Kac-Moody Symmetry of Generalized Non-Linear Schrödinger Equations

A. D. W. B. Crumey
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom

Abstract

The classical non-linear Schrödinger equation associated with a symmetric Lie algebra $g=k \oplus m$ is known to possess a class of conserved quantities which form a realization of the algebra $k \otimes \mathbb{C}[\lambda]$. The construction is now extended to provide a realization of the Kac-Moody algebra $k \otimes \mathbb{C}\left[\lambda, \lambda^{-1}\right]$ (with central extension). One can then define auxiliary quantities to obtain the full algebra $g \otimes \mathbb{C}\left[\lambda, \lambda^{-1}\right]$. This leads to the formal linearization of the system.

1. Introduction

This is a continuation of the work presented in [1], in which it was shown how to construct conserved quantities for the generalized non-linear Schrödinger (GNLS) equation of Fordy and Kulish [2]:

$$
\begin{equation*}
i q_{t}^{\alpha}=q_{x x}^{\alpha} \pm q^{\beta} q^{\gamma} q^{\delta *} R_{\beta \gamma-\delta}^{\alpha} \tag{1.1}
\end{equation*}
$$

(summation is implied over repeated indices) which is associated with a Lie algebra $g=k \oplus m . q(x, t)$ is a matrix field in $1+1$ dimensions whose components lie in m, and k is the centralizer of a special Cartan subalgebra element E satisfying the property

$$
\begin{equation*}
\left[E, e_{\alpha}\right]=-i e_{\alpha} \tag{1.2}
\end{equation*}
$$

for all $e_{\alpha} \in m$ (where α is positive). This means that the algebra g is "symmetric", i.e.

$$
\begin{equation*}
[k, k] \subset k, \quad[k, m] \subset m, \quad[m, m] \subset k . \tag{1.3}
\end{equation*}
$$

The curvature tensor R has components in m defined by

$$
\begin{equation*}
e_{\alpha} R_{\beta \gamma-\delta}^{\alpha}=\left[e_{\beta}\left[e_{\gamma}, e_{-\delta}\right]\right] . \tag{1.4}
\end{equation*}
$$

Equation (1.1) can be written as a zero-curvature condition

$$
\begin{equation*}
\partial_{x} A_{t}-\partial_{t} A_{x}+\left[A_{x}, A_{t}\right]=0 \tag{1.5}
\end{equation*}
$$

where

$$
\begin{align*}
A_{x} & =\lambda E+A_{x}^{0} \tag{1.6a}\\
A_{t} & =\lambda^{2} E+\lambda A_{x}^{0}+\left[E, \partial_{x} A_{x}^{0}\right]+1 / 2\left[A_{x}^{0}\left[A_{x}^{0}, E\right]\right] \tag{1.6b}
\end{align*}
$$

and

$$
\begin{equation*}
A_{x}^{0}=-q^{\alpha} e_{\alpha}-q^{-\alpha} e_{-\alpha} \tag{1.7}
\end{equation*}
$$

The component form of (1.5) is

$$
\begin{align*}
i q_{t}^{\alpha} & =q_{x x}^{\alpha}+q^{\beta} q^{\gamma} q^{-\delta} R_{\beta \gamma-\delta}^{\alpha}, \tag{1.8a}\\
-i q_{t}^{-\alpha} & =q_{x x}^{-\alpha}+q^{-\beta} q^{-\gamma} q^{\delta} R_{-\beta-\gamma \delta}^{-\alpha} \tag{1.8b}
\end{align*}
$$

The choices $q^{-\alpha}= \pm q^{\alpha^{*}}$ correspond to the restriction to the non-compact $(+)$ or compact (-) real forms of g, and lead to Eq. (1.1) with a plus or minus sign.

One can find other values of A_{t} as a polynomial in λ such that the new equation of motion (1.5), with A_{x} given by (1.6a), is still independent of λ. Each such A_{t} is associated, via (1.5), with an evolution operator ∂_{t}. It was shown in [1] that when A_{t} is a polynomial in positive powers only, the collection of evolution operators can be labelled $\partial_{N, k}$, where $k \in k$ and N is a positive integer, and that they have the commutation relation

$$
\begin{equation*}
\left[\partial_{M, j}, \partial_{N, k}\right]=\partial_{M+N,[j, k]} \quad \forall M, N \geqq 0 ; \forall j, k \in \kappa \tag{1.9}
\end{equation*}
$$

In this paper, the case will be considered when A_{t} is a polynomial in negative powers of λ. This will lead to the construction of evolution operators $\partial_{-N, k}$ such that

$$
\begin{equation*}
\left[\partial_{m, j}, \partial_{n, k}\right]=\partial_{m+n,[j, k]} \quad \forall m, n \in \mathbb{Z}, \forall j, k \in k . \tag{1.10}
\end{equation*}
$$

The complete collection of operators $\partial_{ \pm N, k}$ provides a realization of the Kac-Moody algebra $k \otimes \mathbb{C}\left[\lambda, \lambda^{-1}\right]$, where $\mathbb{C}\left[\lambda, \lambda^{-1}\right]$ is the algebra of Laurent polynomials in the complex variable λ. The parameters ($\pm N, k$) are thought of as infinitely many independent "time" variables.

