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Abstract. Using the central charge of the Virasoro algebra as a clue, we recall
the known constructions of the A, D, E algebras and discuss new Bosonic
constructions of the non simply laced affine Kac-Moody algebras: the twisted
A, D, E and the B, C, F, and G algebras. These involve interacting Fermions and
a generalization of the Frenkel-Kac sign operators which do not form a 2-
cocycle when the horizontal algebra has more than one short simple root.
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Introduction

The theory of affine Kac-Moody algebras [1, 2] once more illustrates the
conspiracy of mathematics and physics. It appeared in the late sixties, in
mathematics with the abstract classifications of Kac [3] and Moody [4], and in
physics with the development of current algebra [5], string theory [6], and the
discovery of the Virasoro algebra [7].

During the seventies, the theory underwent a slow but steady development
with several landmarks: in physics, the discovery of the superstring by Neveu-
Schwarz and Ramond [8], the first construction of Kac-Moody modules (the level
one representation of the untwisted affine unitary and orthogonal algebras) by
Bardakci and Halpern [9], and the understanding of the boson-fermion corre-
spondence [9, 10]; in mathematics, the generalization by Kac of the Weyl
character formula [11] and his analysis of the Verma module representations of
the Virasoro algebra [12].

These two currents merged in 1980 when Lepowski and Wilson [13], Frenkel
and Kac [14], and Segal [15], realized that the tachyon emission vertex operator
of the Veneziano model can be used to represent the simply laced affine Kac-
Moody algebras of level one.

Soon afterwards, Kac, Kazhdan, Lepowski, and Wilson [16] generalized the
principal construction to all the A, D, E affine algebras, and Frenkel [17] and
Witten [18] gave a new impetus to the boson-fermion correspondence.

Since, the theory of Kac-Moody algebras has become a major focus of interest
in mathematics and physics, with applications in arithmetic, partial differential
equations, statistical mechanics, and quantum field theory. Implicit in the early
years, the modular group plays a central role in the two most impressive recent
realizations: the construction of the moonshine module [19] and of the heterotic
string theory [20].

A recent bibliography has been compiled by Benkart [21], and in the books of
Kac [1] and of Schwarz [22].

The aim of this study is to review the theory of affine Kac-Moody algebras in a
language accessible to the physicists and to solve a vexing riddle: the generaliz-
ation of the Bosonic construction of Frenkel, Kac, and Segal to the non-simply
laced algebras A — D — E twisted, B — C — F, and G. The analysis of the associated
Virasoro algebra is the key of our constructions.

Our paper is organized as follows. Chapter A provides a self contained
introduction to affine Kac-Moody algebras. In Sect. A.I, which closely follows the
notations of Kac [1], we classify the Kac-Moody algebras and study their
gradations. In Sect. A.2, we introduce the associated Virasoro algebra, summarize
the theory of its representations, and study in detail the energy of the vacuum. In
Sect. A.3, we illustrate these considerations on the simple case of the algebra >41

(1).
Section A.4 introduces the methods of quantum field theory, current algebra, and
operator product expansions. Very many formulae, which will be continuously
used in the sequel, are gathered in this chapter.
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Chapter B describes the constructions of Kac-Moody modules such that the
central charge of the associated Virasoro algebra is integral. We define two classes
of constructions: bosonic and fermionic. In the bosonic, the Hubert space carrying
the representation is the Fock space of a set of free bosonic oscillators in one to one
correspondence with the imaginary roots, tensored by the weight lattice of the
horizontal algebra. By the theorem of Goddard, Kent, and Olive [23] this space is
large enough, since the central charge of the Virasoro algebra is equal to the sum of
the degeneracies of the imaginary roots. We prove irreducibility. The Frenkel-Kac
construction [14] is recalled in Sects. B.I and B.2 and generalized to the twisted
algebras in Sects. B.4 and B.6-B.8. In the fermionic construction of the
twisted algebras g(τ), Sects. B.5 and B.8, the bosonic fields are averaged over an
outer automorphism of g without fixed point. Hence, they loose their zero modes,
and the weight lattice of the horizontal algebra is replaced by a finite dimensional
spinor. The signs are provided by a system of generalized Dirac matrices. These
constructions appear in Lepowski [24] and implicitly in Kac and Peterson [25].

Chapter C deals with modules such that the central charge of the Virasoro
algebra is not integral. We rely on the methods of quantum field theory. Extending
the results of Eguchi and Higashijima [26], we define in Sect. C.I two complemen-
tary stress-tensors built upon the root system of an algebra of type A, D, E, and
construct their primary fields which behave as generalized interacting fermions
[27]. In the following sections, we use these fields to complete the vertex operators
of the level two modules of A, D, E, and the level one modules of the affine algebra
of type C, F, and G. These constructions are irreducible only as (Virasoro) "* (Kac-
Moody) modules, where (Virasoro)" is one of the complementary stress-tensors.

The bosonic constructions of Chaps. B and C involve the ε operators, first
considered by Frenkel and Kac [14], which map the square of the root lattice of the
horizontal algebra g0 onto { — 1, +1}. When g0 is of type v4,£,D,£, and G, the
ε form a two-cocycle, however, when g0 has more than one simple short root
(type C and F) they do not. Modified ε are defined in Sect. B.6. They only depend
on g0, and we use the same ε in the constructions of Chaps. B and C even though
the currents are very different.

Chapter D describes some amusing manipulations which illustrate the
enormous symmetry of the affine Kac-Moody algebras.

A. Tools

A.I. Classification of Kac-Moody Algebras

Following the book of Kac [1], we recall in this section the main definitions and
properties that we shall need throughout our discussion.

Consider an integral (r -f 1) * (r -f-1) square matrix aVp called the Cartan matrix,
satisfying the conditions:

The Kac-Moody algebra g(a) is the Lie algebra generated by the 3(r +1) elements,
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satisfying the relations:

( M _ 2 )

and the Jacobi identity.
One should distinguish three cases:

i) Finite case. The Cartan matrix is invertible. Then, we shall prove that the
algebra is one of the finite dimensional simple Lie algebras classified by Killing and
Cartan.

ii) Tamed case. The Cartan matrix is of rank r. Then, the algebra is called an
affine Kac-Moody algebra. It is infinite dimensional but not too difficult to study.
The aim of our paper is to construct explicitly the "simplest" highest weight
unitarizable representations of these algebras.

iii) Wild case. The Cartan matrix is of lower rank. Very little is known so far in
this case although the lorentzian algebra £ 1 0 , which belongs to this family, is
undoubtedly of great interest, to mathematicians and physicists alike.

The maximal commuting subalgebra H generated by the ht is called the Cartan
subalgebra. Its dual vector space H* is the root space. To every generator et

 + , we
associate a vector αf of//*, called a simple root, by the relation:

Φj) = a3i. (A 1-3)

All information specific of a particular Kac-Moody algebra is coded in its
Cartan matrix. It is very convenient to describe this matrix via its Dynkin diagram
defined as follows:

i) to each simple positive root αf associate a vertex,
ii) join every pair of vertices by max(|αo |, lα l̂) lines, with an arrow pointing

from ί to j if \ai}\ < \a^\.
Two Cartan matrices which differ by the ordering of their index sets have the

same diagram; they generate isomorphic algebras. If the Cartan matrix is
indecomposable, the diagram is connected and vice versa. We restrict our
attention to this case. If a Cartan matrix is not symmetric, the transposed matrix is
also a Cartan matrix; its Dynkin diagram is obtained by reversing all the arrows of
the original diagram.

Let us first consider the lowest ranks.
a) The unique rank-one simple Lie algebra is Aγ =su(2): aγγ =2.
b) By inspection there exist three indecomposable regular Cartan matrices

corresponding to the finite dimensional algebras:

G2 a =

-[-ϊ 1]

[-3 I]
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and two tamed matrices corresponding to the affine algebras:

-[-I 1] O
Λ2

{2) a=\ ] " I ] ( ) \ ()
2 1-4 2J /

In higher rank, since every rank two subalgebra must be of finite type, the off-
diagonal entries of the Cartan matrix satisfy the strong condition:

, either α/ , = α, / = 0,
if r ^ 2 , iφ;. \ 3 . ι

\mm{-aip-a^ = \,

which shows that affine Dynkin diagrams and Cartan matrices are in one to one
correspondence.

Since the rows of the Cartan matrix are linearly dependent, we can associate to
each simple root oct its Kac label ki9 and its dual Kac label fcjV, defined by:

minί/c,-) = minίLΊ = 1,
(A 1-4)

The sums:

j=0 j=0

h= Σ kt, \ΐ= Σ K (A 1-5)
i = 0 i = 0

play an important role in the theory; they are called the Coxeter and dual Coxeter
numbers of the algebra. Diagramatically, every Kac label kt is equal to half the sum
of its neighbours kj in the Dynkin diagram, weighted by the number of lines if j is
on the larger side of an arrow.

By construction, the Cartan generator

k=Σ KK (A 1-6)
i = 0

commutes with all the generators of the algebra, and hence with the whole algebra.
It is called the central element, or central charge. Since the kernel of [α] is one
dimensional, this element is unique.

The classification of the affine Dynkin diagrams is now extremely easy. It is
actually easier than the classification of the finite diagrams (which follows as a
consequence) because an affine diagram cannot appear as a subdiagram of a larger
one and because of the existence of a Kac labelling. Following these two rules,
one immediately derives the classification given in Tables 1-3 where, for future
convenience, the algebra are sorted according to their twist. By deleting a vertex,
one recovers the finite diagrams shown in Table 4 [3, 4].

Let us now associate to each algebra a symmetric matrix gtj satisfying:

glJ = gi" (Al-7a)
λ λ0
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Table 1-3. Dynkin diagrams of the simple affine Kac-Moody algebras sorted according
to their twist τ. Each diagram has {β +1) vertices. The numbers on the diagrams are the Kac labels
M A 1-4)

Table 1

τ = 1: untwisted affine algebras

p—o—o—cf
CM \)1

1 2 3

τ = 2:

A 2 2 )

Λ ( 2 )
A 2 l

2-twisted

1 2

affine

2

algebras

D
2

2 2

-cφo (i

2 2 . 1

α & 4
CM

D!2.1 O^O—o -cφo
1 1 1 1 1

Table 3

τ — 3: 3-twisted affine algebras

and the normalization:

This is always possible, since either the Cartan matrix is symmetric, or the Dynkin
diagram contains no cycle. In the first case, called simply laced, we choose gfj = atj.
In the latter case, we start from the largest vertex, as indicated by the arrows of the
diagram, and we symmetrize recursively. By inspection, we observe that:

or 4. (Al-7b)

The matrix gi} defines a degenerate metric on the root space if* [with long
roots normed to (α,α) = 2] through:

(αi,αi) = gf/. (A 1-8)
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Table 4. Dynkin diagrams of the simple
finite dimensional Lie algebras (A 1-4)

187

In terms of this scalar product, the Cartan matrix can be written as:

fly=2τ^7 (A 1" 9)

The dual metric gι7

v, which can be derived from the dual Dynkin diagram with
short roots scaled to (α,α)v=2, defines a metric on H:

( / l ; , / ί / = g v

i j . = 4 -
(oίi, aι)(ap α,-)

The central charge k is a null vector for this metric:

(Al-10)

whereas there exists a root δ which is the null vector with respect to the metric gi7 :

{δ,δ) = Q, δ = τ X kμi9 (A 1-12)

where τ, the twist, is number of the Tables 1-3, where the diagram appears.
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Because of these degeneracies, H and H* are not dual to each other metricwise.
It is therefore very interesting to introduce a new Cartan operator, denoted by d or
Lo, called the derivation or energy operator, and a new element Λo of H*, dual to
the central element k. Λo is called the highest weight of the basic representation.

= 0, Λo(k) = \,
(A 1-13)

= l, Λo(d) = 0.

The metric on H and H* are extended to:

(d,d)v=0, (Λo,δ) = τ,

1 (Al-14)

(d,ky=~, μ 0.Λ)=o.

There remains, however, a great arbitrariness in the choice of the quantities

which define recursively a gradation of the root space. Throughout this paper, we
shall work in the homogeneous gradations that we define as follows:

*) Call α0 a root such that its Kac label is ko = 1.
*) Delete this root; the remaining subdiagram generates a finite Lie algebra,

called the horizontal algebra g0 (see Table 5).
*) The gradation is then defined by the relation:

[d,go]=0, (Al-15)

which implies that, oci(d) = O for i=ί to r, and its dual counterpart, Ao(hi) = 0 for
ι = l to r. The metrics on H and H* are then completed by the definition

(MΓHΛ^HO, (AM6)

and can be extended to the whole algebra g.

Table 5. Decompositions of the Lie algebra g under the automorphisms σ of order τ
corresponding to the homogeneous gradations of g(τ) (A 1-25)

g τ go gi g2

2

2

2

2

3

Bn

cn

Bm

c4

Λ2

(2m + l)(2w-2m + l)

42

O-φ-O 26

10

7
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Our definitions (Al-12) through (Al-16) differ from those of Kac [1]. In our
notations the roots of the untwisted affine subalgebra of the twisted algebra are
normalized exactly as in the untwisted affine algebra [thanks to the factor τ in
(A 1-12)]. Furthermore, if the Kac-Moody algebra is of type g(τ), the auto-
morphism σ which centralizes g0 in g is of order τ (this is not the case for Λ2/

2)

in Kac, driving him into several complications).
The twisted algebras A2^-1

{2\ E6

{2\ and D 4

( 3 ) admit 2 homogeneous
gradations, the Όe_ t

( 2 ) several. We shall construct the level one representations of
these algebras in each of these gradations.

A gradation can actually be associated to each conjugacy class of the Weyl
group of g (112 in the case of E8 [25]). Our homogeneous gradations correspond,
in the untwisted case, to the class of the identity. The principal gradation, which is
such that oci(d) = l/h for all the simple roots of g, corresponds to the class of the
Coxeter element.

Geometrically, a modification of the gradation corresponds to a modification
of the horizontal direction in the root space, see Figs. 1 and 2.

If we extend the Dynkin diagram of g according to (A1-13)-(A1-16), we
obtain the over-extended Dynkin diagram with a single additional node con-
nected to the root α0. The corresponding Cartan matrix is lorentzian,
with one time and r-f-1 spatial directions (signature - + + + + +...). As
emphasized by Goddard and Olive [28], d corresponds, in the relativistic
language, to the momentum of a photon, k to the conjugate null direction,
and hι to its transverse polarization.

d =O

Fig. 1. Root diagram of the algebra >41

(1) (A 1-13). (α0, cq) and (α0, α j are 2 systems of simple roots
oΐA^.δis the null root, δ points in the null direction, but the dual direction d = 0 can be chosen at
will. Three examples are illustrated, d and 3 correspond to the 2 possible homogeneous gradations.
They are exchanged by the outer automorphism T1/2. dp corresponds to the principal gradation
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dd=O

• <
<̂

^ ̂  ̂  ^ ̂  ^
φ" ' φ <

φ <

• <

duu r e c t u m -

» #

Fig. 2. Root diagram of the algebra A2

{2) (A 1-30). The d0 gradation corresponds to the outer
automorphism of order 2 of A2, the d1 gradation, to the automorphism of order 4

The Weyl group of g(a) is the discrete group generated by the reflections Rt in
the simple roots αf:

Rt:H*-+H*,
(A 1-17)

(ocb at)

This group is infinite and contains an abelian subgroup T isomorphic, in the
simply laced case, to the root lattice of the horizontal subalgebra. The null root δ is
Weyl invariant. The Weyl orbit of a real root has unbounded ^-eigenvalues.
However, since the metric on H* is Weyl invariant by construction, the orbit of a
weight A of level k(A) — k lies on the paraboloid

P(A) = *, (α,α) + 2τnk = (A,A)},

which is d-bounded from above if k > 0. The structure of the Weyl group will be
more detailed, in the particular case of Ax

{% in Sect. A3.
Let us now give a realization of the untwisted and twisted algebras, describe

explicitly their root systems and prove that our classification (see Table 4) of the
finite Kac-Moody algebras is complete.

a) In the untwisted case, the Kac-Moody algebras can be realized as the
central extension of the algebra L(g0) of the periodic map from the circle into the
Lie algebra g0. Let C[ί, t~x] be the algebra of Laurent polynomials in ί, and L(g0)
be the algebra C[ί, t~ι~]gQ with the bracket

Γ 6 ] . (Al-18)
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The affine algebra is the algebra

g = L(

with the brackets:

= -nf®Ta, (A 1-20)

where (Tα, TbY is the standard Killing metric on g0.
Introducing the Chevalley basis of the algebra g0, and its structure constant

/(α, β) If (a, β) = ± 1 only in the cases A, D, B, E, and G], the commutation relations
(A 1-20) can be written as:

f{^β)tm+n®eOi+β if a + β is a root of g0,

0 if not,
(Al-21)

(α,α) m "'

+ "®eα, (A 1-22)

It follows that the simple roots are the simple roots of the horizontal algebra
completed by the root (δ — φ\ where φ is the highest root of the algebra g0. (The
Cartan matrices of these simple root systems are effectively those of Table 1.) The
roots of the untwisted algebra are then

Δ = {oc + nδ,neZ}u{nδ,neZ}, (A 1-23)

where α is a root of the horizontal algebra. The roots, α + nδ, have positive norm
and are called real roots. They are non-degenerate. The roots, nδ, are r-times
degenerate and have zero norm. They are called imaginary or null roots.

