <E[τnM^ and let

,MJV) = 0} i = l t . . . f ί (4)

be the complete set of relations between ux. Then XτC(CN, and

F i(z1,...,zII) = O, i=l , . . . , ί } . (5)

In addition to (2), we can give explicitly the form of the equations F{— 0 defining
toric varieties. Indeed, all the relations between Uj are determined by the relations
between mu\ They are linear and have the form

alίm
il)+ ... +a1Nm{N) =

atίm
{1)+ ... +atNrn{N) =
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so Ft have the form

Fiu1,...,uN) = u^...u^-uJι

a-κ..u^-r. (6)

We have divided the set of indices (1,..., N) into two parts: (iu ..., ir) is the set of
indices for which α l 7^0, and (jx,..., jN_r) is that for which fl^<0. Relations of the
form (6) are said to be monomial. For a subvariety of <LN to be toric, it is necessary
and sufficient that it be defined by a set of monomial equations. For example, the
equations of the two- and three-dimensional quadratic cones admit monomial
representations

2

but n-dimensional cones with n>3 have no monomial equations, so the n-
dimensional quadratic cone is a toric variety if and only if n = 2 or 3.

2. Properties of Affine Toric Varieties

Proposition 1. (i) Varieties Xτ are non-singular in codimension 1, that is
codimSingXτ^2.

(ii) Xτ is non-singular if τ is a basic cone, that is τ = Έt+eί -f... + ]R+eM,
where (eu ...,en) is a basis of the lattice M.

(iii) Regular holomorphic exterior forms of the highest degree on Xτ (more
precisely, on the non-singular set of Xτ) are finite linear combinations of the exterior
forms of the form xm ω, where m runs over Mnτ, τ is the interior of τ,

dxί dxn yω0 = Λ ... Λ . In other words,
Xί Xn

Ωτ: = Γ(Ωχτ) = <£lτnM] ω0.

Proof. For (i) and (iii) see [15]. The second statement is more or less obvious: for
Xτ to be smooth, it is necessary that the monomials uu ..., uN defined in Part 1 give
a complete system of local parameters for Xτ without relations between them, so
m(1), ...,m(N) is a basis of M (and hence N = n).

Examples. 1) <C/G = Jf(Rn A ί R" ), where

and M can be described as follows. Let geG, and r be the order of g. Then g has the
form

(xι,...,xn)^(εa/x1,...,ε
a/xr), (7)

( o *\
— 1, 0 ̂  at < r. Define the lattice

Mg {(mί,...,mn)eZ.m1a1 + ...+mnan = Omodr}. (8)
lnen

M= Π Mg. (9)
geG

It is essential in this construction that G is abelian. To represent the algebra
as the algebra of polynomials whose exponents run over some lattice,
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"the lattice of invariants," one must diagonalize the action of G, and it is
possible only if G is abelian.

2) c π = Jf(Rn Z h ϊ R " ) .
3) (C* x <C* x ... x C*-X ( R n ' Z n ' R n ) (multiplicative torus).
4) A three-dimensional quadratic cone gC(C4. Put Q = X<^3'z3 τ\ where

τ = <m(1),m(2), m(3),m(4)> is the cone spanned by four vectors m{1) = (1,0,0),
m ( 2 ) = (O,l,O), m ( 3 ) = (O,l,l), m ( 4 ) = (l,0,1). Then ux=Xl9 u2 = X2, u3 = X2X3,
u4. = XίX3 is the set of generators of the algebra of functions on Q. There is the
single relation u2u4 = u1u3, so t=ί, F(uί,u2,u39u4} = u2u4 — u1u3. According to
formulas (5), (6), we have

Let us take now two affine toric varieties X = X ( F 'M ' τ ) and γ=χ( F ' ' M ' ' τ ' ) . To
define a map / : X-> Y is the same thing as to give a map of function algebras in
the opposite direction, /*:(C[y]->(C[X]. In toric geometry, one deals with
maps / * which respect the structure of semigroup algebras, i.e. which are
induced by maps of exponent lattices, M'-*M. By a morphism of triplets
(Γ,M',τ')->(KM,τ) we shall mean a linear map φ:V'-+V, such that φ(M')<M,
φ(τ') < τ. Then to each morphism of triples φ there corresponds the homomor-
phism of algebras CC[7] ->(C[X], which defines the map fφ: X-> Y between toric
varieties.