In [1] it was shown how to construct a group element of the form,

$$
\begin{equation*}
\omega=\exp \sum_{n=1}^{\infty} \lambda^{-n} \omega_{n} \tag{1.11}
\end{equation*}
$$

defined by

$$
\begin{equation*}
\lambda \omega E \omega^{-1}-\omega_{x} \omega^{-1}=\lambda E+A_{x}^{0} \tag{1.12}
\end{equation*}
$$

Under the gauge transformation

$$
\begin{align*}
& A_{x} \rightarrow \omega^{-1} A_{x} \omega+\omega^{-1} \omega_{x}=\lambda E \tag{1.13a}\\
& A_{t} \rightarrow \omega^{-1} A_{t} \omega+\omega^{-1} \omega_{t}=a_{t} \tag{1.13b}
\end{align*}
$$

where A_{t} is unknown, the zero curvature condition (1.5) becomes

$$
\begin{equation*}
\partial_{x} a_{t}+\left[\lambda E, a_{t}\right]=0 \tag{1.14}
\end{equation*}
$$

This equation can be satisfied by choosing

$$
\begin{equation*}
a_{t}=\lambda^{N} k \tag{1.15}
\end{equation*}
$$

where N is a positive integer and $k \in k$ is constant. The transformation (1.13b) is
inverted to obtain

$$
\begin{equation*}
A_{t}=\lambda^{N} \omega k \omega^{-1}-\omega_{t} \omega^{-1} \tag{1.16}
\end{equation*}
$$

If A_{t} is chosen to have no negative powers of λ, then it is determined uniquely by (1.16) as the positive power part of $\lambda^{N} \omega k \omega^{-1}$, while the action of ∂_{t} on ω is determined by the negative power part. A_{t} and ∂_{t} defined in this way are denoted $A_{N}(k), \partial_{N, k}$. Equating coefficients of powers of λ in (1.16) one obtains

$$
\begin{align*}
A_{N}(k) & =\sum_{n=0}^{N} \lambda^{n}\left(\omega k \omega^{-1}\right)_{N-n}, \tag{1.17a}\\
\left(\omega_{N, k} \omega^{-1}\right)_{n} & =\left(\omega k \omega^{-1}\right)_{N+n} \tag{1.17b}
\end{align*}
$$

where $(\cdots)_{n}$ denotes the coefficient of λ^{-n}. The relation (1.9) follows from the definition (1.17b).

Now suppose that one chooses

$$
\begin{equation*}
a_{t}=\lambda^{-N} k \tag{1.18}
\end{equation*}
$$

as a solution to (1.14). Then the inverse gauge transformation (1.13b) gives

$$
\begin{equation*}
A_{-N}(k)=\lambda^{-N} \omega k \omega^{-1}-\omega_{-N, k} \omega^{-1} \tag{1.19}
\end{equation*}
$$

which does not determine $A_{-N}(k)$. For example, if $N>1$, then the coefficient of λ^{-1} in (1.19) is

$$
\begin{equation*}
A_{-N}^{1}(k)=-\partial_{-N, k} \omega_{1} \tag{1.20}
\end{equation*}
$$

One can think of (1.19) as defining the action of $\partial_{-N, k}$ on ω in terms of the as yet undetermined $A_{-N}(k)$. To find $A_{-N}(k)$ as a polynomial in negative powers of λ, one would like to have an equation like (1.19) in which ω is replaced by a group element which contains only non-negative powers of λ, i.e. one would like to find $\tilde{\omega}$ of the form

$$
\begin{equation*}
\tilde{\omega}=\exp \sum_{n=0}^{\infty} \lambda^{n} \tilde{\omega}_{n} \tag{1.21}
\end{equation*}
$$

such that one can perform the transformation

$$
\begin{align*}
& A_{x} \rightarrow \tilde{\omega}^{-1} A_{x} \tilde{\omega}+\tilde{\omega}^{-1} \tilde{\omega}_{x}=\lambda E \tag{1.22a}\\
& A_{t} \rightarrow \tilde{\omega}^{-1} A_{t} \tilde{\omega}+\tilde{\omega}^{-1} \tilde{\omega}_{t}=a_{t} \tag{1.22b}
\end{align*}
$$

Then one can again consider the solutions $a_{t}=\lambda^{ \pm N} k$ for (1.14). For the case $\lambda^{-N} k$, the inverse transformation (1.22b) gives

$$
\begin{equation*}
A_{-N}(k)=\lambda^{-N} \tilde{\omega} k \tilde{\omega}^{-1}-\tilde{\omega}_{-N, k} \tilde{\omega}^{-1} \tag{1.23}
\end{equation*}
$$

which enables one to obtain $A_{-N}(k)$ and the action of $\partial_{-N, k}$ on $\tilde{\omega}$, by equating coefficients of powers of λ. The case $\lambda^{N} k$ defines the action of $\partial_{N, k}$ on $\tilde{\omega}$ in terms of $A_{N}(k)(1.17 \mathrm{a})$. To construct $\tilde{\omega}$, one writes it in the form

$$
\begin{equation*}
\tilde{\omega}=\psi \Omega \tag{1.24}
\end{equation*}
$$

where ψ is independent of λ, and

$$
\begin{equation*}
\Omega=\exp \sum_{n=1}^{\infty} \lambda^{n} \Omega_{n} \tag{1.25}
\end{equation*}
$$

It will be shown in Sect. 2 that Eq. (1.22a) determines Ω to all orders in terms of the auxiliary field ψ. In Sect. 3 the commutation relations of the evolution operators $\partial_{ \pm N, k}$ will be investigated, which will show them to form a realization of a Kac-Moody algebra. The class of operators can be extended by allowing the algebra element to be an arbitrary element of g, rather than just of k. In Sect. 4 the Hamiltonians for the operators $\partial_{ \pm N, g}$ are considered. Their Poisson bracket algebra provides a realization of the Kac-Moody algebra $g \otimes \mathbb{C}\left[\lambda, \lambda^{-1}\right] \oplus \mathbb{C} c$. In Sect. 5 it is shown that the formal sum of Hamiltonians for the operators $\partial_{ \pm N, e_{\alpha}}$ can be used to linearize the system. The interpretation of these operators is discussed in Sect. 6.