In this way, to any finite dimensional Kac-Moody algebra we can associate an
untwisted affine algebra. Its Dynkin diagram must appear in Table 1 thus we
prove that the classification given in Table 4 is complete.

b) The twisted algebras are associated to the outer-automorphism of the
simple Lie algebras. Indeed, given a finite order automorphism of a Lie algebra g,
say σ with σ M = 1, one can define a gradation of the algebra g as:

g= θ fit, ίghg-ΔCgΰT7, (Al-24)
keZM

where gj is the eigenspace of σ for the eigenvalue ωj = Qxp(i2Πj/M). The g0

component is a Lie algebra. The gj9 j > 0, are representations of the g0 algebra. It is
possible to define a loop algebra L(g, σ) associated to this automorphism by :

L(g > σ)=e(ί"®g B ) . (A 1-25)
neΈ
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The affme algebra is then defined by the generalization of Eqs. (A 1-19) and (A 1-20).
However, inner-automorphisms generate isomorphic algebras. Therefore, the
twisted algebras are only related to the conjugacy classes of outer-automorphisms.
These classes are isomorphic to the symmetries of the Dynkin diagram of g, which
exist only in the cases A^D^E6. The g0 algebras, the gj representations and the
order of the automorphism are listed in Table 5. The Dynkin diagram of g0 is
obtained by deleting from the Dynkin diagram of g(τ) a node ĉ  with Kac label 1.
The Dynkin weights of the g0-representation gx are equal, up to a rescaling, to the
ith line of the Cartan matrix of g(τ) [compare with (A 1-9) and (A 1-35)]. It is easy to
verify that a system of simple roots can be chosen to be the simple roots of the
horizontal algebra g0 together with the root (δ — θ), where θ is the highest weight of
the representation gx. As expected, the Cartan matrices of these root systems are
those given in Tables 2 and 3. The Kac labels come from the decomposition of θ on
the simple roots of g0.

The root diagram follows from this realization. Let Λ(g0) denote the root
system of g0 and Δ{g1) the non-zero weights of the g0-representation gx. The real
roots of the twice twisted algebras are

δ}. (Al-26)

They are non-degenerate. The imaginary roots are

(A 1-27)

Their degeneracy is rank(g0) if m is even, and it is (rank (g) —rank (g0)) if m is odd.
Similarly, for D 4

( 3 ) the real roots are, in the homogeneous gradation with g0 = G2:

ϊ G2} (A 1-28a)

or, in the homogeneous gradation with go = A2:

-i)<5,0φωeϊp}. (A 1-28 b)

In both gradations, the imaginary roots are

Δim = Qmδ,meZ} (A 1-29)

with multiplicity equal to one if m φ 0 mod 3 and to two if m = 0 mod 3. As in Figs. 1
and 2, the distinction between (A 1-28 a) and (Al-28b) corresponds to two choices
of the horizontal direction in the same root diagram.

In Sect. C, we shall construct the level one representations of A2/
2) in another

gradation, corresponding to an outer-automorphism of order four oίA2S. The new
horizontal algebra is the symplectic algebra Q. The relation between these two
gradations is illustrated in Fig. 2, in the particular case of A2

{2\ The A2e algebra
decomposes with respect to this non-regular symplectic subalgebra as:

(Al-30)

The real root system is then described by:
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where α̂  and ocs are the long and short roots of the Ce algebra. The simple roots can
be chosen to be the simple roots of C€ and the root (δ — θ) where θ is now the highest
weight of the D representation. This description A2/

2) is the one used in the book of
Kac [1].

It remains to be shown that every Kac-Moody algebra admits a unique
Dynkin diagram, or equivalently, that the algebras corresponding to different
Dynkin diagrams are not isomorphic. This follows from the fact that two distinct
diagrams never have at the same time the same rank and the same Coxeter
number.

Now consider the base Λt of H* dual to the ht:

Λjhj) = δij9 i,j = O,l,...,r. (Al-32)

Their sum ρ is the Weyl vector, usually defined in the finite case as the half sum of
the positive roots. Again we need to specify

Δ-Λld). (Al-33)

A natural choice for these numbers will be given in Sect. A3. The A{ are called the
fundamental weights. A vector A of H* is called an integral weight if its
contra variant components δ{ on the A{ basis are integers:

Λ = Σ<Mo A(hd = δieZ+. (Al-33)

The δ( are called the Dynkin weights oϊA. They are used to label an important class
of linear representations of the Kac-Moody algebra.

We consider, in a vector space Jtf, a vector \A} satisfying:

(Al-35)

The Verma module V(A) is the linear span of the vectors obtained by repeated
action of the negative generators e{~ on \A}. This space, carries a representation,
usually reducible, of the Kac-Moody algebra, which is called a highest weight
vector representation. The action of every generator follows from the definition
(A 1-35) and the commutation relations (A 1-2).

It is well known that the only unitarizable highest weight representations of the
finite Lie algebras have non-negative integral Dynkin weights. This condition is
necessary also in the Kac-Moody algebras, since each δ{ is the Dynkin weight
corresponding to the ^ subalgebra (Λf; et

+\ e{~). According to Kac [1, Chaps. 9
and 11], the condition is sufficient. As a consequence, the eigenvalue k of the
central element of the algebra, called the level of the representation, is also a
positive integer

k\A}= Σ fcΛM>,
i = ° y (Al-36)

k = A(k)= ί δfc.
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By abuse of notation, we denote by the same symbol, fc, the central element and its
value in a given representation.

Note that £ 8

( 1 ) , E6

{2\ and D 4

( 3 ) have a unique level one representation, whereas
D / 1 ) has four: called the scalar, vector and the two spinors, by the name of the
representation of the horizontal subalgebra D^.

It is very important to note that the level of a representation is intrinsically
defined, whereas the definition of g0, and hence the name of the representation,
depends on the choice of the derivation operator, or Virasoro operator (Lo = d). In
the principal gradation, the 4 level one modules of D/1} become isomorphic, even
as Virasoro-Kac-Moody modules.

A.2. The Virasoro Algebra and Its Unitary Representations

Let g(τ) denote an affine Kac-Moody algebra, d a homogeneous gradation, g0 the
horizontal subalgebra. If we only consider the finite algebra g, the Casimir
operator:

Casg=ΣKabe
aeb

a,b

commutes with g. In (A 2-1), the summation is taken over all the generators of g,
and Kab is the standard Killing metric scaled to:

Casg(Λ) = {Λ,Λ + 2ρ), (A2-2)

where A is a highest weight and ρ the Weyl vector. In the adjoint representation,
with highest weight φ, we have Cas(φ) = 2h\ where /zvis the dual Coxeter number
of g. Note that /Γ(g(τ)) does not depend on τ.

In the case of the affine algebra g(τ), there is an infinite number of generators and
the summation must be regularized. In the homogeneous gradation (A 1-15), we
define a normal ordered product of generators as:

ea

meh

n, m<n,

Hea

meb

n + eb

ne
a

m), m = n, (A2-3)

eb

ne
a

m, m>n.

Let τ = l, 2 or 3 denote the twist. We define the Virasoro generators as:

L Σ Σ K ° " b
Σ Σ <0, (A2-4)

) a,b Έ

τ

where v, the energy of the twisted vacuum, is equal to:

τ - l fc(dimg-dimg0)

4τ 2 k + h

The Ln satisfy the Virasoro [7] algebra which is the central extension of the algebra
of vector fields on the circle:

[ L m , L J = ( m - n ) L m + n + ~ ( m 3 -m)δn+n<0, (A2-6a)

lLm,e<β = -nea

m+n. (A2-6b)
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Lo can be identified with the derivation d (A 1 -13)-(A 1-16). The new central charge,
c, is related to fc, the dimension d of g and the dual Coxeter number /z vof g by the so-
called Sugawara equation:

( A 2 - 7 )

The Virasoro generators can be defined in a similar way for the gradation
corresponding to an arbitrary automorphism of order M of g (A 1-25). The central
charge is not modified. It is an intrinsic characterization of the algebra. However,
the energy v of the vacuum becomes [2] :

r M

Σ J(M-j)
4M2 A

In a highest weight representation of g(τ), the Lo eigenvalue of the highest
weight is given by:

where j(g/g0) is the Dynkin's index of the imbedding of g0 in g. Hereby, we fix the
coefficients Δh left undetermined in the definition of the fundamental weights (Al-
32). Note that the normal order (A2-3) and hence the conformal weight A are
gradation dependent.

The linear coefficient ( — me/12) in (A2-6a) is not intrinsic. Let us define the
"improved energy tensor" corresponding in the dual string models [22] to the
substraction of the intercept:

Ln = Ln-^δnt0. (A2-9)

The Ln satisfy the modified relations:

llm,LJ = {m-n)Lm+n+ ^rn3δm+n,0 (A 2-10)

in which the linear term (— nc/12) has totally disappeared. The passage from L to L
improves the modular properties of the characters of the representations of the
Virasoro algebra and facilitates the evaluation of the asymptotics of the string
functions [2].

Since the Virasoro algebra commutes with the horizontal algebra, the so-called
string of weights:

Sμ={μ-nδ9neN, μeVA9 μ + δφVA} (A2-11)

carries a representation of the Virasoro algebra L. By construction, μ is a highest
weight of the Virasoro algebra. Furthermore, this representation is unitarizable
whenever the representation of the Kac-Moody algebra is. The character of Lo in
the string, noted

C/(q) = Trs(qL°-^2k), (A2-12)
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where μ is the horizontal component of μ, is called the string function of the
weight μ in the A representation. Strings which are conjugated under the Weyl
group of the affine algebra have identical string functions. Thus, there is only a
finite number of string functions in a given representation. In particular, the level-
one representations of the simply laced and twisted algebras, all of type A, D, E,
have a unique string function. Since μ are eigenvectors of the horizontal Cartan
subalgebra, the character of V(A) follows from the knowledge of all string
functions.

The exact form of the string functions is difficult to establish in the general case.
Kac and Peterson [2] found a number of them using their covariance under the
modular group. In this paper, we shall recover a number of their results and a few
new ones by explicit constructions of the representations and by the analysis of
non-regular subalgebras of Kac-Moody algebras (see Sect. D).

Consider a highest weight vector |zl>:

AlA> (A2-O)

Define the Verma module as the completion of the linear span of vectors of the type

(A2-14)

We wish to find a unitarizable representation, carrying a sesquilinear form such
that

Lm

+=L_m. (A2-15)

In particular A and c must be real positive since

y (A2-16)

The Verma module is irreducible if it contains no invariant submodule. Kac [12]
has shown that this happens if A is real positive and c> 1. Then the "improved"
character of the Virasoro algebra is simply given by:

\ (A2-17)

where φ(q) denotes the infinite product:

)= Π (!-«")•
0

When c = 1, the Verma module is reducible if A = n2/4, n integer, and contains a
maximal submodule with A =(n + 2)2/4 [12]. In this case the character is:

, (A2-19)

where η(q) = q1/24' - φ{q) is the Dedekind function. When c = 0, the only unitary
representation is the trivial one. On the other hand, if 0 < c < 1 the Verma module
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contains points of negative norm. However, it follows from Kac's determinant
formula [12] that for

6(p-q)2

c=l-

Λ=Λrs =

pq

{rp-sq)2-(p-q)2

4pq

(A2-20)

with p, q coprimes, the Verma module is reducible. Belavin et al. [29] noticed that
these modules are relevant in statistical mechanics. This led Friedan, Qiu, and
Shenker to the important discovery that, when c < l , the only possibly unitary
highest weight representations of the Virasoro algebra have c and A as in (A 2-20),
with p — q = l. This theorem was announced in [30], the details can be found in
[31]. In particular, we shall use the fact that, in these series, there is only a finite
number of unitary weights given by (see Table 6):

c = 1 -

(A2-21)

4m(m
-, O^r^s^m.

Table 6. Lowest unitary conformal weights Δrs of the Virasoro
algebra when the central charge c is less than 1 (A 2-21)

c = 1 - 6/m(m +1), Δrs = ((r(m +1) - sm)2 - l)/4m(m +1).

v
m = 3, 1 2

m
 = 4, c = 7/10,

m
 = 5, c = 4/5,

1

2

1

2

3

r

1

2

3

4

0

1

0

1

0

1/2

1/16

2

7/16

3/80

2

2/5

1/40

3

3/2

3/5

1/10

3

7/5

21/40

1/15

4

3

13/8

2/3

1/8
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The characters of these representations can be found in Feigen and Fuchs [32] or
in Rocha-Caridi [33]:

\n>0 J

(2ra(m + l)n + (m+ ί)r + ms)2 -'.

n~ 4m(m+l) '

Goddard, Kent, and Olive [34] and also Kac and Wakimoto [35] have
completed the theorem of Friedan, Qiu, and Shenker and shown that all the
representation of type (A 2-10) with p — q = 1 are indeed unitary since they occur in
the splitting of the product of the basic and the level p — 2 representation of A^l)

with respect to the diagonal A^l\ The demonstration is based upon a very elegant
and simple observation of Goddard, Kent, and Olive [23]. Let h be a sub-algebra
of the horizontal algebra g0 and let us choose a basis of g0 such that the first (dim ft)
generators form a basis of the h algebra. Denote by Ln(h) the Virasoro generators of
the affinization of h, and by c(h) their central charge. Then, Eq. (A 2-6) applied to g
and h implies that:

[LB(g)-LB(fc),Λ]=0, (A2-22)

and hence:

[LB(g)-Lπ(ft),LII(Λ)]=0. (A2-23)

As the L(g) and L(h) satisfy the Virasoro algebra, their difference does:

Kn(g/h) = Ln(g)-Ln(h)- (A2-24)

The central charge of the K algebra is the difference of the two central charges,

c(g/h) = c(g)-c(h). (A2-25)

In the case of g{1) = Aί

{1)[_k = m-2] *A1

(ί)[k = \~] and ft(1) = ̂ ( 1 ) [ fc = m - l ] -
diagonal, using (A2-7) we find indeed:

m m + 1 m(m+l)

By computing the characters, one may verify that all the weights Ars occur in the
decomposition [34, 35]. We shall use this construction repeatedly throughout our
paper.

A3. Application: The Ax

a) Algebra

As an illustration, we wish to give here a detailed description of the simplest Kac-
Moody algebra, Ax

(1\ the affinisation of su(2). The vertex operator constructions
of its representations become more and more involved as the level k increases.
They will be given in part B for k = 1 and 2 and in part C for arbitrary k.
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The Cartan matrix of Ax

(1) is:

2} (A3"1}
-2 2_

The root system, in the homogeneous gradation is:

5;ε = 0 , + 1 , - l n e Z } , (A3-2)

where α denotes the positive simple root of SM(2), (α, α) = 2, and 5 the null vector of
17*, dual to the central charge, δ(k) = l. The adjoint representation neither has a
highest weight, nor a lowest weight. The real roots, α + nδ, have positive norm + 2,
while the imaginary roots, nδ, have zero norm. In A^ι\ all the roots are non-
degenerate.