We see that a toric variety depends on a defining triple (V,M,τ) in a
contra variant way; in particular, if the composition of morphisms of triples φ ° ψ is
defined, then f<p°v)=fv)

 of<p. To describe how Xτ glue together to give a general
toric variety, one needs a covariant dependence. One can obtain a covariant
description by passing to dual triples, see the next part. To conclude this part, we
explain the term "toric variety."

If Xτ = χ(v>M>τ\ then the above discussion and example 3) show that there is the
natural imbedding of the n-dimensional torus (not to be confused with a compact
torus!) Ύn-(C* x ... x <C* into Xτ:

fψ-rψι_ χ(V, M, V) _+χ(V, M, τ) ^

The corresponding morphism of triples is induced by the identity on V and reduces
to the substitution of a larger cone for τ, namely, the whole V. The torus TP is a
group, and one can verify that the action of T n on itself by shifts can be extended to
an action on Xτ. It turns out that this is a characteristic property of toric variety:
each n-dimensional variety X containing the torus TΓ" in such a way that its action
on itself can be extended to an action on the whole X, can be obtained by gluing
together affϊne toric varieties along the common open piece T n [16]. The
procedure of this gluing is described in Part 3.

3. General Toric Varieties

To describe conditions which are necessary for the gluing to be possible, it is
convenient to pass to the dual objects. Let W= F v be the dual space,

(10)

(11)

(12)
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Fig. Al. The dual fan and the basic cones defining coordinate charts for the projective plane

We call a fan in R n a set Σ of cones in W9 which are rational with respect to N and
satisfy the following conditions:

F l . σliσ2eΣ => σ1nσ2 is the face of both σ1 and σ2.
F 2. σeΣ,σ'<σ=>σf EΣ (the record σ' < σ means that σ' is a proper face of σ or

σ' = σ in which case σf is an improper face).
A fan determines the toric variety

X(W,N,Σ) = XΣ~ U ^<r>

in which affine toric pieces Xσ are glued together along the torus (C*)" = X ( f F J V > ( 0 } )

common for all the Xσ. This rule of gluing pieces Xσ we shall illustrate by several
examples.

Examples. 1) The projective plane 5 J ), where

= <e2; -eί~-e2y,

σ6 = σ 2 n σ 3 = < - e x - e 2 > , σΊ = {0} .

The plane is covered by three coordinate charts

t 2 ] = C[τ 2

(see Fig. Al).
In each chart we have two affine coordinates

define the projective plane:
the transition functions

- 1

- 1
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Fig. A2. Blowing up the origin in C 2 reduces to subdividing the dual cone σ = τvinto two parts σ1

and σ2. The upper row contains toric data for C2, and the lower one for its blow up (E2

2) The fan Σ defining the projective space OP" contains n + 1 cones,

σj = (eu...9ej-l9 -e1-e2-...—en9ej+u...9en) (j=l9...,n),

and all the faces of these cones.
3) The fan Σ defining the punctured affine space C n -{0} contains n (n—1)-

dimensional cones

and all their faces, but contains no π-dimensional cones.
4) The blow up of (C2 at the origin (see Fig. A 2).

We have:

Uγ =U2V2

(13)
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Formulas (13) are those of the σ-process (or blow up) (E2->(C2.

Proposition 2. Let (W, N,Σ) -£» (W',N',Σ') be a morphism of triples, i.e. a linear
map: W-+ W such that oc(N)cN\ and for every cone σeΣ there exists a cone σ' eΣ'
with α(σ)Ccr/. Then α induces the holomorphic map of toric varieties
fa'X(w,N,Σ)->X{w>,N',ry Furthermore:

(i) The map fa is surjective and has compact fibers if and only if \Σ'\ = α 1(|^'|),

\Σ\ denoting the support of the fan, \Σ\ = [j σ.
σeΣ

(ii) The map fa is a resolution of singularities, if α is an isomorphism of lattices,
oc: \Σ\-+\Σ'\ is bijective and all cones in Σ are basic.

For proof see [15].

Corollary. The variety XΣ is compact if and only if \Σ\ = W (such a fan is said to be
complete).

Proof. Apply part (i) of Proposition 2 to the case when W= W, N = N', Σ' = {R"}
(the map to a point).

4. Resolution of Singularities

From Proposition 2, one sees that resolving singularities of Xσ is equivalent to
dividing σ into basic cones (resolving singularities is a local procedure, so it suffices
to know the structure of resolutions of affine toric varieties Xσ). This problem is
purely combinatorial.