2. Construction of $\tilde{\boldsymbol{\omega}}$

Let $\tilde{\omega}$ be an element of the Lie group G, of the form

$$
\begin{equation*}
\tilde{\omega}=\psi \Omega \tag{2.1}
\end{equation*}
$$

where ψ is independent of λ, and

$$
\begin{equation*}
\Omega=\exp \sum_{n=1}^{\infty} \lambda^{n} \Omega_{n} \tag{2.2}
\end{equation*}
$$

Now fix $\tilde{\omega}$ by choosing

$$
\begin{equation*}
\lambda \tilde{\omega} E \tilde{\omega}^{-1}-\tilde{\omega}_{x} \tilde{\omega}^{-1}=A_{x} \tag{2.3}
\end{equation*}
$$

where A_{x} is given by (1.6a); i.e.

$$
\begin{equation*}
\lambda E+A_{x}^{0}=\lambda \psi \Omega E \Omega^{-1} \psi^{-1}-\psi \Omega_{x} \Omega^{-1} \psi^{-1}-\psi_{x} \psi^{-1} \tag{2.4}
\end{equation*}
$$

Equating coefficients of powers of λ^{0}, one can see that

$$
\begin{equation*}
A_{x}^{0}=-\psi_{x} \psi^{-1} \tag{2.5}
\end{equation*}
$$

Notice that ψ is the group element which arises in the transformation between the GNLS system and the generalized Heisenberg ferromagnet [2]. (This will be explained more fully in Sect. 6.) The λ-dependent part of (2.4) becomes

$$
\begin{equation*}
\lambda \Omega E \Omega^{-1}-\Omega_{x} \Omega^{-1}=\lambda \psi^{-1} E \psi \tag{2.6}
\end{equation*}
$$

Now, by expanding (2.2) as a power series in λ, one can obtain the identities

$$
\begin{gather*}
\left(\Omega E \Omega^{-1}\right)_{n}=\sum_{r=1}^{n}(r!)^{-1} \Sigma_{k_{i}: \Sigma k_{i}=n}\left[\Omega_{k_{1}}\left[\Omega_{k_{2}}\left[\cdots\left[\Omega_{k_{r}}, E\right] \cdots\right]\right],\right. \tag{2.7a}\\
\left(\Omega_{x} \Omega^{-1}\right)_{n}=\sum_{r=1}^{n}(r!)^{-1} \Sigma_{k_{i}: \Sigma k_{i}=n}\left[\Omega_{k_{1}}\left[\Omega_{k_{2}}\left[\cdots\left[\Omega_{k_{r-1}}, \partial_{x} \Omega_{k_{r}}\right] \cdots\right]\right]\right], \tag{2.7b}
\end{gather*}
$$

where $(\cdots)_{n}$ denotes the coefficient of λ^{n}. Use these to equate coefficients of λ^{n} in (2.6):

$$
\lambda^{1}: \partial_{x} \Omega_{1}=E-\psi^{-1} E \psi
$$

i.e

$$
\begin{gather*}
\Omega_{1}=x E-\partial^{-1}\left(\psi^{-1} E \psi\right) \tag{2.8a}\\
\lambda^{2}: \partial_{x} \Omega_{2}+1 / 2\left[\Omega_{1}, \partial_{x} \Omega_{1}\right]=\left[\Omega_{1}, E\right]
\end{gather*}
$$

i.e.

$$
\begin{equation*}
\Omega_{2}=1 / 2 \partial^{-1}\left(\left[E, \partial^{-1}\left(\psi^{-1} E \psi\right)\right]+x\left[E, \psi^{-1} E \psi\right]+\left[\psi^{-1} E \psi, \partial^{-1}\left(\psi^{-1} E \psi\right)\right]\right), \tag{2.8b}
\end{equation*}
$$

and so on. In general one has

$$
\begin{equation*}
\left(\Omega_{x} \Omega^{-1}\right)_{n}=\left(\Omega E \Omega^{-1}\right)_{n-1} \tag{2.9}
\end{equation*}
$$

for all $n>1$, and so $\partial_{x} \Omega_{n}$ is determined in terms of $\Omega_{m<n}$. In this way, Ω is determined to all orders non-locally in terms of ψ.

3. The Evolution Operators

Recall the zero curvature condition

$$
\begin{equation*}
\partial_{x} A_{t}-\partial_{t} A_{x}+\left[A_{x}, A_{t}\right]=0 \tag{3.1}
\end{equation*}
$$

where A_{x} is given by (1.6a) and A_{t} is unknown. Consider the gauge transformation

$$
\begin{align*}
& A_{x} \rightarrow \omega^{-1} A_{x} \omega+\omega^{-1} \omega_{x}=\lambda E \tag{3.2a}\\
& A_{t} \rightarrow \omega^{-1} A_{t} \omega+\omega^{-1} \omega_{t}=a_{t} \tag{3.2b}
\end{align*}
$$

where ω is the group element defined by (1.12), of the form $\omega=\exp \sum_{n=1}^{\infty} \lambda^{-n} \omega_{n}$. Under the transformation (3.2), the zero curvature condition (3.1) becomes

$$
\begin{equation*}
\partial_{x} a_{t}+\left[\lambda E, a_{t}\right]=0 \tag{3.3}
\end{equation*}
$$

One can choose the solutions

$$
\begin{equation*}
a_{t}=\lambda^{ \pm N} k \tag{3.4}
\end{equation*}
$$

for (3.3) (where N is a positive integer). Then (3.2b) can be inverted to obtain

$$
\begin{align*}
A_{N}(k) & =\lambda^{N} \omega k \omega^{-1}-\omega_{N, k} \omega^{-1} \tag{3.5a}\\
\omega_{-N, k} \omega^{-1} & =\lambda^{-N} \omega k \omega^{-1}-A_{-N}(k), \tag{3.5b}
\end{align*}
$$

where $A_{N}(k)$ is chosen to be a polynomial in non-negative powers of λ, while $A_{-N}(k)$ is a polynomial in negative powers. Equation (3.5a) defines $A_{N}(k)$ and the action of $\partial_{N, k}$ on ω, while (3.5b) is regarded as defining the action of $\partial_{-N, k}$ on ω in terms of $A_{-N}(k)$, which is still undetermined.