If we denote by e^ and by hn the generators corresponding to the root
(±a + nδ) and nδ, respectively, the non-trivial commutation relations of the
algebra (A 1-22) read:

+ i l , (A3-3)

Note that any pair of real roots, say ±(<x + pδ), generates a subalgebra Aγ of A^X)\

| > +

p , έ Γ _ p ] = Λ0 + pfc. (A3-4)

A system of simple roots defining a homogeneous gradation is:

α ( 0 ) = - α + <5, α ( 1 ) = α. (A3-5)

The corresponding Cartan operators are:

h(o)=-ho + k> \ί) = K- (A 3-6)

Since each Cartan operator corresponds to a finite 5(7(2) subalgebra, a highest
weight representation can be unitary only iϊh{0) and h{ί) have non-negative integer
eigenvalues, δ0 and (5^ Therefore, k = δo + δu is a positive integer.

The Weyl group is, as usual, the group generated by the simple reflections:

Ra:H*-+H*,
(A3-7)

x-+Ra(x) = x - 20, α)/(α, α)α.

Since the Cartan matrix is degenerate, the Weyl group is infinite with an Abelian
component. It can be parametrized by:

a) the reflexions in α

nδ)=-ε<x. + nδ, (A 3-8)

b) the translations parallel to δ

Tm(m + nδ) = εα + ( - 2mε + ή)δ,

with ε = + 1 , -1,0 .
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Note that the imaginary roots are Weyl invariant. The translation T1/2 is not an
element of the Weyl group, but corresponds to the outer automorphism of At

{1)

which exchanges the simple roots α(0) and α(1) and thus, the spinor and the tensor
representations (see below and Fig. 1).

Consider a representation V(A) of level k with highest weight \h,k} = \A}:

(A3-10)

Let Λo denote the fundamental weight, a(i)(Λ0) = δi0. The Λo component of the
weights of V(Λ) is k. The α-component of the weights are integral in the tensor
representations, and half integral in the spinor representations.
The action of the Weyl group on V(A) looks very different from its action on the
root diagram. If μ = (pa — qδ + kΛ0) is a weight of V(Λ\ we have:

If we project onto the weight lattice of Au the Weyl group acts, when k = 1, as the
affine Weyl group oL4l9 i.e. as the group of automorphisms of the root lattice of Au

including the translation in α. On the other hand, as the Weyl group preserves the

(μ, μ) = (α, φ 2 - 2kq, (A 3-12)

all the weights of the representation V(A) are inside the parabola:

) = (Λ9A)}. (A3-13)

The weights closest to the parabola are highest weights of the Virasoro algebra. In
the case \h = 0, k> 1 >, k(a — δ) is a highest weight of the Virasoro algebra. Since the
Virasoro algebra commutes with the horizontal algebra Au ( — kδ) is also.
However, the Verma modules (c> 1, A = 0) and (c> 1, A = k) are irreducible. Hence,
the partition function of the string of weights of A^l\k*z 2] is larger than ί/η(q). In
other words, the representation space is necessarily bigger than the Fock space of a
single boson.

The outer automorphism T1/2 maps the highest weight |/z = 0, fc = l> of the
basic representation, which consists solely of tensors of so(3), onto the highest
weight \h = 1, fc = 1> of the spin representation, which consists solely of spinors of
5o(3). As such, T1/2 acts as a supersymmetry, but it does not commute with the
energy operator Lo (see Fig. 1).

It is easy to compute the multiplicity of a weight μ in the highest weight module
V(A) using the recursion equation of Racah:

0= Σ e(w)mu\tΛ(μ + ρ-Mρ)) (A3-15)
weWeyl

for (μ + ρ) not Weyl-conjugated to (Λ + Q\ and the initial condition

mult^ (A) = 1, mult,! (A + ρ- w(ρ)) = 0.
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This equation specializes in the case of Aγ

{l) to

H Σ (-ir
neZ

201

(A3-16)

Using this formula, Feingold and Lepowski [36] proved that the string function
(A 2-12) of the basic module of A^l) is

(A3-17)

(A3-18)

For future use, we establish in Fig. 3 that

mult3yl0(3Λ-3<5H6,

+ 2yll(3τl0-(5) = 3 .

A.4. Two Dimensional Conformally Invariant Q.F.T. and Algebras

We shall consider in this section the Kac-Moody and Virasoro algebras from the
alternative point of view of two dimensional quantum field theory. We shall
describe how the algebraic properties of a set of currents come from their operator
product expansions (O.P.E.) [6, 29, 37].

o
5

o
9
O o

3

o
s
O

Fig. 3. The Racah construction (A 3-18). The weight diagram of the representation c£" p> of

/41

(1) is shown. Its envelope is the parabola PΛ supporting the Weyl orbit of Λ. Pw(μ) is the parabola
(μ — ρ + w(ρ)) used in the Racah recursion. The alternated sum of the multiplicities of the weights
supported by this parabola is zero for every choice of μ
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Consider a two dimensional field φ(τ, σ). If it depends on σ and τ only through
the complex coordinate z, z = exp( — τ + iσ), it is called a chiral field.

Let Ja(z) denote a set of chiral fields satisfying the operator product expansion:

kδab fab

Ja(z)Jb(w) = -2 + — - Jc(w) + regular (A 4-1)
(z — w) z — w

defined for \z\ > \w\ and, by analytic continuation, for all values of (z, w) except z = 0,
w = 0, z = w. We assume that this expansion is even under permutation of Ja(z) and

J ( W )* Ja(z)Jb{w) = J\w)Ja{z). (A4-2)

Then, define the Laurent coefficients of the J1 fields:

The contour C o turns counter-clockwise around the origin of the z-complex plane.
The commutation relations of the Ja

n operators follow from the O.P.E. (A4-1):

Uam, J\~\ = (^-) {§dz§dw-§dz§dw}Ja(z)Jb(w)zmwn. (A4-4)
VmJ |z |>|w| |z |<|w|

At fixed w, the z-contour can be deformed in the region where the OPE is analytic
and we just pick up, at fixed w, the poles located in between the 2 z-contours. In this
method, it is essential that the OPE should have no cut and be of defined parity
(A4-2) in order to be able to identify the two integrands occurring in the
commutator. Let us illustrate it in the case of the Ja(z) fields. The commutation
relations become: , ,

CiW (Xz

5w+n,o (A 4-5)

The Kac-Moody commutation relations (A 1-20) are equivalently reexpressed in
the field theory language by the O.P.E. (A4-1). The hermitic conjugation relation,

(J\Y=Ja_n (A4-6a)

is equivalent to the hermiticity property of the Ja field,

z J\z) = 1/z* J f l(l/z*). (A4-6b)

The same techniques can also be applied to the Virasoro algebra. Let T(z) be a
stress tensor satisfying the O.P.E.:

T{z)T{w) = — ^ + τ - ^ 2 T(w) + — dwT(w) + reg 0. (A4-7)

The Laurent coefficients of the stress tensor T(z)

T(z)= Σ Lnz~"~2

neZ

satisfy the Virasoro algebra (A 2-6) with central charge c.

T{z)= ΣLnZ-n~2 (A4-8)
neZ
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Furthermore, the primary fields, φA{z), of the Virasoro algebra (those which
have a defined conformal weight), are defined by their commutation relations with
the Virasoro generators:

[Ln, φΛ{zj\ = zn(zdz + (n+ l)A)φΔ(z). (A4-9)

A is the conformal weight. These commutation relations follow from the O.P.E.:

T(z)φA(w) = -^-^ φΔ(w) + - ^ dwφΛ(w) + reg. (A4-10)

In particular, the commutation relations (A2-6) between the Virasoro and the
Kac-Moody generators mean that the currents Ja(z) are primary fields for the
Virasoro algebra defined in Eq. (A 2-4), with conformal weight one.

Let us now consider the example of free bosonic or fermionic fields. Let A* be a
one dimensional lattice and let us denote by [p> its elements. Define on A* the
action of the Abelian translation group:

(A4-lla)

Let xn denote the modes of a harmonic oscillator

[xm, xM] = τnδm+n 0 . (A 4-12a)

We identify x0 with the operator p, conjugated to q:

[p,q] = i, (A4-llb)

(A4-12b)

If we consider the conjugation xn

+=x_n, and the normalization <p|p> = l, the
sesquilinear form defined on the union of the Fock spaces constructed on the
vacua |p>,

^= Θ (Yl(x-kYk)\P> (A4-13)
peΛ*\h J

is positive defined.
Over Jf, we define a free Fubini-Veneziano field [6]:

X(z) = q-ipLogz-i Σ x-n — > (A4-14a)
n+o n

and its associated momentum operator:

)= Σ ^ - n ^ (A4-14b)
neΈ

Defining the normal order by:

*ΛS=Γ7' I " . (A4-15a)

and

Ipql = °oqp°o=qp, (A4-15b)
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we obtain the O.P.E. of the P(z) field

P(z)P(w)= ^ — ^ + °oP(z)P(w)S. (A4-16)

Reciprocally, one could postulate the definitions (A4-14b) and (A 4-16) and deduce
(A4-12a).

To the X field, we can associate a free stress tensor which generates a free
Virasoro algebra:

Tx{z) = {ldzX{z)dzX{zγo. (A4-17)

The O.P.E. of T{z) follows from Eq. (A4-16) and the Wick theorem. The central
charge of this free Virasoro algebra is one.

On the other hand, let us consider two types of two-dimensional Majorana-
Weyl fermion field Γ:

Γ(z)=Σ&-»Λ (A4-18)

where the summation is over n e Z +1/2 in the Neveu-Schwarz case (N-S), and over
neZ in the Ramond case (R) [8]. Their Laurent coefficients satisfy the canonical
anti-commutation relations

{bm,bn} = δm+nt0. (A4-19)

Once more, the anti-commutation relations are equivalently expressed by the
O.P.E. of the Γ(z) fields,

Γ{z)Γ{w) = A{z, w) + ooΓ(z)Γ(w)°o, (A4-20)

where

R.

Δ(z,w) =
/ z w N.S.,

I z — w

and where °o °o denotes the fermionic normal ordering. In the Ramond case, the
normal ordering of the zero modes is specified by:

Anti-commutation relations, instead of commutation relations, come from the odd
parity of the two point functions Δ(z, w). The free stress tensor of the Γ field, which
generates a Virasoro algebra, is:

z2TΓ{z) = \%zdz{Γ{z))Γ{z)l±^ * ' s (A4-22)

Its Virasoro central charge is one half.
In the following sections, we shall construct representations of Kac-Moody

algebras from these fields. These constructions extensively use the properties of the
string vertex operators. Let X\z\ z = 1 to /, be t free bosonic fields. Then, define the
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vertex operator l/(α5z) as:

U(a9 z) = oQxpioc X(z)°o

Σ α x - K - V ^ e x p Γ - £ <*•*„—1 (A4-23)
«>o n J [_ «>o ft J

where a = (αf, z = 1 to /) is a / dimensional vector, and we have used the normal
ordering (A4-15b). A different ordering of the zero modes p and q, as used for
example by Frenkel, implies several modifications of the next formulae.

Note that l/(α, z) acts by translation on the zero modes, p\ The U(<x, z) fields
satisfies the hermiticity properties

(zα2/2C/(α,z))+ =Γ«2l2u(-aΆ, (A4-24)

and also the famous O.P.E.

Pa(z) l/(α, w) = - ^ - aa C/(α, w) + ...,

* - w (A 4-25)
, w) = (z - w)e</?Sexpi(α X

This expression converges for \z\ > \w\, and it can be analytically continued for
|z |<|w| except poles at z = 0, w = 0, and z = w. Note that its pole structure and
symmetry under the exchange of α and β and z and w is controlled by the scalar
product α jδ. Equation (A4-25) has a well defined symmetry and no cut if and only
if α β is integral.

The vertex operators L/(α, z) are primary fields, of the free Virasoro algebra
(A 4-17), with conformal weight a α/2.

T(z)(7(α,w)= * 2 + ^ s a w t / ( α , w ) S . (A4-26)

The importance of this O.P.E. can be illustrated by the fermion-boson
equivalence in two dimensional quantum field theory [9,10,17,28]. Suppose that
α α = 1, then from (A4-25):

{B\, B\) = 0, {B«m, B-\} = δm+n>0. (A4-27)

The modes Ba

n of the field B(oc,z) = z1/2U((x,z) form a Clifford algebra.
The hermitic fermionic fields are defined, from the bosonic field, by:

(A4-28)

If the momentum p belongs to the lattice Zα, Γ+a is of Neveu-Schwarz type, whereas
if p belongs to the shifted lattice (Z + l/2)α, Γ+α is a Ramond field. Reciprocally,
from the fermionic fields Γ+α, one can define the bosonic field by

α P(z) = °£(α, z)B{-α, z)%, (A4-29)
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where the normal ordering o o is defined by Eq. (A4-21), namely,

B(a, z)B{ ~ α, w) = °o 5(α, z)B( - α, w)°o + Λ(z, w). (A 4-30)

In Sect. C, we describe how the bosonic and fermionic Virasoro algebras are
related [relation (Cl-1) particularized to the su(2) algebra]. By evaluating the
Virasoro character via the bosonic or fermionic description, one shows that this
boson-fermion equivalence is related to the Jacobi identity:

It is also possible to formulate another boson-fermion equivalence which mixes
the N-S. and R. fields. This fermionization, built upon a bosonic field of defined
parity, will be the key of the constructions of the twisted affine algebras, Sect. B.5.

Consider a bosonic field Y(-}(z), containing only odd modes,

Y{^{z)=-i]/2 Σ x-«-> (A4-31)
ne2Z+l ft

where the x2n+i °bey the usual commutation relations (A4-12). Its two point

function is:

I+^J- (A4'32)

Now, define the vertex operators U^p z),

ί/(_)(rJz) = iSexpίr ^_)(z)S. (A4-33)

Their O.P.E. read:

1 /z-wY' s

E/(_/r,z)U(_^,w)=-ί — 1 Sexpiίr Y ^ z H s Y^w));, (A4-34)

and fully characterize the algebraic properties of the U^jr z) operators. In
particular, if the "root" r has length one, the Laurent coefficients, Un, of the
C/(_,(r,z) field,

satisfy the Clifford algebra:

{Um,Un}=y—^-δm+n,0. (A4-35)

The hermitic conjugation, Γ_n

+ =( — ί)nΓn9 follows from the hermiticity property

(A4-36)
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The [/(_) field, containing odd and even modes, can be written as the sum of two
fermionic fields of defined parity, or in more usual notations, as the sum of a
Ramond and a Neveu-Schwarz field:

l/2I7(_)(r,z) = ΓR(z2) + ίΓNS(z2) with Γ(z2)+=Γ(Γ2). (A4-37)

This fermionization, contrary to the previous one, mixes the R. and N-S. fields.
This boson-fermion equivalence is also illustrated by the bosonization relation:

P^)(z) = i]/2zdJ(.)(z) = 2i]/2ΓNS(z2)ΓR(z2). (A4-38)

The fermionic field content of the C/(_) operator appears again in its conformal
properties. The Virasoro algebra of the ^ _ } field

0 (A4-39)

has central charge one. It can also be written, via the boson-fermion equivalence,
as the sum of the R. and N-S. stress tensors. This equivalence reflects the Jacobi
identity

Π (l-4 r t + T 1 = Π ( l + Λ ( l + 4 " + i) (A4-40)
n n

On the other hand, if X{+)(z) is an even field

Xi + )(z) = q-ίplogz2-i]/2 Σ x-n-, (A4-41)
«G2Z n

its two point function is:

<X ( + )(Z)X ( + )(w)>= - L o g ( z 2 - w 2 ) . (A4-42)

\z\>\w\

The vertex operators U( + )(r, z)

) ( ) ( 0 y (A4-43)
satisfy the O.P.E.:

i 2 2

+ ) ( w ) ) S . (A4-44)

More generally, a bosonic field quantized in modes xn, ne(τZ±q), has two
commuting Virasoro algebras L(q) and L(τ~q) defined by:

f ^ t θ . (A4-45)
2T neτZ + q 4 l

They have the same central charge, c = l, and the same vacuum energy,
v = q(τ-q)/4τ2.
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B. Free Fields Vertex Operator Constructions

B.ί. K = ί Representations of Ax

{1)

Let us first consider the algebra A^.in the homogeneous gradation. Following
Frenkel, Kac, and Segal [14, 15], we first define a graded Hubert space, with the
correct partition function. Let α denote the simple positive root of Au normed to
α α = 2. Consider the weight lattice W of the Lie algebra Ax. Denote
by \p) its elements, and define on W the action of the Abelian translation
group by the formula:

On the other hand, consider the affine (7(1), or Heisenberg, algebra, corre-
sponding in the physical language to the canonical commutation relations of a free
bosonic field

We identify x0 with the variable p, conjugated to q,

If we consider the conjugation, xn

+ =x-n, and the normalization <p|p> = l, the
union of the Fock spaces constructed on the vacua |p> of the weight lattice:

is a positive defined Hubert space.
Over Jf, we can construct the level one representations of the Kac-Moody

algebra A^l) as follows:
i) Consider the Fubini-Veneziano field (A 4-14):

X(z) = q-ίpLogz-i Σ x_n-. (Bl-5)
«ΦO n

The fields

]βz ~ ιP{z) = i ]/2dzX{z), (B1 -6a)

and

e±(z)= °oQxpίa X(z)°o (B l-6b)

are primary fields of the free Virasoro algebra defined in Eq. (A 4-17), with
conformal weight one.

ii) Represent the Aγ

{1) algebra by the Laurent coefficients, hn and e n

± , of these
fields:

(Bl-7)
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One may check the commutation relations either in the current algebra language
or in the oscillator modes language.