Examples. 1) Resolution of the three-dimensional quadratic singularity 0 e Q c C 4 ,
see Example 4) from part 2. There are three variants; one can divide σ into four
basic cones by the ray spanned by the vector (1 1 1), or into two basic cones by
any of the two planes passing through two opposite edges of σ. The first way
increases the number of one-dimensional cones in Σ by 1 below we shall see
that this leads to the increase of the number of divisors in XΣ, i.e. that some
divisor (subvariety of codimension 1) has been glued in place of the singular
point 0. In the second way, we glue in some subvariety of codimension 2, or a
curve in the case under consideration, in place of 0 (this corresponds to in-
creasing the number of two-dimensional cones in the fan).

2) Quotient (C2/Γ under a cyclic group Γ of order r, whose generator acts by
the formula

cΛzUz2)^>\εr Z1>W Z2J'

Consider the action - ( 1 , r — 1) (i.e. α1 = l 5 α 2 = r — 1). The invariant lattice (9) has

the basis ε ί = (r, 0), ε2 = (— r +1,1). In this basis, the cone τ is the cone spanned by
two vectors ε t and rε2 + (r — l)εί. The dual cone σ is spanned by two vectors
rέ1—(r — l)έ2, s2, and it can be divided into r basic cones by vectors ε1,
2έί—έ2, ...,(r — ί)έί—(r — 2)s2 (see Fig. A3). This resolution glues in r —1 curves
E j ^ C P 1 , and the intersection matrix (Et E ) is equal to the Cartan matrix of the
algebra j / r _ ! taken with the opposite sign (this is the reason for which the
singularity <E2/Γ is said to be of type j / r - i )

3) When constructing the Calabi-Yau space (CYS) from the 8-th string one
must resolve the singularity C 3 /Z 7 of the form ^(1,2,4). Similar to the preceding
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. . .σ;

Fig. A3. Blowing up the Ar_ 1 -singularity. The defining cone τ in the exponent plane JR.2 is on the
left. On the right we plot at the same figure the dual cone σ and its subdivision by r basic cones
defining a resolution of the Ar _x -singularity

2

Fig. A4. The triangle κ1κ2κ3 is the section of the dual cone σ defining the singularity of type7(124).
The smaller triangles are the trace of the subdivision of σ by basic cones. This subdivision defines a
resolution of the singularity

example, we choose a basis of M in the form

II - 2

( β 1 ? ε 2 , ε 3 ) = 0 1

\0 0

Then we have in the basis (ε 1 ?ε2,ε3):

where

(κl9κ2,κ3)=

7 Q Q

-2 1 0

- 4 0 1
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Fig. A5. The trace of the fan defining a resolution of the singularity of type ^(125)

Let us draw the trace of the fan, resolving the singularity, in the plane
H = (κl9κ29κ3) (Fig. A 4):

<*! = (1 0; 0) = 4(^1 + 2κ2 + 4κ3) eHnN,

α2 = (4; - 1 ; -2) = ±(a1 +

This resolution glues in three divisors Eaι, Eai, EX3, and XΣ is covered by the seven
coordinate charts

Xσj^<£3 (; = 1,...,7).

4) The singularity £(1; 2; 5) is resolved similarly; we give the result. Here we
have four divisors glued in and eight coordinate charts (Fig. A 5)

/ 8 0 0\ = 1 = 4 ί j c + j e ^

( κ 1 , κ 2 , κ 3 ) = - 2 1 0 ; \

\-5 0 l/ ^ ( ^ s ) , «4

Proposition 3. Lei X be a toric variety. Let κu...,κNbethe shortest integer vectors
on one-dimensional edges of σ. Suppose that σ is divided into basic cones, and denote
the shortest integer vectors lying on one-dimensional edges of this partition, other
than edges of σ, through α l 5 ...,α fc. Then there is a natural way to associate the
divisors Da. on XΣ to the vectors ocj.

(i) There is a holomorphic nowhere-vanishing exterior form of the highest
degree on Xσ if and only if the endpoints of κx, ...,κN lie in a hyperplane H and the
lattice HnN + Έκι coincides with N.