Now consider the gauge transformation (3.2) with ω replaced by $\tilde{\omega}$ as
constructed in Sect. 2. Then, from the definition (2.3),

$$
\begin{align*}
& A_{x} \rightarrow \tilde{\omega}^{-1} A_{x} \tilde{\omega}+\tilde{\omega}^{-1} \tilde{\omega}_{x}=\lambda E, \tag{3.6a}\\
& A_{t} \rightarrow \tilde{\omega}^{-1} A_{t} \tilde{\omega}+\tilde{\omega}^{-1} \tilde{\omega}_{t}=a_{t} \tag{3.6b}
\end{align*}
$$

where A_{t} is considered unknown. The zero curvature condition again takes the form (3.3), and the solutions (3.4) can be used to invert (3.6b) to give

$$
\begin{align*}
A_{-N}(k) & =\lambda^{-N} \tilde{\omega} k \tilde{\omega}^{-1}-\tilde{\omega}_{-N, k} \tilde{\omega}^{-1}, \tag{3.7a}\\
\tilde{\omega}_{N, k} \tilde{\omega}^{-1} & =\lambda^{N} \tilde{\omega} k \tilde{\omega}^{-1}-A_{N}(k) . \tag{3.7b}
\end{align*}
$$

Equation (3.7a) defines $A_{-N}(k)$ as the negative power part of $\lambda^{-N} \tilde{\omega} k \tilde{\omega}^{-1}$, and defines $\tilde{\omega}_{-N, k} \tilde{\omega}^{-1}$ as the positive power part. Equation (3.7b) defines the action of $\partial_{N, k}$ on $\tilde{\omega}$ in terms of $A_{N}(k)$, which was defined by the positive power part of (3.5a). Explicitly, one has

$$
\begin{align*}
A_{N}(k) & =\sum_{n=0}^{N} \lambda^{n}\left(\omega k \omega^{-1}\right)_{N-n}=\sum_{n=0}^{N} \lambda^{n} A_{N}^{n}(k), \tag{3.8a}\\
\left(\omega_{N, k} \omega^{-1}\right)_{n} & =\left(\omega k \omega^{-1}\right)_{N+n} \tag{3.8b}
\end{align*}
$$

(from (3.5a)), where $(f(\omega))_{n}$ denotes the coefficient of λ^{-n} in $f(\omega)$,

$$
\begin{align*}
A_{-N}(k) & =\sum_{n=1}^{N} \lambda^{-n} \psi\left(\Omega k \Omega^{-1}\right)_{N-n} \psi^{-1}=\sum_{n=1}^{N} \lambda^{-n} A_{-N}^{n}(k), \tag{3.9a}\\
\left(\Omega_{-N, k} \Omega^{-1}\right)_{n} & =\left(\Omega k \Omega^{-1}\right)_{N+n}, \tag{3.9b}
\end{align*}
$$

for $N>0$ (from (3.7a), using (2.1)), where $(f(\Omega))_{n}$ denotes the coefficient of λ^{n} in $f(\Omega)$,

$$
\begin{align*}
& \psi_{N, k} \psi^{-1}=-A_{N}^{0}(k)=-\left(\omega k \omega^{-1}\right)_{N} \quad(\forall N>0) \tag{3.10a}\\
& \psi_{0, k} \psi^{-1}=\psi k \psi^{-1}-k \tag{3.10b}
\end{align*}
$$

(from the coefficient of λ^{0} in (3.7b), using (2.1) and (3.8a)),

$$
\begin{equation*}
\psi_{-N, k} \psi^{-1}=\psi\left(\Omega k \Omega^{-1}\right)_{N} \psi^{-1} \quad(\forall N>0) \tag{3.11}
\end{equation*}
$$

(from the coefficient of λ^{0} in (3.7a)). Lastly, (3.5b) and (3.7b) become

$$
\begin{align*}
\omega_{-N, k} \omega^{-1} & =\lambda^{-N} \omega k \omega^{-1}-\sum_{n=1}^{N} \lambda^{-n} \psi\left(\Omega k \Omega^{-1}\right)_{N-n} \psi^{-1} \quad(\forall N>0), \tag{3.12a}\\
\Omega_{N, k} \Omega^{-1} & =\lambda^{N} \Omega k \Omega^{-1}-\sum_{n=1}^{N} \lambda^{n} \psi^{-1}\left(\omega k \omega^{-1}\right)_{N-n} \psi \quad(\forall N>0), \tag{3.12b}\\
\Omega_{0, k} \Omega^{-1} & =\Omega k \Omega^{-1}-k \tag{3.12c}
\end{align*}
$$

(using (3.9a), (3.8a) and (3.10)).
Notice that (3.8b) implies

$$
\begin{equation*}
\left(\omega_{1, E} \omega^{-1}\right)_{n}=\left(\omega E \omega^{-1}\right)_{n+1}=\left(\omega_{x} \omega^{-1}\right)_{n} \tag{3.13}
\end{equation*}
$$

(by (1.12)), i.e.

$$
\begin{equation*}
\partial_{1, E}=\partial_{x} \tag{3.14}
\end{equation*}
$$

and so, by (3.10a),

$$
\begin{equation*}
\psi_{x} \psi^{-1}=-\left(\omega E \omega^{-1}\right)_{1}=-A_{x}^{0} \tag{3.15}
\end{equation*}
$$

(using (1.12) again). This is consistent with (2.5). Now, ω satisfies identities like (2.7), where $(\cdots)_{n}$ is taken to denote the coefficient of λ^{-n}, so that (from (3.15))

$$
\begin{align*}
\partial_{N, k} A_{x}^{0} & =\left[\partial_{N, k} \omega_{1}, E\right]=\left[\left(\omega_{N, k} \omega^{-1}\right)_{1}, E\right] & & (\text { using }(2.7 \mathrm{~b})) \\
& =\left[\left(\omega k \omega^{-1}\right)_{N+1}, E\right] & & (\text { from }(3.8 \mathrm{~b})), \tag{3.16a}
\end{align*}
$$

and

$$
\partial_{-N, k} A_{x}^{0}=\left[\partial_{-N, k} \omega_{1}, E\right]=\left[E, A_{-N}^{1}(k)\right] \quad \text { (from the coefficient of } \lambda^{-1} \text { in (3.5b)) }
$$

i.e.

$$
\begin{equation*}
-\partial_{-N, k}\left(\psi_{x} \psi^{-1}\right)=\left[E, \psi\left(\Omega k \Omega^{-1}\right)_{N-1} \psi^{-1}\right] \tag{3.16b}
\end{equation*}
$$

(by (3.9a) and (2.5)). Equations (3.16) are the equations of motion corresponding to $A_{ \pm N}(k)$. (One could also obtain them by substitution of (3.8a), (3.9a) in (3.1).)