The central element, k, of the algebra is represented by one. Therefore, the
highest weight should be either

or

This can be read directly on the definitions of the operators; due to the presence of
zero modes in the Fubini-Veneziano field, the field e(z) contains a term zap. This
term is well defined if and only if the momentum |p> is integral, i.e. if |p> belongs to
the weight lattice of Av A highest weight vector must be annihilated by the two
simple positive roots, e0

+ and e{~\

This requires

^ l , (Bl-9)

leaving only two possibilities, p = 0 and p = α/2, which correspond to the basic and
spin representation oϊA^. Since there is no other highest weight vector, the space
2tf is not reducible any more. Therefore, the characters are:

(Bl-10)

where Θ(q)=Yjq
λλ/2; the sum Σ is over the root lattice, Zα, in the basic

representation, and over the spin coset, (Z + l/2)α, in the spin representation, η
denotes the Dedekind function (A 2-19).

We insist once more on the fact that these two representations are exchanged
by the outer-automorphism T 1 / 2. In other words, all the weights of the basic
representation, which are tensors of the horizontal su(2) generated by e0

+, e0 ~, and
h0, are spinors of the oblique su(2) generated by eγ~, e_ ! + , and k — h0. T1 / 2 acts
inside the module as a sort of supersymmetry. It does not commute with the
Virasoro energy operator, since T1 / 2 changes the definition of simple roots and
hence the definition of the normal ordering (Fig. 1).

Our definition of the Virasoro generators as the Laurent coefficients of the
stress tensor T(z) does not coincide with the general definition (A 2-4). However,
following Goddard, Kent, and Olive, we remark that they have the same central
charge, c = ί. Hence, their difference, which also forms a Virasoro algebra, has
central charge zero. Its only unitary representation is the trivial one. Hence, the
two Virasoro algebras identify in the representation space. In higher level
representations, the difference of these Virasoro generators will not be trivial, and
the representations will necessarily involve additional fields besides the free boson
field X(z), associated to the Cartan subalgebra.
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Consider the string of weights

SΛ= {Λ-mδ, meN, Λ=~-
na n2

This string carries a representation of the Virasoro algebra no larger than the Fock
space of a single boson. On the other hand, the weight Ω = (n + 2)oc/2 + (n + 2)2δ/4
which is Weyl-conjugated to A, is also a highest weight of the Virasoro algebra.
Therefore, the vector e_α|Ω>, is also a Virasoro highest weight vector, since the
Virasoro algebra commutes with g0. We recover in this way the fact that Verma
module representation \Δ=n2/4, c = l ) of the Virasoro algebra are unitary and
reducible, and that the partition function of the irreducible representations
\A = n2/4; c = l> are given by Eq. (A2-19).

B.2. K = ί Representations of the Simply Laced Algebras

The generalization to higher rank algebras is straightforward except for a problem
of signs in the definition of the commutators. Consider a simply laced algebra, Ae,
Dj or E£ of rank /, and its root lattice A and weight lattice W. The Cartan matrix atj

serves as a metric on A. All the roots have length (α α) = 2. To each element p of W
we associate a vacuum vector |p>, normalized to one, {p\p} = 1. Over each of these
vacua, we construct a Fock space in t boson fields, X\z\ i = 1 to i. The union of the
resulting Fock spaces is the Hubert space (A 4-13)

We consider now *f Fubini-Veneziano fields, X\z\ i=l to L The operators
P\z) = izdzX\z) represent the Heisenberg, or affine Cartan subalgebra, and the
vertex operators, (A4-23),

l/(α, z) = °exp(ία X(z))°o, (B2-2)

where α is a root of the A, D, E algebra, represent the current algebra up to the
Klein sign factor. Indeed, from the O.P.E. of the l/(α, z) fields, see Eq. (A4-23), one
deduces that the modes Un

a, and hm\

satisfy:

O,

Um+n«
 + β, * β=-ί, (B2-4)

oc-hm+n + mδm+ni0, ot=-β.

These pseudo-commutation relations differ from commutators by a sign depend-
ing on the pair (α, β).
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To compensate this sign, Frenkel and Kac [14] have introduced a two cocycle

{ + ί,-ί}9 (B2-5)

which can be constructed in the following way:
i) order the simple roots, αf , of the finite Lie algebra in an arbitrary way and

define εfα^α,-) in terms of the Cartan matrix atj by:

f - 1 , if i=h

ε ( α ί , α J ) = | + 1 , if i<j, (B2-6)

l(-l ) β ", if i>j9

ii) extend this definition to the whole root lattice by the bimultiplicativity law:

),

y). { ' }

It automatically follows from (A 1-7), (A 1-8) that

ε(α,/J)ε(/UH(-l)αΛ

ε(α,α) = ( - l ) α α / 2 .

The ε(α, β) trivially satisfy the cocycle condition

ε(α, β)ε(oc + β,γ) = φ , β + y)s(β, γ) (B 2-9)

and define a central extension A of the abelian group A by {+1, — 1},

l->{ + l, -1}-»JΪ-»Λ->1

with the definition

a,βeA, a,be±l,

Let us now extend εtoAx W-> {+1, — 1}. Each equivalence class of W/A has a
single representation inside the first affine Weyl chamber of A which is the
highest weight λa of one of the fundamental representations of the algebra. If λ
belongs to the equivalence class of λa, we define ε^α,/!,) by:

εJaL,λ) = ε(θL,λ-λ"). (B2-10)

Now, the Kac-Moody algebra is represented by the currents F(α,z):

V(a,z)=U(ot,z)εa, (B2-11)

where the cocycle operators εα act on the state \p} as:

(B2-12)

By construction, the εα remove the sign factor in Eq. (B2-4). Indeed, from Eqs. (B2-
8) and (B2-9), the new O.P.E. reads,

7(α, z)V(β9 w) = t/(α, z)U(β9 w)ε(α, j8)έβ+/? (B2-13)
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from which it follows that the Vn

a and Pj modes close by commutation. The
introduction of the cocycle operators modify the hermiticity properties. The Vn

a

modes are now defined for α positive by:

Vn*= §^znV(oι,z), (B2-14a)

and for α negative by

Vn" = (V-n~*)+ =ε(a,aί)& — znV(oc,z). (B 2-14b)
2πί

Again, it is easy to check that the only highest weight vectors in jtf* are the
fundamental weight vector \λa} of the finite algebra. Therefore, Jf is only finitely
reducible and the string functions are equal to

c{q) = (η(q))~'. (B2-15)

The vertex operator exp(ιαX) first appeared in the dual string theory. This
construction, including the necessary sign factor, is due to Frenkel and Kac [14]
and to Segal [15]. It was explained very clearly to physicists by Goddard and
Olive [28] and is incorporated in the heterotic string theory [20]. Of
course, many other constructions, differing by the choice of the gradation, are
possible [16, 25].

Specializing to the Dn

(1) algebra, we note that it has only four level one
representations, the scalar, the vector and the two spinors. They can be shifted one
into another by changing the normal ordering in the Virasoro operators or,
equivalently, the horizontal Dn algebra. The energy of the vacuum of the scalar, the
vector and the two spinors are respectively:

J = 0,l/2,w/8. (B2-16)

In the particular case of D4

{ί\ the outer-automorphism which exchanges the
tensor and spinor representations, is an automorphism of D 4, not only of D4

{1\
known as the triality:

It follows that the vector and the spinor representations of D 4

( 1 ) have the same
character; one recovers, using (B3-11), the famous identity of Jacobi:

«π)8 ( B 2 " 1 7 )

B.3. K = l Representations of the Bn

(1) Algebra

The simplest example of non-simply laced affine algebra is Bn

(1). The Dynkin
diagram of the Bn = so(2n +1) algebra has a double link (see Table 1). If we denote
by εf an orthonormal frame in Rn the root system of Bn consists of 2n(n — 1) long
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roots, ±8^8p generating a subalgebra Dn = so(2n\ and 2n short roots, ±εi9

generating the vectorial representation of Dn. The long roots are then normalized
to α α = 2, the short ones to 1. The existence of the short roots is at the origin of
new complications.

Given n Fubini-Veneziano fields, X\z), the Cartan operators Pι(z), and the
vertex operators, exp(zαX(z)), associated to the long roots, represent the affine Dn

( 1 )

subalgebra of Bn

{1). The vertex operators exp(iεX(z)) are rotated by the Dn

(1)

algebra as desired. However, they have several defects:
i) With respect to the free bosonic Virasoro algebra, the short root vertex

operators, exp(/εX(z)), have as conformal weight one half rather than one.
ii) The O.P.E. of the short root vertex operators, V(εi9z)V( — εt ,w), have a

simple pole in (z — w) rather than a double one, and furthermore, this expression is
antisymmetric rather than symmetric. In other words, the vertex operators, F(εi9 z),
represent the affine Clifford algebra (see Sect. A.4), rather than the ((^41)")

(1)

subalgebra associated to the short roots.
iii) At the same time, in the level one representation, the central charge of

Virasoro algebra [(A 2-4) and (A 2-7)] associated to Bn

{1) exceeds by one half that of
the n free Fubini-Veneziano fields.

To cure all these defects at once, we uniformly multiply the short root vertex
operators by an auxiliary field, Γ(z) say. In order not to impair the fact that the
short roots form the vector representation space of the long Dn subalgetra, Γ(z)
must commute with the bosonic operators. The Γ-field itself should have an odd
O.P.E. with a simple pole structure: in this way, the overall O.P.E. is again
symmetric and has a double pole as desired. At last, Γ should contribute one half to
the Virasoro central charge.

There are two possibilities: the fermionic Neveu-Schwarz or Ramond fields,
explicitly defined in Sect. A.4, Eq. (A4-18).

The total Hubert space of the model becomes in the NS and R cases:

We define a 2-cocycle on the root lattice Λ(Bn) as before (B2-5)-(B2-9), with one
modification: the order of the roots is no longer immaterial, we order them from
long to short. Since the metric gtj on A and the Cartan matrix only differ in their
last line gni = ani/2 (A 1-9), we still have, when α is long and e short:

α) = ( - l Γ e . (B3-2a)

However:

ε(eJW,e) = (-l)1 + e f. (B3-2b)

Bimultiplicativity then yields:

ε(a,β)ε(β,a) = (-irβ+«2P2. (B3-3)

Thus, since α2 β2 is odd only when both α and β belong to the vector coset
(e + Λ(Dn)), we get an additional minus sign only in that case. This sign just
provides for the symmetπzation of the auxiliary NSR operators that we attach to
the short roots [compare (A4-20), (A4-25), (B2-4), and (B3-4)]. Thus, to the short
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roots, we associate the currents:

zJ(e, z) = ze2/2 °oQxp(ie X{z))l Γ(z)ee, (B3-4)

and to the long roots, the Frenkel-Kac currents (B2-11).
The weight lattice W of the Bn algebra splits with respect to A into two classes:

where 5 denotes the highest weight of the spin representation. The lattice A is, of
course, integral, therefore if p belongs to A the scalar product e p is integral. On
the contrary, the scalar product e s= 1/2. Thus, as the zero modes of the Fubini-
Veneziano fields contribute ze'p to the currents (B3-4) whereas the prefactor ze'e/2

contributes z1/2, the operators (B3-4) are well defined iff we use the N.-S. auxiliary
field if p belongs to A(Bn), and the R. field if p is a spinor.

The currents (B2-11) and (B3-4) are primary fields with conformal weight one
[(A4-9) and (A4-26)] with respect to the Virasoro algebra:

T(z)=Tx(z)+TΓ(z).

The central charge is c = n +1/2.
In the Hubert space of the model (B3-1), there are three highest weight

vectors. They correspond to the three possible level one modules; the spinor in the
Ramond case, the scalar and the vector in the Neveu-Schwarz case. The later
being separated by the eigenvalue of the Gliozzi-Scherk-Olive G-parity operator
[38] which commutes with the currents (B3-4):

• = ( — 1 ) ^ , (B3-5)

where NΓ is the fermion number operator.
It follows that Jf is finitely reducible, and that the three string functions can

readily be evaluated:

n-ί '

ci^iq)=q 2 4 Π (i+#*)(!~~qk)~n>
fc>0

_ 2n+ 1

/'-'Vector/' \ l_n 48

fe>0
Π (i-«*ΓT Π (i+«*+*)-Π(i-V+*)1
oo L^0 k=° J

The string functions of the vectorial representation follow from those of scalar
representation by the outer-automorphism which rotates the fork of the Dynkin
diagram of Bn

(1):

/'-'Vector /^Scalar /^Scalar /^Vector /τ> o Π\
Wector — ^Scalar •> ^Vector ~ ^Scalar \ D D~ ')

These representations can also be constructed just with fermionic fields. Each
long root of the Bn algebra is the sum of two orthogonal short roots: α = e + / with
e •/=(). The vertex operator, F(α,z) is then the product of two vertex operators:

KooooQxpif'Xoo. (B3-8)
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Moreover, via the fermion-boson equivalence (see Sect. A.4), the short roots vertex
operators, V(e, z), can be written as a linear combination of the In fermionic fields,
Γ±\z):

Γ+

e(z)= %~(eie-
l/2

(B3-9)

Together with the auxiliary fermion Γ(z), they form a set of 2n +1 fermionic fields.
The currents, Ja(z) and Je(z), then become the Bardakci-Halpern currents:

Ja\z) = -4= Γίa(z)Γb\z) (B 3-10)

1/2
with a, b = 1 to (In +1). It follows, in particular, that the affine DorB algebra quark
model representation (B3-10) is finitely reducible. This property also follows from
the factorization of the theta functions of the weight lattice Λ*(Bn):

® W « ) = Π(l-«*)"(l+«*~*)2".
k>° (B3 11)

Θ S + W?) = 2V/8 Π (ί~qk)V+qk)2"-
k>0

This spinor construction first appeared in physics in the work of Bardakci and
Halpern [9]. It was rediscovered by Kac and Peterson [39] and by Frenkel [40].
The mixed construction, with one fermion and n bosons can be found, in a
somehow cryptic notation!, in Lepowski and Prime [41]. This paper was later
translated by Alvarez, Mangano, and Windey [42].