(ii) Suppose that ω e Γ(Xσ, ΩXJ is a nowhere-vanishing holomorphic form, H the
hyperplane defined in (i), (w, mH} = 1 its equation, and ώ the pullback of ω on XΣ.
Then

In particular, ώ has no zeros on XΣ if and only if a^eH for all j = l, ...,k.
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Proof. The torus TΓ" = (<C*)Π acts on any toric variety XΣ, since it acts on each open
piece Xσ and these actions coincide on intersections of Xσ. All the orbits of T" are
also tori. To be more precise, to each cone σeΣ, one associates the unique closed
orbit of T" in Xσ, namely, the closed subvariety XL{ά\ where L(σ) denotes the ridge
of σ, that is the largest linear space contained in σ. It is obvious, that
dimσ + dimL(σ) = n, so the fc-dimensional cones in σ are in 1 — 1 correspondence
with the (n — k)-dimensional orbits in XΣ. We use the notation Θσ = XL{b\ and by
Fσ we denote the closure of Θσ in XΣ. Then divisors Daj are defined by Da=Fσj,
where σJ = R + α J are one-dimensional cones in Σ.

To prove (i), we note, that by Proposition 1, (iii) every differential on Xσ has the
form YuamXmω0, where the sum is taken over meτ° and almost all αm = 0. The
existence of a differential ω e Γ(ΩXσ) without zeros on Xσ is equivalent to the
following property: the semigroup τ°nM has the "smallest" element rri, such that

Put
H={weW: (w,m') = l},

and verify that κ 3 e H. Let K = κ p τ 0 the face of τ orthogonal to K. We want to study
the behavior of ω in the neighbourhood of the divisor Dκ. It is clear that we can
conisder instead of Xτ any open subset having non-zero intersection with Dκ. In
particular, we can pass to the open subvariety XτcXτ, where τ is the half-space
R τ o + lR+τ. Then Dκ = Xτ° where τ o = L(τ) is the ridge of τ, and the dual cone
σ = R + κ: is one-dimensional. Choosing another basis for our lattice, we come to
the following, putting:

Then ^ κ = ( C * ) w " 1 = {zn = 0}. The order of vanishing of the differential

zm'—- Λ ... Λ — - o n Dκ is equal to m'n — 1. By choosing κ = (0; 0; . . . ; 1), the non-
Z l Zn

vanishing of ω — zm> - ω0 on Dκ is equivalent to the equality <X mfy = m'n = ί, and
this means that KEH. AS the assertion is true for any κj9 the first part of the
proposition is proved. The assertion about zeros of differentials on Daj is proved
similarly.

Corollary. In Examples 2)-4) the canonical bundle of the variety XΣ resolving
singularities of Xσ is trivial, that is, there is a nowhere-vanishing differential on XΣ.

5. Resolution of Singularities which does not Affect the Canonical Class

Suppose we are given a linear action of an abelian group G on the affine space (Cn.
We can take without loss of generality this action to be diagonal. The quotient map
<C"->C7G corresponds to the choice of the invariant lattice M c M 0 , defined by
formula (9), in the lattice M0 = Zn, defining C" = X(]Rn'Mo'1R^) [the morphism of
triples (Rw, M, R"+) \-+ (Rw, M o , W+) is the identity on IR* and defines the inclusion
of lattices M c+ M o , see Part 2]. It is obvious that [ M o : M] = \G\. For dual lattices,
[JV:ΛΓ0] = |G|.
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Proposition 4. Suppose the following properties are satisfied: a) G contains no quasi-

ref lections, i.e. elements whose fixed set is of codimensίon 1 b) G is unitary, i.e. in (8)

we haveΣai = 0(modr); c)n = 2or3. Then the quotient (C"/G has a resolution with

trivial canonical class.

Proof. Apply Proposition 2. We have N = HnN + Zκί. Hence [HnN:HnN0~]

= |G|, since κ1eN0. As the triangle (for n = 3) of the segment (for n = 2),

# n σ , contains no points of the lattice No, this triangle (segment) can be

divided into \G\ smaller triangles (segments) which do not contain points of N other

than their vertices. Consequently, their sides will give us bases of NnH (here it is

essential that n ̂  3). So, the cones spanned by these triangles will be basic, and they

will form the fan Σ resolving the singularities of (Ln/G. As all the ends of vectors

dividing σ are in H, the canonical bundle of XΣ is trivial (by Proposition 3).

We state separately the following fact:

Corollary. The fan Σ resolving singularities in Proposition 4 contains exactly \G\

cones of the maximal dimension (equal to n).

6. Fundamental Group

Proposition 5. Let (R"? N, Σ) be a triple defining a toric variety XΣ. For each σeΣ,

denote by R σ the linear subspace in IR" spanned by σ. Then πί(XΣ) = N/NΣ, where

σeΣ

(the sum on the right stands for the sum of subgroups of the group N). In particular,

XΣ is simply connected if Σ contains at least one cone of dimension n.

Proof See [15].
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