The commutation properties of the evolution operators will now be investigated. Recall Eq. (3.5):

$$
\begin{equation*}
\omega_{n, k} \omega^{-1}=\lambda^{n} \omega k \omega^{-1}-A_{n}(k) \quad \forall n \in \mathbb{Z}, k \in k \tag{3.17}
\end{equation*}
$$

(or alternatively use $\tilde{\omega}$, i.e. Eq. (3.7)) and consider the identity

$$
\begin{equation*}
\left(\left[\partial_{n, k}, \partial_{m, j}\right] \omega\right) \omega^{-1}=\partial_{n, k}\left(\omega_{m, j} \omega^{-1}\right)-\partial_{m, j}\left(\omega_{n, k} \omega^{-1}\right)+\left[\omega_{m, j} \omega^{-1}, \omega_{n, k} \omega^{-1}\right] \tag{3.18}
\end{equation*}
$$

for all $m, n \in \mathbb{Z}, k, j \in k$. Using (3.17), one has

$$
\begin{equation*}
\partial_{n, k}\left(\omega_{m, j} \omega^{-1}\right)=\lambda^{m}\left[\lambda^{n} \omega k \omega^{-1}-A_{n}(k), \omega j \omega^{-1}\right]-\partial_{n, k} A_{m}(j) . \tag{3.19}
\end{equation*}
$$

One finds that (3.18) becomes

$$
\begin{align*}
& \left(\left[\partial_{n, k}, \partial_{m, j}\right] \omega\right) \omega^{-1} \\
& \quad=\partial_{m, j} A_{n}(k)-\partial_{n, k} A_{m}(j)-\left[A_{n}(k), A_{m}(j)\right]+\lambda^{n+m} \omega[k, j] \omega^{-1} \tag{3.20}
\end{align*}
$$

and so (using (3.17) to rewrite the last term in (3.20)) one can deduce that the relation

$$
\begin{equation*}
\left[\partial_{n, k}, \partial_{m, j}\right]=\partial_{n+m,[k, j]} \tag{3.21}
\end{equation*}
$$

is equivalent to the condition

$$
\begin{equation*}
\partial_{n, k} A_{m}(j)-\partial_{m, j} A_{n}(k)+\left[A_{n}(k), A_{m}(j)\right]=A_{n+m}([k, j]), \tag{3.22}
\end{equation*}
$$

which must now be verified using (3.8a) and (3.9a). One needs to consider separately the cases where n, m are of the same or different sign. Suppose they are of different sign, i.e. $n=N(\geqq 0)$ and $m=-M(\leqq 0)$, and suppose ($N-M$) $\geqq 0$. Split (3.22) into coefficients of λ^{-p} and λ^{q} (where $p, q \geqq 0$):

$$
\begin{gather*}
\partial_{N, k} A_{-M}^{p}(j)+\left[A_{N}(k), A_{-M}(j)\right]_{-p}=0 \tag{3.23a}\\
-\partial_{-M, j} A_{N}^{q}(k)+\left[A_{N}(k), A_{-M}(j)\right]_{q}=A_{N-M}^{q}([k, j]) \tag{3.23b}
\end{gather*}
$$

Using (3.8a) and (3.9a), the left side of Eq. (3.23a) becomes

$$
\begin{aligned}
& {\left[\psi_{N, k} \psi^{-1}, \psi\left(\Omega j \Omega^{-1}\right)_{M-p} \psi^{-1}\right]+\psi\left(\left[\Omega_{N, k} \Omega^{-1}, \Omega j \Omega^{-1}\right]\right)_{M-p} \psi^{-1}} \\
& \quad+\sum_{r=0}^{M-p}\left[\left(\omega k \omega^{-1}\right)_{N-r}, \psi\left(\Omega j \Omega^{-1}\right)_{M-p-r} \psi^{-1}\right] \\
& \quad=\sum_{r=1}^{M-p}\left[\left(\omega k \omega^{-1}\right)_{N-r}, \psi\left(\Omega j \Omega^{-1}\right)_{M-p-r} \psi^{-1}\right] \\
& \quad+\sum_{r=1}^{M-p} \psi\left[\left(\Omega_{N, k} \Omega^{-1}\right)_{r},\left(\Omega j \Omega^{-1}\right)_{M-p-r}\right] \psi^{-1} \quad \text { (using (3.10)) } \\
& =0
\end{aligned}
$$

as required (using (3.12b) and noting that $r<N$). The left side of (3.23b) becomes

$$
\begin{aligned}
- & \left(\left[\omega_{-M, j} \omega^{-1}, \omega k \omega^{-1}\right]\right)_{N-q}+\sum_{r=q+1}^{M+q}\left[\left(\omega k \omega^{-1}\right)_{N-r}, A_{-M}^{r-q}(j)\right] \\
& =\left(\omega[k, j] \omega^{-1}\right)_{N-M-q} \quad(\operatorname{using}(3.9 \mathrm{a}),(3.12 \mathrm{a})) \\
& =A_{N-M}^{q}([k, j]),
\end{aligned}
$$

as required (using (3.8a)).
The calculation for $(N-M)<0$ proceeds along similar lines, noting that for this case $A_{N-M}([k, j])$ has the form (3.9a). One can also check the cases where n, m in (3.22) are of the same sign. (The case $n, m \geqq 0$ was considered in [1]). Having verified (3.22), one can conclude, from (3.21), that the evolution operators $\partial_{ \pm N, k}$ provide a realization of the Kac-Moody algebra $k \otimes \mathbb{C}\left[\lambda, \lambda^{-1}\right]$.