BA. K = \ Representations of Dn + 1

{2\ First Construction

The twisted algebra Dn+ί

{2) contains Bn

{l) as a subalgebra and can be represented
in a similar way. The root system of Dn+ί

{2) decomposes into two pieces:
The roots, which are at an integral <5-level, are isomorphic to the roots of the

Bn

{1) affine algebra. They can be represented by the currents J(α,z) and J(ει,z),
defined in the previous section. In particular, the currents associated to the roots
contain an auxiliary fermionic field, Γ say.

The real roots which are at half integral (5-level, are isomorphic to the short real
roots of Bn

{1\ Therefore, their associated currents can be represented by the
product of vertex operators V(ε\z) (those which also contribute to the Bn

{1)

currents), by another auxiliary fermionic field, Γ* say. But, in order that the integer
and the half integer currents be simultaneously single valued, the two fermionic
fields, Γ and Γ*, must be of opposite type. Then, the half integer imaginary roots,
(Z + l/2)δ, can be represented by the product of the two auxiliary fermions,
Γ(z)Γ*(z). As Γ and Γ* are of opposite type, the (Z+1/2) modes of these currents
are well-defined.

It is now easy to check that these currents close under O.P.E., and therefore
that they represent the Dn+1

{2) with central charge one.



216 D. Bernard and J. Thierry-Mieg

Furthermore, the currents will be single valued if and only if Γ(z) is of N.-S. (R.)
type if the momentum pι belongs to the tensor (spinor) coset of the weight lattice W
of Bn. The irreducibility of the representation spaces:

= Fock(JΓ,Γ,Γ*)<g> Λ(Bn)+ | °

which is the tensorial product of the Fock spaces of the boson (X1) and fermion (Γ
and Γ*) by one of these cosets is directly shown by looking at the possible highest
weight vectors. Note that Dn+1

(2) only has 2 level one modules. This can be read
from the Dynkin diagram and from the fact that the GSO projector (B 3-4) does not
commute with the currents corresponding to the half integral δ levels. It follows
that the improved string functions of the level one representations of Dn+ x

( 2 ) are all
equal to:

" + 1 A * * i
q 24 ' 16 J-J V* ' Ί A* ' Ί / ^ ^

k>o (1 — q ) n

The generalization of this construction to the other twisted algebras involves non-
independent auxiliary fermionic fields; it is presented in the following sections.

It is, however, easy to generalize this construction to the other homogeneous
gradations of Dn +1

{2\ Indeed, all the Kac weights attached to the Dynkin diagram
of these algebras are equal to 1 (Table 2). According to the discussion (A 1-15), we
may associate a homogeneous gradation to each simple root and keep as
horizontal algebra the subalgebra Bp®Bq, with p + q = n. We represent the
integrally graded subalgebra by the currents of Sect. B.3 and the half integral
currents, which form a (vector, vector) representation of BpφBq by the product of
the vector currents: ,,„

U(e, z) = ze2/2 °oQxp(ie X)°o έe (B4-3)

of each algebra. These currents are well defined if and only if one carries an integral
power of z when the other is half integral. When p or q vanishes, the construction
reduces to the previous one. The cocycle is the product of the cocycles on Bp and
Bq. The Hubert space is the product of a Fock space with p + q = n bosons, one NS
and one R field, by one of the cosets (vector spinor) or (spinor vector).

We obtain in this way the two level one modules oϊDn+ί

{2) in these gradations.

B.5. Fermionic Construction
of the Twisted Kac-Moody Algebras A/2\ D2^+ί

{2\ and E6

{2)

In this section, a fermionic construction of the twice twisted Kac-Moody algebras
due to Lepowski [24], is presented. In keeping with the spin-statistic principle this
construction is fermionic in two respects:

*) It only involves odd moded Fubini-Veneziano fields 7 ( ~} (A4-31), which are
equivalent to a mixture of interacting Neveu-Schwarz and Ramond fields obeying
anticommutation relations (the statistical aspect of fermions).

*) In the absence of zero modes, the group lattice A (Bl-4) is replaced by the
Dirac spinor representation of an SO(M) algebra, and the cocycles (B2-5)-(B2-13)
are replaced by a set of Dirac (Clifford) matrices Γa associated to the simple roots as
shown in Fig. 4 (the spin aspect of fermions).
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A,

D,

E L

H-
-O

ΪΦ

*
Fig. 4. Dirac matrices involved in the Fermίonic construction of the 2-twisted algebras (B5-14)

This fermionic construction of A/2) will be used again in the next section as a
piece of a new bosonic construction of the twisted algebras.

Let us first consider the Ad case. Let σ be the involution, σ = — 1, of the root
diagram of the algebra Af = SU(i? + l). The σ-invariant generators,

eu + e_Ά (B5-1)

generate the subalgebra 5Ό(/+1), whereas the generators

e«-e-«, K (B5-2)

generate the orthogonal complement corresponding to the irreducible traceless
symmetric tensor of SO(ί+1).

Let A denote the root lattice of Ae. The quotient A/2 A is isomorphic to the
finite group (Z2Y

5 T ~ ( Z 2 ) ' ( B 5 " 3 )

Let χ denote the Dirac spinor of SO(ί\ a vector space of dimension 2[ίf/2]. Consider
the corresponding Dirac matrices yu i = ί,...,£ generating the Clifford algebra

(B5-4)

2δu. (B5-5)

(B5-6)

There is a natural application Γ of the roots of A/2Λ into End(χ):

n
i = 2

where ήt e {0, +1}, αf denote the simple roots of Ae and α = £ n^i is a distinguished
representative of his class in A/2A. The product on the right-hand side is ordered in
i, increasing from left to right.
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We can now define a cocycle ε(α, β) through

ε°oΛ/2Λ<g>A/2Λ-*{ + l, - 1 } ,
(B5-7)

ΓaΓβ = ε(oc,β)Γa + β.

By itself this definition of ε(α, β) imply the cocyclicity (B2-9). Furthermore, we have
chosen (B 5-6) in such a way that on the simple roots the ε(och aj) satisfy the relations
(B2-8)

ε(α,α) = ( - l ) α ' α / 2 , (B5-8a)

) = (-irβ. (B5-8b)

One may verify bimultiplicitivity

ε(α + β,y) = ε(α, γ)e(β, γ), ε(α, β + γ) = ε(α, j3)ε(α, y), (B 5-9)

and hence, (B5-8) extends to every pair (oc,β)eΛ/2Λ®Λ/2Λ.

Let us now introduce / odd graded Fubini-Veneziano fields YJ as in
(A4-31) and consider the tensor product of the Fock space of the Y fields by the
spin space χ:

Jtf = Fock(Yf)<g)χ. (B5-10)

The currents

h i ( ) P i ( ) i}/2δY\()

LZ

represent the affine algebra Λ/2\ twisted by the root automorphism σ = — 1.
The modes Un

a,

U:=§~znV{^z) (B5-12a)

for α positive and

Un« = (U_n-«)+ (B5-12b)

for α negative, are even and odd. The even modes close by themselves and represent
the subalgebra SO(S+1){1\ i.e. Bp

{1) if t = 2p or Dp

{ί) if £ = 2p-\. The odd modes
(72«+iα together with the odd modes h2n + ί

ι,

K^ϊ — z"-1^^) (B5-13)

form a representation of the horizontal algebra SO(/+1) which, together with the
even modes complete the construction of the twisted algebra A/2). The currents
h\z) and U\^}(a, z) are primary fields, with conformal weight one, with respect to
the Virasoro algebra L(~} (A4-39) whose central charge if L
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The same construction (B5-11) can be applied to the other simply laced
algebras E€ and De. We just need to modify (B 5-6) and to choose the image Γ of the
simple roots as shown in Fig. 4. The set of Γa matrices is defined from the Γai

associated to the simple roots αf. Namely, if α = ̂ w fα ί 9

Γ(α)= Π W , (B5-14)
ί = l

where n^rii mod[2], ήts{0, + 1}. The product is also ordered in i from left to
right.

In the case of D2<f, E7, E8 the automorphism is inner, yielding a fermionic
construction of the D2^

{ί\ EΊ

{1\ £ 8

( 1 ) in which the integrally graded subalgebra is
isomorphic to (D, + D,)(1), A^\ D 8

( 1 ) .
In the case of Ae, D2^+ί, E6 the automorphism is outer, yielding a

homogeneous construction of the A/2\ D2tf+1

{2\ E6

{2) in which the integrally
graded subalgebra is respectively 5 0 ( / + l ) ( 1 ) , (B, + B,)(1), and C 4

( 1 ) .
The character of L o in the carrier space (B4-10) is

X (B5-15)
π

k>o (1 — q 2)

where £ is the rank of the algebra and M = i in cases A€, E€ or M = / — 1 in case D^
(see Fig. 4).

Let us verify that ffl is irreducible. The whole Fock space Fock(V2n+1) is
necessary to the definition of the currents. As the highest weight vector must be
annihilated by the modes hx\ it must be a vacuum vector. The question is then the
irreducibility of the SO(M) Dirac spinor χ. By itself χ is the lowest eigenspace of L o

and must therefore carry a representation of the horizontal algebra g0. The choice
of the imbedding of SO(M) in g0 proves irreducibility and specifies the
construction.

A2/
2\ Eβ

(2\ and E8

{1) have a unique level one module. In these cases, M = 2/, 6,
and 8; and χ is respectively identified with the irreducible Dirac spinor of
SO{2J + l), the fundamental of C 4 and the vector of D 8 .

^4 2 / _ 1

( 2 ) has two level one modules. Indeed, S0(2*f — 1) has two imbedding in
SO(2/) such that the Dirac spinor χ of SO(2£ — 1) is identified with one or the other
chiral spinors of 50(2/).

£ 7

( 1 ) also has two level one modules. They differ by the identification of χ as the
8 or 8 of 5(7(8).

In the case of D2ίf+ / 2 ) D B{ * B^, we identify χ as the spinor of either B^ yielding
the two inequivalent basic modules.

At last, in D2/
1}DD^ * De we identify χ with a chiral spinor of either chirality in

either algebra.

B.6. Bosonίc Construction
of the Twisted Kac-Moody Algebras A2{_^2\ D < f + 1

( 2 ) , and E6

{2)

In this section we present an alternative bosonic construction of the twisted
algebras gJV

(τ) = ̂ 2 i ,_ 1

( 2 ) , D£+1

{2\ E6

{2\ D 4

( 3 ) , based on the outer diagram
automorphism of gN = A2£_u D^ + u E6, and D 4 centralizing go = Q 5 Be, F 4 5 and
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G2. The rank of g0 is smaller than the rank of gN by p units,

p = rank(gN) - rank(g0) = rank(gN

(1)) - rank(gN

(τ)). (B 6-1)

However, in the affme Kac-Moody root diagram, the roots are not lost, they
are just reorganized: the multiplicity of the root δ drops to rank(g0) whereas a new
imaginary root + δ/τ appears with multiplicity p/(τ — 1). Also, the short roots of g0

are repeated every δ/τ [(Al-26)-(Al-28)].

(B6-2)

The long integrally graded subalgebra gL

( 1 ) is respectively (A/)(ί\ D/x\ D
(1\

( 1 )

4

(

and A2

(1\ We read from the Dynkin diagram of g0 that its short simple roots
generate a regular subalgebra of type Ap, and we also note that g0 has ph/(τ — ί)
short roots organized into p(p +1)/2 representations of gL; h denotes the common
Coxeter number of gN and g0 (Table 7).

Dropping the case of D 4

( 3 ) till Sect. B.8, we are going to associate each of these
representations to a positive root of the "short" Ap in the following way:

Let α/^ and α/s) denote the long, α°° α(ί° = 2, and short, α(s) α ( s ) = l , simple
roots of g0. We map Λ(g0) onto A+(Ap):

ρ:Λ(go)-*Δ+{Ap)9

(J36-3)
α —>α

by:

^ Wα = Σμ^ Σ A >
" \ J=N~P+ί (B6-4)

j=N-p+ί

with n7 e {0, +1} and nj = rij [2]. Note that (α β ± α ĵ ) is always integral.
If we represent the long integrally graded subalgebra gL

( 1 ) of gN

{τ) by the
Frenkel-Kac currents (B2-13), the Frenkel-Kac currents associated to the short
roots will have the wrong conformal weight and O.P.E., as explained in Sect. B.3.
We are going to complete the Frenkel-Kac currents associated to the short roots
by the Lepowski currents (B5-11) of the fermionic construction of Ap

{2) by
associating one rescaled Lepowski current to each representation of gL.

Table 7.
involved

gN

go

gL

The horizontal
in the Bosonic

A2n-1 = SU{2t

Cn = Sp(2n)
An^=SU(n)

(go), short (Ap)9 and long (gL)
construction of gπ

(τ) (B6-1)

ί) Dn+1=SO{2n + 2)

Bn = S0(2n+l)

Dn = S0(2ή)

regular

£ β < 2 )

A\

subalgebras

G2

A2
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The construction is the following. Consider (N — p) even graded Fubini-
Veneziano fields and p odd graded ones:

2Έ Tfϊ

(B6-5)

Let W denote the weight lattice of g0. We consider the Hubert space

π = Fock(X', Y1)® W(g0). (B6-6)

We want to define as in Sects. B.2 and B.3, a map ε,

{ + l, -1} . (B6-7)

In the case of A, D, E the Jacobi identity implies that the Chevalley structure
constants (A 1-21) form a two-cocycle. However, in the case of Lie algebra with
more than one short simple root, they do not, since there occur Jacobi identities
with three non-vanishing double commutators. We modify the construction (B2-
6HB2-9) as follows:

i) Order the simple root of g0 from long to short and set

-U if ί=j,

8 ( a £ , a i ) = j + 1 , if i<j, (B6-8)

ί - l Γ , if
ii) Extend their definition to the whole lattice by the distorted bimultiplicativ-

ity law:

(B6-9a)

?;y), (B6-9b)

with

ξ(a,β;y) = (-iy7τϊ-~a-~β) 'K (B6-10)

ξ measures the deviation of ρ from being a homomorphism of additive groups. It is
well defined since (a + β — a — ft) always belongs to 2Λ(Ap).

The ε satisfy the distorted cocycle relation

ε(α, β + y)ε(β, y) = ε(α, β)ε(oc + β, y)ξ(oc, β γ) (B 6-11)

and,

(B6-12)

The last equation can be proven by recursion. (B 6-12) is true on the simple roots by
construction (B6-8). Furthermore, either side of (B6-12) satisfies the distorted
bimultiplicativity law (B6-9b). Restricted to the sublattice Λ(gL), ρ is a homomor-
phism and ε coincides with the cocycle of Sect.. B.2.
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We extend ε to A x W as usual [Eq. (B2-10)] and define on j f (B6-6) the
operators:

εα:εα|p> = φ , p ) | p > . (B6-13).

We represent

*) the Cartan currents by (B2-13)

h{+)\z)=l-dzX{φ). (B6-14a)

These currents only have even graded modes.

*) The currents associated to the roots (n + ί/2)δ, whose degeneracy is p, by the
odd moded fields

V/(*)=^*W(*) (B6-14b)

*) The currents associated to the positive roots of g0 by

J(α, z) = z«2-1 l/ ( + ) (α, z)U{^ z)εa = F(α, z)εa, (B 6-14c)

where U{+) and l/(_) are the even and odd moded vertex operators defined by (A 4-
43) and (A4-33). If at? is a long root, α = 0 and J(α ( 0, z) only has even modes. If αs is a
short root, J(α(s), z) has even and odd modes. The operators t/(_}(a, z) are rescaled
Lepowski currents (B5-11) which play the role of a set of non abelian interacting
fermions. The O.P.E. of currents is

^ ZV(a9z)V(β9w)°o. (B6-15)

Under the exchange (α, z)->(/?, w), this O.P.E. changes by a factor ( - l ) α ^ + ^ . The ε
operators now play a double role. On the one hand, by Eq. (B6-12), they turn the
commutators of the modes of the currents J(α, z) and_J(/?, w) into a Cauchy integral
(A 4-5). On the other hand, when α /?> 0, i.e. when (α + β) φ α + ̂ , there may exist a
pole at z= — w. This induces a parasite sign factor in the residue, since:

( 7 + ( α , - w ) = U + ( α , w ) ( - l ) 2 α *. (B6-16)

This sign is just compensated by the factor ξ(a, β; p) in the composition law (Bo-

ll).
The fields (B6-14) are primary fields with conformal weight one with respect to

the Virasoro algebra defined as the sum of the free Virasoro algebra (A 4-45) of the
even and odd oscillators.

As usual, we define the modes by

dz

aeA+(g0), J α ^ ( J - α _ n ) + = ^ z " J ( α , z ) ,

(B6-17)

\±)n=^n\±)(z)

which close by commutation.



Level One Representations of Simple Affine Kac-Moody Algebras 223

A highest weight p in ffl is annihilated by all the positive simple roots of g0

(thus all its Dynkin weights are positive or zero), and by Θ, the level δ/2 simple
root, which implies

F |p β | < l (B6-18)

as a generalization of (B1-8). Therefore, in keeping with the Dynkin diagram rules
(A 1-6), Jf has two components in case A2ί_ ι{2) with p = 0 or p the highest weight of
the • representation of Q, two in D^+1

{2) with p the scalar or the spinor highest
weight of Be, and a single one, p = 0, in E6

{2\
In each case, there is an unique string function:

c(q) = q16 2 4 Π (ί-qnγ-N(ί-qn-*Γp. (B6-19)

It should be noted that this construction reduces in the case of D^+1

{2) to the
construction of Sect. B.4.

B.7. The Bosonic Construction of the A2/
2) Twisted Algebra

The A2/
2) twisted algebra contains the A2^-ί

{2) twisted subalgebra and can be
represented in a similar way. There exists a gradation of A2/

2) (A 1-30)
corresponding to an outer-automorphism of A2£ of order four, which extends the
homogeneous gradation of the A2^γ

{2) subalgebra. The horizontal algebra is Ce

and the real root system (B6-2) is simply completed by the Π representation of C^
at the levels

The imaginary roots of A2£^^2)\Έb with degeneracy t and (Z+l/2)<5 with
degeneracy (/—I) are completed by an additional imaginary root (Z+l/2)<5
corresponding to the Q singlet of (A 1-30). To each imaginary root, we associate a
free bosonic field: ίX\+) and {i — \)Y\_) as in Sect. B.6, plus a new odd field Z (_ }.
The total central charge of the Virasoro algebra is 2/ and the energy of the vacuum
is η\ 6.

We represent the imaginary roots by the currents (B6-14):

h\=iδzx\+),{ (B7-2)
h>-=idzY\-)9

h~id^{.)9 (B7-3)

the integrally graded long roots by the even Frenkel-Kac currents (A 4-43):

J(a,z) = zU + (oc,z)εa, α 2 = 2, (B7-4)

and the Z/2 graded short roots by the currents (B 6-14c):

J(α, z) = E/+(α, z)t/_(α, ε)έΛ, α2 = 1. (B 7-5)
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έα is the ε operator of the weight lattice of C€ defined in Sect. B.6. ~maps the short
roots l/|/2(±ε i + εJ ) of C€ onto the a = ί/]/2(εi — εj) of Δ+(A€-i). In a consistent
way, we map the roots l/j/2εf of the Π representation of Ce onto the weights

ώ'X = — ( εt — - Σ 6f) of the Π of Ae _ ί. For these roots, the conformal weight of a

current of the type (B7-5) would be ε2/2 + ώ2/2 = 1/4+ . We complete these
currents by an additional Z vertex operator:

| / ^ l (B7-6)

The factor |/(2/ + l)/2/ restores the local character and also produces the
necessary double pole in the O.P.E.

Once more, one can check the existence of a unique highest weight A; in the
representation space:

\ Y{Z)®W{C€), (B7-7)

and evaluate the string function:

Π ( l - β T ' ί l - β " " 1 7 2 ) " ' - (B 7" 7)
0

B.8. Two Constructions of D 4

( 3 )

D 4

( 3 ) admits two homogeneous gradations such that the horizontal algebra is
either A2 or G2 (see Sect. A.I). We shall construct in each case the unique level one
module.

The construction with A2 horizontal is parafermionic, and generalizes the
fermionic construction of the 2-twisted algebras. We use four Fubini-Veneziano
fields without zero modes. We average over the orbits of an automorphism σ of
order three of the root lattice of D4 without fixed point. 3*3 matrices generalizing
the familiar Dirac matrices provide the necessary sign factors.

The construction with G2 horizontal generalizes the bosonic construction of
the 2-twisted algebras. We start from the Frenkel-Kac representation of the long
roots of G2. This involves two Fubini-Veneziano fields with their zero modes
included and the usual cocycle (B2-6). Then, we complete the currents associated
to the short roots by auxiliary fields which are, up to a rescaling, the Kac-
Kazhdan-Lepowsky-Wilson currents of the principal construction of A2^ [16].

Let us first recall this last construction. Consider a pair of 3Z graded fields

where the xn operators satisfy the canonical commutation relations (A4-12a) and
ω = exp(±2ί'π/3).

Now consider the inner automorphism σ, σ3 = e, of the root lattice of A2 which
rotates the first simple root into the second. The six roots of A2 split into two orbits
with representatives ocί and (— o )̂. The affine Kac-Moody algebra A2

{1\ twisted by
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this inner automorphism, is represented on the Fock space

je = Fock(xn; nή=0 mod3) (B8-2)

by the currents,

hω(z) = idzΨω{z), (B8-3)

and by the vertex operators,

Fω(z)-z- l o

oexpfφω(z)°. (B8-4)

There is no need for a cocycle because the O.P.E. of the Vω are symmetric.

(z - w)2 1

ωw)(z — ωw) zw
M+v<oM)o9 (B8-5a)

V

VJ?)VM- {z_ώw)2 ~oe o. (B8-5b)

The eight generators of SU(3) are reorganized as follows: six generators are
represented by the (3Z + m), m = 0,1,2, modes of Fω and F s ; the two others, by the
hω which only have modes in the class (3Z±1).

There is in this construction a single level one module for the following reason.
As explained in Sect. A, the distinction between the various level one modules of an
affine algebra is gradation dependent. The principal gradation of A2

{1) that we are
considering is symmetric in the 3 simple roots of A2

{1\ In the notations of Sect. A,
we have:

α . (d)=l/3, ί = 0,1,2.

The three level one modules are therefore isomorphic even as Virasoro-Kac-
Moody modules. The partition function of JΊ? is

/ n>0

= η(q)/η(qί/3). (B8-6)

The bosonic construction of Z) 4

( 3 ) corresponds to the gradation in which the
horizontal algebra is G2. The root system given in (Al-28a) follows from the
decomposition of D 4 with respect to G2,

D4==G2 + 7 + 7. (B8-7)

As G2 has short roots normed to a α = 2/3, the standard vertex operators must be
completed by auxiliary fields. By analogy with the D^+ί

(2) case in which the
auxiliary fields introduced in Sect. B.6 are the rescaled fields of Ax

{1) principal, we
introduce the rescaled fields of A2

{ί) principal (B8-4) as auxiliary fields for D 4

( 3 ) .
Thus, let us introduce the tensor product of the Fock space generated by two

Fubini-Veneziano fields, X{3)

ι(z), i = ί,2, containing only modes modulo [3], by
the Fock space (B 8-2),

J f = Fock(X ( 3/, γ>)® W(G2). (B 8-8)
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Fig. 5. Root diagram of G2 (B8-9). α0 and a1 form a
system of simple roots. The 6 short roots form the quark
and antiquark representations of the long SU(3)
subalgebra

Note that W{G2\ the weight lattice of G2, associated to the zero modes of the fields
X\z\ coincides with the root lattice of G2.

Once more, we define the 2-cocycle, ε(α, β\ on Λ(G2) by Eqs. (B2-6)-(B2-9). As
aVp iή=j, is always odd, we can choose any order in (B2-6). The long roots of G2

generate an algebra A2. The short roots split into two representations of this Λ2:
the quark and the antiquark as described in Fig. 5. By bimultiplicativity (B2-7),
ε(α, β) is a two cocycle, and hence satisfies

~ί t(a)t{β) _ ( _ (B8-9)

where ί(α) = O if α is a long root or ί(α)= + 1 (—1) if α is in the (anti-)quark
representation: t is the triality of S 17(3).

Let us now define the rescaled fields of A2

{1) principal,

fψjz)°, (B8-10)

which satisfy the O.P.E. (B8-5) up to the power (2/3).
The bosonic construction of D 4

( 3 ) is then given by the currents,

hω(z) = idz\pjz), ω = exp( ± 2ίπβ),

J(α, z) = z 3 α 2 ~ 1 Sexpzα X ( 3 )(z)° W%(z)έa,

α = exp(2iπί(α)/3).

The modes,
. dz n_ί .

_rfz_
" 2/π

appear only for n = 0 [3], and represent A2

{1) of level one. The modes

(B8-11)

(B8-12)

(B8-13)

complete the A2

{1) representation to D 4

( 3 ) . All the n = 0 [3] modes represent the
G 2

( 1 ) subalgebra of level one.
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The Hubert space ffl is irreducible and contains the unique level one module of
D 4

( 3 ) . The highest weight is a scalar of the horizontal algebra G2. The string
function of D 4

( 3 ) of level one reads,

Y\ (l-qn)2(l-qn-ll3)(l-qn~213). (B8-14)
n>0

The fermionic construction corresponds to the gradation having Λ2 as
horizontal algebra. It is defined by an outer automorphism σ of D 4 of order three
without fixed point, σ is completely defined, up to a Weyl transformation, by
imposing,

α + σα + σ2oc = O (B8-15)

for every root α of D 4 . The σ-invariant algebra is Λ2.
By analogy with the construction B.5, which corresponds to the automorphism

σ=— 1, we introduce four Fubini-Veneziano fields X\z) (A4-14a), and their
associated σ-fields, χσ

ι(z) and χσ\z\ defined by

P]° (B8-16)

0

The fields χσ and χ^ commute,

ίlMlM']=0 (B8-17)

and only contain modes n=±l [3] [due to (B8-15)]. For the automorphism
σ=—l, χσ reduces to the odd graded field introduced in B.5. The σ-vertex
operators

^ ^ =Uσ(σa9ωz) (B8-18)

satisfy the O.P.E.

Uσ(<x9z)UJίβ,ω)= Π (z-ω^wΓ β ^t7σ(α,z)l7ff(jff,w)S. (B8-19)
p = 0

The fermionic construction is defined on the space

Jf = Fock(χ,)®7 (B8-20)

tensor product of the Fock space of the fields χσ by a three dimensional vector
space V. On the space F, we introduce a set of 3 * 3 matrices, Ea where a is a root of
D4, satisfying

EaEβ = ε(aJ)Ea+β, (B8-21)

with

ε(j8,α)ε"1(α,j8)= Π {ωpf'σPβ. (B8-22)
p = 0
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They can be defined by,

from the matrices associated to the simple roots α; of DA. Namely,

(B8-23)

Eαi =

0

0

1

Now, the

1 0

0 1

0 0

5

currents,

1

0

0

Jσ(oc,z)z~

0

ω

0

Λz)

(α,2

0

0

ώ

0

0

1

ω

0

0

0

ω

0

(B8-24)

(B8-25a)

(B8-25b)

represent Z>4

(3) in the fermionic gradation. The modes,

(B8-26)

appear only for n= ±1 [3], whereas the fields Jσ{oc,z) contain all the integral
modes,

The modes n = 0 [3] represent A2

{1) of level three.
The Hubert space is irreducible and contains the unique level one module of

D 4

( 3 ) : the space ^identifies with the representation 3 of A2. The ^-dimension of the
representation is:

n>0
. (B8-28)

At last, the definition of the σ-vertex operator can be extended to an arbitrary
automorphism σ of a simply laced algebra. This fermionic construction of D 4

{ 3 ) is
implicit in the work of Kac and Peterson [25]; the bosonic construction is
completely new.

C. Interacting Field Constructions

The algebras Cn

( 1 ), i 7

4

( 1 ), and G 2

( 1 ) in their unique homogeneous gradation are the
integrally graded subalgebras oϊA2n-ί

(2\ E6

(2\ D 4

( 3 ) . As such, their construction is
implicit in Sect. B. However to disentangle the integrally from the non-integrally
graded short roots we need to modify our construction quite drastically.

*) We construct, in Sect. C.I, an auxiliary Virasoro algebra with a fractional
central charge (Table 8) and its primary fields (Sect. C.I).

**) We use these primary fields as auxiliary currents to construct G 2

( 1 ) and
v42

(2) in Sect. C.3 and Cn

(1) and F 4

( 1 ) in Sect. C.5.
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Table 8. Decomposition of the central charge c of the Virasoro algebra of the level k module
o f S (1) ;

c = rank (g)H-caux.
gaux is the auxiliary Lie algebra used to construct an interacting stress tensor of type (1) or (2) with
central charge ca u x (Cl-3)

g k c g a u x c ( 1 ) c ( 2 )

2 p + hp/(h + 2) gp

1 p+1/2 A, 1/2

1 4 + 6/5 A2 6/5

1 24-4/5 A2 4/5

***) As a side step, we need the level three and four representations of A^\
which are contained in G2

( 1 ) and A2

{2) of level one, and the level two
representations of ^1 M _ 1

( 1 ) which are contained in Cn

{1) of level one. We actually
solve a slightly more general problem: we construct the representations of A^l) of
arbitrary level in Sect. C.2, and the representations of level 2 of A, D, E in Sect. C.4.

CJ. Construction of the Auxiliary Virasoro Algebras

As explained in Sect. B, the currents which generate the Kac-Moody algebras are
constructed by completing the Frenkel-Kac vertex operators, corresponding to
the Cartan subalgebra, with some auxiliary fields. These auxiliary fields must be
primary fields with respect to the auxiliary Virasoro algebra, L(g) — L(h\ where h is
the Cartan subalgebra of g. The central charges are given in Table 8. When the
central charge is not a half integer, the Virasoro algebra cannot be represented
by a free field stress-tensor. But, by completing the work of Eguchi and
Higashijima [26], one can define the following stress-tensor:

T(z) = 2a Σ °o(idίdΣX)2°o+b £ %e2*'h. (CM)

Here, α is a root of an A, D, E Lie algebra of rank p. α is normed to α α = 1. The
fields X\z) are p Z-graded Fubini-Veneziano fields (A4-11). T(z) operates on the
space Fock(X) * W, Eq. (A 4-13). After a lengthy calculation, using extensively the
relation [431: ,* ~w .

(SψM>
(where h is the Coxeter number) one can show that T(z) generates a Virasoro
algebra if the coefficients a and b are:
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The central charge of the three Virasoro algebras L ( 0 ), L ( 1 ), and L ( 2 ) are (Table 8):

c = P C = C =

L ( 0 ) is the Virasoro of the p free bosons (A4-17) and is also the sum of the two
others,

L ( 0 ) = L ( 1 ) + L ( 2 ) . (Cl-4a)

Furthermore, the generators L ( 1 ) and L ( 2 ) commute,

[ L ( 1 ) , L ( 2 ) ] = 0 . (Cl-4b)

The central charges c ( 1 ) for the Lie algebras SU(N) correspond to the auxiliary
central charges of the level N representation of su(2) affine. They also correspond to
the auxiliary central charges of the basic representations of B/1] and G 2

( 1 ) which
contain representations of level 2 and 3 of AX

{1\ It should be noted that for the
algebras E^, A2, A3, the central charges c ( 1 ) are less than one. As expected, they
belong to the unitary series c = 1 — 6/m(m +1). Their value are c ( 1 ) = 6/7, 7/10, and
1/2 for E6, £ 7 , and E8 respectively. The central charges c ( 2 ) are the auxiliary central
charges of the level two representations of the A(ί\ D(ί\ E{1\ and also of the basic
representations of F 4

( 1 ) and Q ( 1 ) .
We shall now construct primary fields of these Virasoro algebras which may be

used as auxiliary fields in the current algebras. For the L ( 1 ) algebras, primary fields
can be constructed by means of vertex operators defined on the basic represent-
ations of the Lie algebras A,D,E. Namely, let us define the fields Γ(z) as:

ΓR(z)=

where the weights ώ belong to a minuscle representation, noted R, of A, D, E Lie
algebras. It is a primary field for both L ( 0 ) and L ( 1 ) with the same conformal
weight A:

A A 2ώ2

In particular, for the vectorial representation of su(N), noted Π, and for its
complex conjugate Π, the conformal weights are:

^D=^O = ^ . (PUT)

Furthermore, by using the relation (Cl-3) and the fact that the conformal weights
with respect to L ( 0 ) and L ( 1 ) are equal, one deduces that the fields Γ(z) commute
with the third Virasoro algebra L ( 2 ). That property will be very useful in the study
of the various Kac-Moody representations constructed below.