Notice that (3.22) is a generalization of the zero curvature condition (3.1). Putting $(n, k)=(1, E)$ and recalling (3.14), Eq. (3.22) becomes

$$
\begin{equation*}
\partial_{x} A_{m}(j)-\partial_{m, j} A_{x}+\left[A_{x}, A_{m}(j)\right]=0 \quad \forall m \in \mathbb{Z}, j \in k \tag{3.24}
\end{equation*}
$$

A less illuminating (but quicker) method of obtaining (3.21) is to use ψ in place of ω in (3.18). For example, using (3.10), (3.11) and Eq. (3.5), (3.7), one obtains

$$
\begin{align*}
& \left(\left[\partial_{N, k}, \partial_{-M, j}\right] \psi\right) \psi^{-1} \\
& \quad=\sum_{r=1}^{N}\left[\left(\omega j \omega^{-1}\right)_{r-M}-\psi\left(\Omega j \Omega^{-1}\right)_{M-r} \psi^{-1},\left(\omega k \omega^{-1}\right)_{N-r}\right] \\
& \quad+\sum_{r=1}^{M} \psi\left[\left(\Omega k \Omega^{-1}\right)_{r-N}-\psi^{-1}\left(\omega k \omega^{-1}\right)_{N-r} \psi,\left(\Omega j \Omega^{-1}\right)_{M-r}\right] \psi^{-1} . \tag{3.25}
\end{align*}
$$

If $(N-M) \geqq 0$ then (3.25) becomes

$$
\begin{align*}
\left(\left[\partial_{N, k}, \partial_{-M, j}\right] \psi\right) \psi^{-1} & =\sum_{s=0}^{N-M}\left[\left(\omega j \omega^{-1}\right)_{N-M-s},\left(\omega k \omega^{-1}\right)_{s}\right] \\
& =-\left(\omega[k, j] \omega^{-1}\right)_{N-M}=\psi_{N-M,[k, j]} \psi^{-1} \tag{3.26}
\end{align*}
$$

with a similar result for $(N-M)<0$. One can also check the equal sign cases in the same fashion.

The evolution operators $\partial_{ \pm N, k}$ can be extended in the obvious way, simply by replacing k by a general constant element $g \in g$, i.e.

$$
\begin{equation*}
A_{n}(g)=\lambda^{n} \omega g \omega^{-1}-\omega_{n, g} \omega^{-1}=\lambda^{n} \tilde{\omega} g \tilde{\omega}^{-1}-\tilde{\omega}_{n, g} \tilde{\omega}^{-1} \quad \forall n \in \mathbb{Z}, g \in g . \tag{3.27}
\end{equation*}
$$

One can then verify in the same way as earlier the equation

$$
\begin{equation*}
\partial_{n, g} A_{m}(h)-\partial_{m, h} A_{n}(g)+\left[A_{n}(g), A_{m}(h)\right]=A_{n+m}([g, h]) \quad \forall n, m \in \mathbb{Z}, g, h \in g, \tag{3.28}
\end{equation*}
$$

which is equivalent to the condition

$$
\begin{equation*}
\left[\partial_{n, g}, \partial_{m, h}\right]=\partial_{n+m,[g, h]}, \tag{3.29}
\end{equation*}
$$

and so one obtains a realization of the Kac-Moody algebra $g \otimes \mathbb{C}\left[\lambda, \lambda^{-1}\right]$. Notice that for $m \in m$ the quantities $A_{ \pm N}(m)$ do not satisfy the zero curvature condition, which is why they were not obtained in the original construction (where one sought solutions of (3.1)), and so the parameters ($\pm N, m$) cannot be regarded as true "times." Their interpretation will be discussed later.

4. Hamiltonians

The Hamiltonians $H_{n}(g)$ for the operators $\partial_{n, g}$ are defined by

$$
\begin{equation*}
\partial_{n, g} f=\left\{f, H_{n}(g)\right\}, \tag{4.1}
\end{equation*}
$$

where f is any function, and the Poisson bracket is given by

$$
\begin{align*}
\left\{f_{1}, f_{2}\right\}= & \sum_{\alpha} \int d z\left(\partial f_{1} / \partial q^{-\alpha}(z) \cdot \partial f_{2} / \partial q^{\alpha}(z)\right. \\
& \left.-\partial f_{1} / \partial q^{\alpha}(z) \cdot \partial f_{2} / \partial q^{-\alpha}(z)\right) \tag{4.2}
\end{align*}
$$

Hamilton's equations take the form

$$
\begin{align*}
\partial_{n, g} q^{\alpha} & =-\partial H_{n}(g) / \partial q^{-\alpha} \tag{4.3a}\\
\partial_{n, g} q^{-\alpha} & =\partial H_{n}(g) / \partial q^{\alpha} \tag{4.3b}
\end{align*}
$$

Now, the Jacobi identity, together with (4.1) and (3.29), implies that (for any function f)

$$
\begin{align*}
\left\{f\left\{H_{n}(g), H_{m}(h)\right\}\right\} & =\left[\partial_{n, g}, \partial_{m, h}\right] f=\partial_{n+m,[g, h]} f \\
& =\left\{f, H_{n+m}([g, h])\right\} \quad \forall n, m \in \mathbb{Z}, g, h \in g \tag{4.4}
\end{align*}
$$

and so

$$
\begin{equation*}
\left\{H_{n}(g), H_{m}(h)\right\}=H_{n+m}([g, h])+C_{n, m}^{g, h} \tag{4.5}
\end{equation*}
$$

where $C_{n, m}^{g, h}$ is a constant. Since the Hamiltonians are only defined up to addition of constants, it is possible to arrange for the Poisson bracket to take the form [3]

$$
\begin{equation*}
\left\{H_{n}(g), H_{m}(h)\right\}=H_{n+m}([g, h])+n \delta_{n,-m} \delta_{g, h} c, \tag{4.6}
\end{equation*}
$$

where c is a constant; i.e. the Hamiltonians provide a realization of the centrally extended algebra $g \otimes \mathbb{C}\left[\lambda, \lambda^{-1}\right] \oplus \mathbb{C} c$.