In the case of su(2), the Γ(z) fields reduce simply to fermionic fields (A4-28):

Γ(z) is a N.-S. or R. field according to the lattice class to which the momentum
belongs.
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Primary fields of the L ( 2 ) algebras can be defined by:

φ ( , ) 4 [ ]
1/2

They are also primary fields of the L ( 0 ) algebras. Their conformal weights are equal
to

reflecting their fermionic character. As before, they commute with the last Virasoro
algebra L ( 1 ).

C.2. Representations of A^ of Arbitrary Level

The currents of the level N representations of Ax

{1) will be written as the product of
the Frenkel-Kac currents by some auxiliary fields that we shall now determine. In
keeping with Weyl group properties (A 3-11), the square of the root appearing in
the Frenkel-Kac vertex operator must be normalized to 2/JV. Furthermore, as su(2)
is of rank one, it is sufficient to introduce only one auxiliary field and its complex
conjugate. In order that the currents be primary fields of the total Virasoro
algebra, Lτ = Lfree(X) + L(1)(AN_1\ with a conformal weight equal to one, the
auxiliary field must be a primary field of the L ( 1 ) algebra with (N—l)/N as
conformal weight. At the same time, the O.P.E. of the currents, product of the
standard vertex operators by the auxiliary fields, are single valued if the auxiliary
fields are primary fields for the L ( 0 ) algebra with the same conformal weight,
(N-l)/N. Therefore, the fields Γπ(z) and Γφ) [(Cl-5) and (Cl-7)] are respectable
auxiliary field candidates. Their O.P.E. are inferred from the decomposition of the
tensorial product of the su(N) representation; Π * D = A d j + l, and D * D

= DH + [ ] . They read:

s " 1 ( w > ) °}X

[_ώ e~D ώ + cδTe Ad j

i _ 2-2,* { C 2 Λ )

N (z vv)

|_ωeΠ ώΦώ' J

The level N representation of A^ is defined as follows. Let (±α) denote the
roots of Ax rescaled to a-a = 2/N, and VFf^) the associated weight lattice. Let
W(AN_1) denote the weight lattice of AN_U the roots of AN_ι being normed to
α α = l. Define also the bosonic fields, X(z) and X\z\ z'=l to (iV-1), (A4-11),
respectively associated to Ax and ^4^- I * ^ i ( 1 ) ^s represented on the Hubert space,

1}. (C2-2)
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The currents associated to the real roots are

J(α, z) = Γπ{z) Sexpiα X(z)°o, (C2-3a)

J(-α, z) = \z\ ~2J UI) + = ΓΩ(z) o°exp- iaX{z)l, (C2-3b)

whereas the imaginary roots are represented by the currents,

ha{z) = iNoi'dzX{z). (C2-4)

The commutation relations directly follow from the O.P.E. (A4-25) and (C2-1).
W ^ J decomposes into two cosets: the tensor and the spinor weights. W{AN_1)
decomposes into N cosets which correspond to the N fundamental representations
Rj of AN_U

MΛv-iH N[]\λj + Λ(ΛN^)), (C2-5)
.7 = 0

where λj is the highest weight of the Rj representation of AN_ ί. The currents will be
single valued if the momentum p of X and p of X satisfy

(2ώp + αp)eZ. (C2-6)

The absence of fractional power of (z — w) in the O.P.E. of the currents reveals that
these constraints commute with the currents.

As the L ( 2 ) algebra commutes with the currents (C2-3), these representations
are infinitely degenerate. But, by looking at the representations of the product
L ( 2 ) * ̂ 4i(1), one reduces the degeneracy to a finite order. In particular, the highest
weight vector of the (n c Q ^ N — n)* L ( 2 ) representation, A = nA ί + (N — n)A0, is the
vacuum vector whose momentum p is the highest weight of the nth representation
of su(2) and whose momentum p is a weight of the nth representation of su(N). The
infinite set of highest weight vectors of J 4 1

( 1 ) is then generated by applying the L ( 2 )

generators to these vectors, i.e.: they belong to the L(2)-Verma module built upon
these vectors.

In the case of N ̂  3, we can say more about the structure of the representations.
Each string is a reducible representation of the total Virasoro algebra,
L τ = L f ree(X) + L ( 1 ). Let us define the quotients of the strings by the Lfree-Verma
module. On these spaces, the Virasoro algebra Lτ identifies with the L ( 1 ) algebra.
These quotient spaces are unitary representations of L ( 1 ). The string functions can
thus be written as:

C/(q) = η-\q)chL(1)(q), (C2-7)

where chL(ί) are the character of the L ( 1 ) Virasoro algebra in the quotient spaces.
In general, these quotient spaces can also be highly reducible. But in the N ̂  3 case,
the auxiliary central charge is less than one, and hence the degeneracy is finite. If
Δ{ί) is the conformal weight, with respect to L ( 1 ), of the highest vector of the string,
the conformal weight of the vectors of the quotient space are (Δ{1) + k)9keN.A new
highest weight vector of L ( 1 ) occurs in the quotient space only if (A(ί) + k) belongs to
the set of unitary conformal weights (A 2-21).
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In the N = 2 case, the central charge is one half. The unitary weights are 0,1/2,
and 1/16. Therefore the quotient spaces are irreducible, and the string functions

Cig(g) = f/-1(«)cΛL(1)(c = l/2, Δ=0){q),

C2o°2(q) = η~ \q)chL{1){c = 1/2, A = l/2)(«), (C2-8)

ίch(4/5,0) + ch(4/5,3)] (q),

) = η - \q)ch{AI5,2β){q),

where C\,{q) = CiΛ^j\Λo+,Λι(q).
The conformal weights zl(1) which occur in the N = 3 case are for the (1 C Q D 2)

representation, zl ( 1 )=l/15 and 2/5, and for the (3cQ^0) representation, Λ{1) = 0
and 2/3. But the conformal weights 7/5 and 3 are also unitary weights for c = 4/5.
Therefore, the quotient spaces in the strings having zl(1) = 0 or 2/5 can be reducible.
The degeneracy in these strings can be evaluated by means of the Racah recursion
(see Sect. A.3 and Fig. 3), and the representations with conformal weight 3 or 7/5
do occur. Thus, the various string functions read:

It is quite puzzling to note that these combinations of the Virasoro characters
coincide with those appearing in the 3-state Potts model [44].

This method of evaluation of the string functions of the representations of A^
cannot be pursued for higher level. However, all the string functions of Aγ

{l) were
evaluated in [45], from their modular properties.

C.3. K=ί Representations of β, (1), G 2

( 1 ), and A2

(2)

As the representations of A{ί\ D ( 1 ), £ ( 1 ) follow from the representation of
A1

(1)[k = l], the representations of B,(1), G 2

( 1 ), and A2

{2) follow from the
representations of At

(1) with fc = 2, 3, and 4 respectively.
In the construction of B/1} given in Sect. B.3, the vertex operator associated to

a short root is completed by an auxiliary free fermion Γ(z). This field is equivalent
to the Γπ(z) oiSU(2) (Cl-8), needed in the construction of A1

{1)[_k = 2~]. The string
functions are trivially related, compare (B3-6) and (C2-8).

The root system of the G2 algebra is described in Fig. 5. As the ratio of the
square of the long roots by the square of the short ones is equal to three, the basic
representation contains a level three representation of su(2) affine (see Sect. D). On
the other hand, the short roots belong to the • and Π representations of the su(3)
regular subalgebra generated by the long roots. Therefore, the currents are
naturally defined on the space,

je = Fock(X\Xk)(g) W(G2)®W(A2), (C3-1)

where X\z\ ί = 1 to 2, are the Fubini-Veneziano fields associated to G2, and Xk{z),
k = l to 2 are the auxiliary bosonic fields introduced in Sect. C.I in the particular
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case of Sl/(3). The real roots currents are

°exp/α X(z)°εA

α, ί(α) = 09 α2 = 2, (C3-2a)

Γπ(z) °oexp ίa X(z)§ εα, ί(α) = 1, (C 3-2b)

ΓQ(z) °exp/α X(z)° εA

α, ί(α) = 25 (C3-2c)

where ί(α) and εα are the triality and the cocycle operators defined in Eqs. (B2-6) to
(B2-9) and (B 8-9) and the Γπ(z) fields are defined in (C1 -5). The imaginary roots are
represented, once more, by the fields idzX\z). From Eq. (C2-1), particularized to
the JV = 3 case, it is easy to verify that these operators have the correct O.P.E. in
order to represent the G2

( 1 ) affme algebra.
The structure of the representation follows from the structure of the level three

representations of Ax

{1\ First, the L(2) Virasoro generators commute with the
currents (C3-2). Second, the auxiliary central charge is less than one. Therefore, the
string functions of the 2 level one modules are:

CΛ2

ΛHS) = CΛo

Λo(q) = η ~ \q)H{^){q),

CΛ2

Λo(q) = CAo

A\q) = η ' \q)C\l{A^){q).

The last algebra in which these auxiliary fields can be used, is the twisted affine
algebra A2

{2\ In Sect. B.4, a fermionic construction of this algebra was given in
terms of odd fields. It was based on an automorphism of order two of A2 yielding
the Z 2 gradation: A2 = Aι + 5. (C3-4)

The root system given in Fig. 2 follows from that decomposition.
We now present a bosonic version of that construction. The construction is

defined on the space

je = Fock(X,Xk)®(\J+Λ(Aί))(g)(\J+Λ(A3)), (C3-5)

where X(z) is the Fubini-Veneziano field association to the horizontal algebra Au

and the X\z\ k = \ to 3 are the bosonic fields associated to the auxiliary algebra
SU(4). (\Z\+A(Ap)) is the coset of the weight lattice of Ap containing the
fundamental representation.

The ratio of the square length of the simple roots is equal to four. The auxiliary
fields, that must be introduced in front of the vertex operators of the short roots,
are built upon an su(4) algebra. We define the fields Γπ(z) and Γ^(z) by Eq. (Cl-5).
We define also the hermitic field Γn(z) constructed over the 6-representation of

su(4) by the same equation. The O.P.E. given in Eq. (C2-2) and the following ones:

ΓD(z)Γπ(w)= L 1

2i(o) Xz + ώ' X w ) o Ί

ω ώ'>0 J
y

(C3-6)

L:y oe2iώ(Xz-Xw)o_^_/z_w\2 y

ώ ώ'̂ O

z + ώ' Xw)o
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show that the twisted A2

(2) algebra can be represented as follows. We normalize
the roots α of Aι to α α = 1/2. We consider the currents:

o

oe~2ia'Xoo, Γπ°oe~ia'Xoo, Γ g , Γ D o V α * o ° , o

oe
2iaXoo, ( C 3 - 7 a )

Γ o S e - ^ S , iδ,X, ΓDSe i β J fS, (C3-7b)

which are distributed in keeping with the root diagram of Λ2

(2\ Fig. 2. The

( 1 ).
g

currents are primary fields for the Virasoro algebra Lτ = L free(X) + L ( 1 ). Its central
charge is two in agreementt with (A2-7).

When (p,p) belong to the (Π, D) coset of the weight lattice oΐ Aί(S)A39 i.e.
p e (Z + l/2)α and p e (Π + Λ(43)), the currents (C 3-7a) only have (Z +1/2) modes,
the currents (C3-7b) only Z modes, the operators have no cuts and close by
commutation. This restriction on p agrees with the Dynkin diagram where we can
read that the highest weight of the basic module of A2

{2) must be a spinor of the
horizontal A1 algebra.

The string function cannot be evaluated from this construction because the

central charge of the auxiliary Virasoro algebra is one. However, we already know

from (B7-5) that

C.4. K = 2 Representations of A/1}, D/x\ and E/1}

We shall construct in this section the level two representations of the affine A9 D, E
algebras, and then use them to construct the basic representations of F 4

( 1 ) and
Cw

( 1 ). The L ( 2 ) Virasoro algebras defined by Eqs. (C1-1) and (C1-2) have the central
charge expected for the auxiliary Virasoro algebras of the level two representations
of the simply laced algebras (Table 8). At the same time, in keeping with the
analysis of the Weyl group (Sect. A), we wish to normalize the real roots to
α α = 2/k = 1. Therefore, the Frenkel-Kac vertex operators have conformal weight
one half with respect to L f r e e and we need auxiliary fields with conformal weight
one half with respect to L ( 2 ). Hence, the fields Ψ(oc,z) defined in Eq. (Cl-9) are
reasonable candidates. But, the O.P.E. of the currents will be of defined parity -
which is absolutely necessary in order to reduce the computation of the
commutation relations to the evaluations of the poles of the O.P.E., see the
discussion following (A 4-4) - if some sign factors are incorporated in the definition
of the auxiliary fields. Consider the auxiliary space, Fock(X) * W (A 4-13), where W
is a second copy of the weight lattice of A9 D, E. And let us define the fields Ψ(ρt9 z)

where α is a root of A, D, E and is normed to α α = 1. ξ& e {+1, — 1} is defined on
A12A by the recursion:

4 + ί=^(- 1 ) 2 a ' ί (C 4-2)

The fields Ψ(a,z) define a set of non-independent fermionic fields. Their O.P.E.
read:

x
, o -icί X(z)-i~β-X(w)o

-t-oe o

i(
X Γoeioc X(z)~iβ-X(w)o ξί__γ,2~β'p_^_ oe-i& X(z) + iβ-X(w)o ξj _ j\2α(# + 0)-| (£4-3)
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The Virasoro generators for which the fields *F(α, z) are primary fields are those
defined in Eq. (C1-1) up to simple sign factor modifications:

T(z) = aΣoo2(idίdzX)2oo+bΣooe2ra-Xoo ξ Ά ( - l ) 1 + 2&-p. (C4-4)
α α

The coefficients a and b are the same as those previously defined (Cl-2), and they
also correspond to the same central charges (Cl-3).

Let us now consider the space,

MT = FockpP, Xk)® W{g)® W{g),

where g is of type A, /), E. This space is just the square of the Hubert space of the
level one module (Sect. B.2).

To each positive root a of A we associate the same root α in Ά, and we consider
the real root currents:

J(α,z) = φ(α,z) le^'^h 4 . (C4-5)

4 is the cocycle of Sect. B.2 [Eqs. (B2-6) to (B2-9)]. As usual, the Cartan currents
are the fields [ία dzX{z)~\. The commutation relations follow from the O.P.E. (A4-
25) and (C4-3). Thanks to the factor ξά(-l)2&'p, they are effectively of defined
parity. The currents are single valued if the momenta p and p satisfy the constraint:

(oφ±αp)eZ. (C4-6)

We shall now detail the reducibility of these representations. The currents
J(α, z) are primary fields of the Lfree(X) + L ( 0 ) and L f r e e + L (2) Virasoro algebras.
They commute with the L ( 1 ) Virasoro algebra, which can be identified with the
algebra K = L(g(1)[/c = l] *g(1)[/c = l])-L(g(1)[fc = 2]) in the Goddard, Kent, and
Olive construction (A 2-24). As L ( 1 ) commutes with the currents J(α, z) we can study
the reducibility of the representation of L ( 1 ) * g(1). A highest weight vector of the
algebras L ( 1 ) and g(1) is also a highest vector of the three Virasoro algebras, L(1),
L(2), and Lfree(X). By (C1-4), it is also a highest weight vector for the free Virasoro
algebras L ( 0 ) = Lfree(X). Hence, it is a vacuum vector of Fock (X, X). Its momen-
tum p and p are constrained by the condition (C4-6) and by the highest
weight vector condition; they are given by:

Pkj = ωh + °Jj, Pkj =±{cok- ω j), (C 4-7)

where ωk are the weights of level one (with the convention ω 0 = 0).
In particular, we cannot describe a representation whose highest weight is not a

sum of two level one weights. These only occur when g is of type D or E. The
representations of the L ( 1 ) algebra which correspond to these highest weights are
characterized by their maximal conformal weight Δ{1)[k,f]. Knowing the value of
the conformal weight A for the total Virasoro algebra, L τ = Lfree(X) + L(2), we can
evaluate Δ{2) by using (A 2-8):

We obtain:

^ (C4-9,
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In the case of the algebras Al9A2, and E^, the central charge is less than one: these
conformal weights (C4-9) belong to the family of unitary weights (A2-21).

In conclusion, each representation decomposes, with respect to the product
L ( 1 ) *g ( 1 ) as :

{1)( (k9 j))® V(g, Λk + Aj). (C4-10)

Each of these components is twice degenerated due to the symmetry p-> — p. Up to
straightforward modifications, this decomposition can be reproduced for the other
constructions presented in the previous sections.

C.5. Basic Representations of F 4

( 1 ) and C, ( 1 )

The construction of these representations follows from the considerations of Sects.
B.6 and C.4. Let g be of type F4 or Q . Let Ap be the associated short algebra (p = 2
or ^ — 1) defined in (B6-1). To each root of g we associate a positive root α = ρ(α) of
Ap (B6-3). We normalize the long roots of g to α°° α°° = 2, and those of Ap to
α α = 1. Observe the matching of the central charges of the Virasoro algebra of
g ( 1 )[fc=l], Cartan (g) and L{2)(Ap) [Eq. (C4-4)],

We will complete the vertex operators associated to the short roots of g by the
currents (C4-1), which have conformal weight one half with respect to L ( 2 ).

The representation space is,

Jf = Fock(X, X)® W{g)® W{Ap). (C 5-2)

We represent the Cartan subalgebra as usual by [id dzX(z)\ and the real roots
by the currents

J(α,z) = φ(α,z)L/(α,z)εα, (C5-3)

where the factors are defined by Eqs. (C4-1), (A4-23), and (B6-8HB8-12). The
O.P.E. of the product Ψ(a,z)U(a,z) is of defined parity, ( - l ) ^ + δ ^ as in (B6-15).
The defect factor ξ(a,β;p) (B6-10) is needed here to compensate the extra p-
dependent signs which occur when όc β > 0 . Indeed, in these cases, it is the second
term of the O.P.E. (C4-3) which contributes to the poles.

The Virasoro algebra L{ί)(Ap) (Cl-1) commutes with g (1) and we look for a
highest weight of g ( 1 ) ®L ( 1 ) . The momenta (p,p) must satisfy the constraints

Voc, a-p±a peZ. (C5-5)

Up to the symmetry p-> — p, L ( 1 ) φ g ( 1 ) has two and (/+1) highest weight vectors,
in the case of F4 and Q respectively. They are Fock vacua with momentum (p, p):p
a fundamental weight of g and p such that its Dynkin weights δ(p) in Ap are just
obtained by restricting the Dynkin diagram of g weighted by δ(p) to its short roots.

Since the central charge of L{2)(Ap) is more than one, we cannot directly extract
the string functions.
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D. Character Identities

The explicit constructions, in Chaps. B and C, of several Virasoro*Kac-Moody
modules V(Λ) has enabled us to evaluate a number of string functions

CΛq)=q"β2/2kTvSμq
L\ p - i )

Here, A denotes the highest weight of the Virasoro Kac-Moody module, and μ is a
weight of the horizontal algebra g0. The trace is evaluated over the μ eigenspace of
the Cartan subalgebra of g0. Lo denotes the improved Virasoro generator
(Sect. A.2) satisfying the commutation relations

lLm,Ln-]=(m-n)Lm+n+~m3δm+n,0 (D-2)

without linear dependence in m in the central extension.
The prefactor ^ - P 2 / 2 * ) i s such that strings which are Weyl conjugated have

identical string functions. But the most remarkable property is that string
functions of level one module of A, D, E algebras, which are collected in Table 9,
have excellent modular properties: they depend on q only through the Dedekind η
function (A2-18). To verify Table 9, it is necessary to keep in mind the shift q(~c/24)

(A 2-9) and the prefactor q{v) corresponding to the energy of the twisted vacuum
(A2-25) and (A4-25).

Comparing the bosonic and fermionic constructions of the affine algebras, we
can compute several Θ functions.

Remember that, in a given weight diagram, a choice of gradation just
corresponds to a choice of the horizontal L o = 0 hyperplane (Fig. 2). A modific-
ation of this choice cannot alter the string functions. Consider for example the

Table 9. Improved string functions of the level one modules of g.
These functions do not depend on the gradation. If g0 is horizontal,
the -̂dimension of the module is the product of the string function
by the Θ function of g0 (D-2)

σ (t) String functions

c oo=c..-
2

n(qf η{]/q)\
-—τ= ΓT-

- 2
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bosonic construction of E6

{2) with JF 4 horizontal. The string function c(q) is given in
(B6-19). If we rather consider the gradation with C 4 horizontal, the ^-dimension of
the basic module is the product of the same string function by the Θ function of the
• coset of the weight lattice of C 4 ? scaled to α α = 1. On the other hand, the q-
dimension of the same module is given by Eq. (B5-15) via the fermionic
construction. Hence:

T ( 1 + <T)4. (D-3a)
A / Π

κ>0

In the same way, comparing (B8-6) and (B8-28) we get:

β(D + A2)(q) = 3*1'3 Π ( ! Γ g 2 ' ( D"3 b )

n>o (1 —q )

The same method, applied to Af] yields the well known Θ functions of the
orthogonal series B and D.

We shall now try to gain some information on the character of several higher
representations by combining the method of Goddard, Kent, and Olive (A4-25)
with the classical results of Dynkin.

Consider a finite Lie algebra g, a subalgebra h of g, and let e(β) denote the
generator of g corresponding to the highest weight of the adjoint representation of
h. Equation (A 1-20) particularized to the generators e(β) and e( — β\

[tm®eβ,f(S)e^^tm+n®(β'h) + m(βjrkδm+n^ (D-4)

indicates the level k of the h(ί) representation inside the g(1) representation of level
k. Recalling that the standard bilinear form is normalized in such a way that the
square of the long root φ of g is two, we find;

where j{g/h) is the Dynkin index of the embedding of h in g.
We may now evaluate the central charge of the Virasoro algebra of (g/h) (A 2-

25). If c(g/h) is less than one, the g-module splits into a finite number of /z-modules
since in that case, L(g/h) has a finite number of unitary conformal weights Δr s

[(A2-21) and Table 6].
Let A be the highest weight of the g(1)-module V(A). Let Ag(A) denote its

conformal weight with respect to the g(1) Yirasoro algebra

If a weight μ of V(A) is a highest weight of h{1\ it is also a highest weight of L(h) with
conformal weight,

However, μ necessarily belongs to some unitary module of L(g/h% with conformal
weight Δr s. Hence,

3 r, s/AJΛ) - Δh{μ) - Δrs e N . (D-7)
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When c(g/h) is less than one, this constraint selects a small number of possible
highest weights of /z(1)*L(g//z) inside V(Λ). One may check by computing the
degeneracy of a few levels of V(Λ) whether they occur.

Let us first illustrate this method in the case c(g/h) = 0. Consider a maximal
regular subalgebra h of a simply laced Lie algebra g. The Dynkin index is one and
c(g/h) automatically vanishes. For example, by looking at the subalgebra D 8

( 1 ) of
£ 8

( 1 ) in the homogeneous gradation, one obtains the decomposition,

ch(Es, basic) = ch(D8, scalar) + ch(D8, spin). (D-8)

Using the Bardakci-Halpern (B3-10) and the Frenkel-Kac constructions (B2-15),
we derive the character identity:

=\M Π (i+<r i / 2 ) i 6 + π (i-<r1 / 2)1 6)
I \n > 0 n > 0

1284 Π (l+tf 1 ) 1 6 ! Π (1-9")8. (°-9)

This identity plays an important role in the heterotic string models.
In the twisted construction of £ 8

( 1 ) (Sect. B.5), we find the alternative identity:

ch'(E8, basic) = e/j(D8, vector) + ch(D8, spin)

which is equivalent to the Jacobi identity (B2-17).
Looking at non-regular subalgebras, we may obtain a large value of the

Dynkin index, and hence a /z-representation of high level. For instance, B2 has an
Aγ subalgebra of index 10 (Fig. 6). The three level one representations of J52

( 1 )

decompose as

10

6 U

Cϊ=X)

7 3

4 6

+ o=o

10

+ σ=o

3 7

+ o=o

(D-ll)

All the possible highest weight Ah appear in the decompositions. Indeed, the first
two representations are conjugated by the outer automorphism which exchanges
the two long roots of B2

{1); this shows that the two representations of A^
participate to these decompositions. The 2?2

(1)-spinor representation is real under
this automorphism which implies that the two complex conjugate representations
(3 () () 7) and (7 () C) 3) are present in the decomposition. No other
representations of level 10 of Ax

{1) satisfies Eq. (D.7). These decompositions relate
the string functions of a level ten representation of Aλ

{1) to those of a level one
representation of B2

{1\
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Fig. 6. The irregular subalgebra A1

10 of B2 (D-l 1). This diagram shows the restriction 10 = 3 -h 7 of
the adjoint representation of B2 to A1

Table 10. Irregular subalgebras of the exceptional Lie
algebras such that the central charge of the Virasoro
algebra L(g/h) is less than 1. j(g/h) is the index of the
imbedding of h in g. c(g/h) actually vanishes in all cases
except F 4CJE: 6

G2

E\
EΊ

A,
G2

A2

A2

28

X+A,
9, G 2

3

21,G2

2

9F4

ί (c(g/h) =

The work of Dynkin contains many more examples. We present in Table 10
part of his classification of the non-regular subalgebra of the exceptional Lie
algebras which we read as the splitting of the level one modules of g(1) as level j(g/h)
modules of hil). We have included those subalgebras such that the central charge of
the Virasoro algebra L(g/h) is less than one.

Let us first consider the decomposition of the E6 with respect to F4, in which
the central charge c(g/h) = 4/5<l. The highest conformal weight of the scalar
representations of £ 6

( 1 ) are 0 and 2/3. Those of the scalar and 26 representations of
F 4

( 1 ) are 0 and 3/5. Therefore, we obtain the decompositions:

©

© O-O—CφεO—O © [ ( 2 / 5 ) . ( 7 / 5 ) l

(D-12)

, 1 _ _ , , ,
O-O-O^O-O © I1/15)
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where (A) denotes the representation (c = 4/5, A) of the Virasoro algebra. Equation
(D2-12) is sufficient to find the ^-dimension of the level one representations of the
affine algebra F 4

( 1 ) .
As a last application, we consider the imbedding

The central charge c = 8 of the Virasoro algebra associated to the eight free fields
involved in the Frenkel-Kac construction of £ 8

( 1 ) (Sect B.2) splits into (4 + 2)
associated to the Cartan subalgebra of F4 and G2, plus (6/5 + 4/5) associated to the
auxiliary A2 algebra (Chap, C). It follows that the basic module of E 8

( 1 ) restricts to

1 1

cκ>φo-o © o-cφ=o
(D-14)

© OO-φίX) ©

Comparing (D-12), (D-14) and the character of the level one modules of £ 8

( 1 )

(Sect. B.2) and G2

( 1 ) (Sect. C), we infer identities between the theta functions of the
£ 6 , £ 8 , and G2 weight lattices.

The method can be applied to many, many examples ...

Conclusion

Using the methods of quantum field theory, we have constructed the level one
modules of all the simple affine Kac-Moody algebras in all their homogeneous
gradations. On the way, we have constructed several level two representations of
the A,D,E algebras and the representations of A^ι) of arbitrary level.

Chapter A is intended to provide a relatively self contained introduction to the
Kac-Moody and their associated Virasoro algebras, in a language accessible to
physicists. We follow quite closely the notations of the book of Kac [1] except in
the analysis of the gradings of the twisted algebras (A 1-16).

The constructions are explained in Chaps. B and C. The crucial element is the
value of the central charge, c, of the associated Virasoro algebra. When c is integral
(Chap. B), we are able to construct a positive definite Hubert space carrying an
irreducible Kac-Moody module. We have defined two types of constructions:
bosonic and fermionic. In the bosonic constructions, the horizontal Cartan
subalgebra is represented by the zero modes of a system of free Fubini-Veneziano
oscillators. The long roots are represented by the Frenkel-Kac vertex operators;
the short roots, by a generalization of the Neveu-Schwarz-Ramond vertex
operators involving entangled non-abelian Neveu-Schwarz and Ramond fields
(A4-37), (B6-14). A major modification needed to generalize the work of Frenkel-
Kac [14] to the twisted version of the A, D, E algebras (Sect. B.6) is the fact that the
Chevalley structure constants no longer define a two-cocycle (B6-11). In the
fermionic constructions, also considered by Lepowski [19, 24] and by Kac-
Peterson [25], the oscillators have no zero modes and the vertex operators are
completed by Dirac matrices (B5-14).
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When c is not integral (Chap. C), our constructions are irreducible only as
(Virasoro)" * (Kac-Moody) modules, where (Virasoro)" denotes an auxiliary
algebra defined as follows: We complete the Frenkel-Kac currents associated to
the short roots by a set of primary fields of a Virasoro algebra L which can be
regarded as the stress-tensor of an interacting field theory (Sect. C.I). (Virasoro)",
defined in the same Hubert space, appears as a complement of L commuting with
the Kac-Moody algebras. We construct in this way the level one representations of
the algebras F 4

( 1 ) , Q ( 1 ) , and G2

(1\ and the level two of the simply laced algebras. In
their parallel work, Goddard et al. [47] introduce similar auxiliary fields, but an
apparently different system of ε operators.

Chapter D illustrates how one may relate various constructions of the same
modules and derive in this way arithmetical identities.

We hope that these constructions will prove useful in statistical mechanics and
string theory.

Appendix. The Chevalley Structure Constants

The Chevalley structure constants /(α, β) are defined if and only if α, β, and α + β
are roots of g by the relation:

β + β . (1)

By construction, they are antisymmetric:

). (2)

Furthermore, if all the double commutators are non-zero, the Jacobi identity
implies:

/(α, j8)/(α + β9 y) +f(β9 γ)f(β + y, α) +/(y, α)/(y + α, β) = 0. (3)

If g is of type A, D, E, the square length of every root is 2. Hence, α, β, and a + β
are roots if and only if α β= — 1. Because of this constraint, the Jacobi identity
involves only 2 terms and reduces to:

/(α, j8)/(α + β, y) =/(α, β + y)f(β9 y). (4)

By inspection, this is also true for the algebras of type B and G. In these cases, we
may recursively rescale the generators so that:

and by (4) and (5), the ε define a 2-cocycle on A(g).
In contradistinction, if g has more than one short simple root (type C and F),

Jacobi identities involving 3 non-vanishing double commutators occur. One may
not reduce (3) and (4). The / do not form a 2-cocycle and cannot be rescaled to ± 1.
A modified construction is explained in Sect. B.6.

If g is of type A, B, D, E, G, we may choose the signs of the generators ea in such a
way that the ε are bimultiplicative:

) = ε(α,y)εGS,y),
(6)

)
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This choice considerably simplifies all calculations. However, despite [14], it is not
possible to assume bimultiplicativity and ε(α, a) = +1 on all the roots. Indeed, if α,
β, and a + β are roots, (6) implies:

ε(oc + β,oc + β)=-ε(oc,a)ε(βj). (7)

This impossibility leads to a complication in the definition of Hermitic Frenkel-
Kac currents [Eqs. (B2-3) and (B2-14)] which is usually overlooked.
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