The Hamiltonian of the GNLS equation is $H_{2}(E)$, so Eq. (4.6) implies that $H_{ \pm N}(k)$ are conserved quantities for the GNLS equation, except for $H_{-2}(E)$ if $c \neq 0$. Notice also that (4.6) and (4.1) imply

$$
\begin{equation*}
\partial_{ \pm N, k} H_{0}(E)=0 \quad \forall N \geqq 0, k \in k \tag{4.7}
\end{equation*}
$$

and one can use (3.16a) (with $N=0, k=E$) to deduce that

$$
\begin{equation*}
H_{0}(E)=-i \int q^{\alpha} q^{-\alpha} \tag{4.8}
\end{equation*}
$$

(summation implied). Next, observe that

$$
\begin{align*}
\int \operatorname{Tr}\left(E\left[A_{x}^{0}, \partial_{n, g} A_{x}^{0}\right]\right) & =i \int\left(q_{n, g}^{\alpha} q^{-\alpha}-q^{\alpha} q_{n, g}^{-\alpha}\right) \\
& =2 i \int q_{n, g}^{\alpha} q^{-\alpha}=-2 i \int q_{n, g}^{-\alpha} q^{\alpha} \tag{4.9}
\end{align*}
$$

if $g \in k$ (using (4.7), (4.8)). Differentiation of (4.9) with respect to $q^{ \pm \alpha}$ gives Hamilton's equations (4.3), so that one can use (3.16) to write

$$
\begin{align*}
H_{N}(g) & =-i a \int \operatorname{Tr}\left(A_{x}^{0} \omega g \omega^{-1}\right)_{N+1} \tag{4.10a}\\
H_{-N}(g) & =i a \int \operatorname{Tr}\left(A_{x}^{0} \psi\left(\Omega g \Omega^{-1}\right)_{N-1} \psi^{-1}\right) \tag{4.10b}
\end{align*}
$$

where $a=1 / 2$ if $g \in k$, and $a=1$ if $g \in m$.

5. Linearization

For step operators $e_{ \pm \alpha} \in m$, define the formal power series

$$
\begin{equation*}
\Gamma_{ \pm \alpha}(\lambda)=\sum_{n=-\infty}^{\infty} \lambda^{-(n+1)} H_{n}\left(e_{ \pm \alpha}\right)=i \int \operatorname{Tr}\left(A_{x}^{0}\left(\psi \Omega e_{ \pm \alpha} \Omega^{-1} \psi^{-1}-\omega e_{ \pm \alpha} \omega^{-1}\right)\right) \tag{5.1}
\end{equation*}
$$

(by (4.10)). Then (4.6) and (1.2) imply

$$
\begin{equation*}
\partial_{N, E} \Gamma_{ \pm \alpha}(\lambda)=\left\{\Gamma_{ \pm \alpha}(\lambda), H_{N}(E)\right\}= \pm i \lambda^{N} \Gamma_{ \pm \alpha}(\lambda) \tag{5.2}
\end{equation*}
$$

and so $\Gamma_{ \pm \alpha}(\lambda)$ linearizes the equations of motion of the GNLS hierarchy.
Using the cyclic property of the trace, (5.1) can be written as

$$
\begin{equation*}
\Gamma_{ \pm \alpha}(\lambda)=i \int\left(\left(\Omega^{-1} \psi^{-1} A_{x}^{0} \psi \Omega\right)^{\mp \alpha}-\left(\omega^{-1} A_{x}^{0} \omega\right)^{\mp \alpha}\right) \tag{5.3}
\end{equation*}
$$

where $(X)^{\mp \alpha}$ denotes the $e_{\mp \alpha}$ component of X. Now, the restriction to the compact or non-compact form corresponds to

$$
\begin{equation*}
(X)^{\alpha^{*}}=\mp(X)^{-\alpha} \tag{5.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\{\Gamma_{\alpha}(\lambda), \Gamma_{\beta}^{*}(\mu)\right\}=\mp \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \lambda^{-n-1} \mu^{-m-1} H_{n+m}\left(\left[e_{\alpha}, e_{-\beta}\right]\right) \tag{5.5}
\end{equation*}
$$

when $q^{-\alpha}=\mp q^{\alpha^{*}}$. Also

$$
\begin{equation*}
\left\{\Gamma_{\alpha}(\lambda), \Gamma_{\beta}(\mu)\right\}=0 \tag{5.6}
\end{equation*}
$$

(since (1.2) implies that $\left[e_{\alpha}, e_{\beta}\right]=0$). Equation (5.5) shows that the transformation

$$
\begin{equation*}
q^{\alpha} \rightarrow \Gamma_{\alpha} \tag{5.7}
\end{equation*}
$$

is not canonical.

6. Discussion

Recalling Eq. (3.14), one notes the following special cases of (3.29):

$$
\begin{align*}
{\left[\partial_{x}, \partial_{n, k}\right] } & =0 \quad \forall n \in \mathbb{Z}, k \in k \tag{6.1a}\\
{\left[\partial_{x}, \partial_{n, e_{ \pm \alpha}}\right] } & =\mp i \partial_{1+n, e_{ \pm \alpha}} \quad \forall n \in \mathbb{Z}, e_{ \pm \alpha} \in m \tag{6.1b}
\end{align*}
$$

The parameters (n, k) could be regarded as "time" variables, but ($n, e_{ \pm \alpha}$) cannot. Transformations which do not commute with translations are regarded, in the context of gauge theories, as "internal symmetries" [4]. The mutually commuting class $\left\{\partial_{n, e_{\alpha}}\right\}$ can be thought of as the basis of an "internal space." It is the generator of translations in this space $\left(\Gamma_{\alpha}\right)$ which linearizes the GNLS system. It should be noted, however, that what one is really considering is the phase space of the system. The construction seems, in fact, to be a generalization of the conventional approach to the $S U(2)$ non-linear Schrödinger equation [5], where one considers the so-called "monodromy matrix" whose diagonal elements give rise to conserved quantities, while the off-diagonal elements lead to the linearization of the system.

The use of the gauge transformation $\tilde{\omega}$ is similar to the method used by Olive and Turok for deriving the conserved quantities of the Toda equation [6]. In that case, a λ-independent local gauge transformation was composed with a local transformation of the form (1.25) so that the transformed gauge potential was a series belonging to k. In the present case, as was mentioned earlier, the λ-independent element ψ is associated with the generalized Heisenberg ferromagnet (GHF) [2]. Consider the transformation

$$
\begin{align*}
A_{x} & \rightarrow \tilde{A}_{x}=\psi^{-1} A_{x} \psi+\psi^{-1} \psi_{x}=\lambda \psi^{-1} E \psi, \tag{6.2a}\\
A_{2}(E) & \rightarrow \tilde{A}_{t}=\psi^{-1} A_{2}(E) \psi+\psi^{-1} \psi_{2, E}=\lambda^{2} \psi^{-1} E \psi+\lambda \psi^{-1} A_{x}^{0} \psi \tag{6.2b}
\end{align*}
$$

(by (3.10)) and define

$$
\begin{equation*}
S=\psi^{-1} E \psi \tag{6.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\partial_{x} S=\psi^{-1}\left[E, \psi_{x} \psi^{-1}\right] \psi=\psi^{-1}\left[A_{x}^{0}, E\right] \psi, \tag{6.4}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left[S, S_{x}\right]=\psi^{-1}\left[E\left[A_{x}^{0}, E\right]\right] \psi=\psi^{-1} A_{x}^{0} \psi \tag{6.5}
\end{equation*}
$$

i.e. the transformed gauge potentials are

$$
\begin{align*}
\tilde{A}_{x} & =\lambda S \tag{6.6a}\\
\tilde{A}_{t} & =\lambda^{2} S+\lambda\left[S, S_{x}\right] \tag{6.6b}
\end{align*}
$$

and the zero curvature condition becomes the GHF equation

$$
\begin{equation*}
\partial_{t} S=\left[S, S_{x x}\right] . \tag{6.7}
\end{equation*}
$$

The conserved quantities which have been constructed for the GNLS system are non-local, because of the non-locality of the gauge transformations used to construct them. Non-local conserved quantities were constructed for the non-linear σ-model in [7], and it was shown in [8] that these are associated with infinitesimal transformations which form a centre-free Kac-Moody algebra. However, the charges themselves do not form an algebra [9], and the Kac-Moody symmetry is interpreted as a property of the solution space, rather than of the phase space. The infinitesimal symmetries of the $S U(2)$ non-linear Schrödinger equation were investigated in [10]. In that construction, only the "positive" subalgebra was realized non-trivially.

The linearization of the GNLS system using step operators of a Kac-Moody algebra (Eq. (5.2)) seems to be related to the work of the Kyoto group [11], who use vertex operators to construct soliton solutions for a large class of equations. It would be interesting to establish the connection of these ideas with the approach of Adler and van Moerbeke [12]. Other topics worth pursuing include the investigation of the central term in (4.6) (e.g. the conditions under which it vanishes), and the quantization of the system. For the $S U(2)$ case, the quantization of the action-angle variables (i.e. the canonical linearizing variables) gives the "Bethe ansatz" creation operators [13]. In the general case, quantization should lead to vertex operators of some sort.

The methods which have been presented here can be generalized to cover a wide range of integrable systems. This will be discussed in a subsequent paper [14].

Acknowledgements. This work was carried out under the supervision of Professor D. I. Olive, with financial support from the S.E.R.C.

References

1. Crumey, A. D. W. B.: Local and non-local conserved quantities for generalized non-linear Schrödinger equations. Commun. Math. Phys. 108, 631-646 (1987)
2. Fordy, A. P., Kulish, P. P.: Nonlinear Schrödinger equations and simple Lie algebras. Commun. Math. Phys. 89, 427-443 (1983)
3. Goddard, P., Olive, D.: Kac-Moody and Virasoro algebras in relation to quantum physics. DAMTP 86-5 (1986)
4. Gervais, J.-L.: Gauge invariance over a group as the first principle of interacting string dynamics. LPTENS preprint 86/1 (1986)
5. Faddeev, L. D.: In: Recent advances in field theory and statistical mechanics. Les Houches, Session 39. London: Elsevier 1984, pp. 563-608
6. Olive, D., Turok, N.: Local conserved densities and zero curvature conditions for Toda lattice field theories. Nucl. Phys. B257 [FS14], 277 (1985)
7. Luscher, M., Pohlymeyer, K.: Scattering of massless lumps and non-local charges in the twodimensional classical non-linear σ-model. Nucl. Phys. B137, 46-54 (1978)
8. Dolan, L.: Kac-Moody algebra is hidden symmetry of chiral models. Phys. Rev. Lett. 47, 1371-1374 (1981)
9. de Vega, H. J., Eichenherr, H., Maillet, J. M.: Classical and quantum algebras of non-local charges in σ-models. Commun. Math. Phys. 92, 507-524 (1984)
10. Eichenherr, H.: Symmetry algebras of the Heisenberg model and the non-linear Schrödinger equation. Phys. Lett. 115B, 385-388 (1982)
11. For a review, see: Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943-1001 (1983)
12. Adler, M., van Moerbeke, P.: Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. Math. 38, 318-379 (1980)
13. For a review, see: Thacker, H. B.: Exact integrability in quantum field theory and statistical systems. Rev. Mod. Phys. 53 (2), 253-285 (1981)
14. Crumey, A. D. W. B.: Integrable dynamical systems associated with Kac-Moody algebras. In preparation

Communicated by K. Osterwalder
Received September 25, 1986

