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Abstract. For any simply connected polygon in the plane, the number of
billiard orbits which begin and end at a vertex grows subexponentially with
respect to the length or to the number of reflections. This implies that the
numbers of isolated periodic orbits and of families of parallel periodic orbits do
grow subexponentially. The main technical device is a calculation showing that
the topological entropy of the Poincare map for the billiard flow is equal to
zero.

Let A CR2 be a simply connected polygon. A broken (polygonal) line formed by
the segments [x0, xj, [xl5 x2]> •> Lχ

n-ι> XJ wn*l be called a generalized diagonal of
A if it lies inside A except for the points xθ9...9 xn9 the points x0 and xn are vertices of
Δ9 the points x t . . . xn_ t lie on the sides of A9 and for i = 1,..., n — 1 the segments
[xt _ 15 xj and [xί5 xi + ί] form the same angle with the side of A passing through x t

(cf. Fig. 1).
The total number of different generalized diagonals of A is always infinite. Let

DT(A) be the number of different generalized diagonals of A of length <£ T.
The purpose of the first three sections of this note is to prove the following

elementary geometric theorem:

Theorem, lim lθg(^}) =0.

Fig. 1
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In Sect. 4 we derive some corollaries from this theorem and discuss
generalizations and possible refinements of our results.

1. Poincare Map for the Billiard Flow

Let {φt} be the billiard flow defined on the set of all unit tangent vectors with the
foot points in A. Such a vector u moves with unit speed along the straight line until
it reaches the boundary of Δ9 then instantly changes direction according to the rule
"the angle of incidence is equal to the angle of reflection," and continues along the
new line. This motion is determined for all times unless the orbit hits a vertex of Δ.
Thus, generalized diagonals correspond to those orbits of the billiard flow in Δ
which can be extended only for a finite time in both directions.

Let Γ be the boundary of Δ and let V be the set of all unit tangent vectors with
foot points at Γ directed inside Δ. Let us denote by Φ the first-return map (Poincare
map) induced by the billiard flow on V. This map and its iterates is defined,
continuous and smooth everywhere except for the vectors whose billiard orbits hit
vertices of Δ.

Let us fix a vertex P of Δ and an orientation on Γ. For u e V let θ be the angle
between the positive direction on Γ and the direction of u, and let / be the length of
the part of Γ, from P to the foot point of u in the positive direction. There is an
ambiguity in defining the angle θ for the vector with the foot point in a vertex oϊΔ,
but this will not affect our considerations. We will use τ = cotan(9 and / as
coordinates in V so that V is represented as a strip

7={(τ,/): -oo<τ<oo, 0^/<L},

where L is equal to the length of Γ.
Another convenient coordinate system is given by the coordinates θ and

s = lsmθ. In (0,s) coordinates we have

V={(θ,s):

so that V has a natural compactification

(1)

and the map Φ preserves Lebesgue measure dsdθ = sin θdldθ. Parallel billiard orbits
remain parallel after reflection about the same side of Δ and the distance between
such orbits does not change after such a reflection. This means that near a point of
continuity (00, s0) of Φ", such that Φn(θ0, s0) = (θ1,sί\ the map Φn has the following

fθΓm : Φ(0, s) = (θ, + ε(θ - 00), Sl + φ - so) + h(θ)) , (2)

where ε = ± 1. The function h is locally the same, but it changes during the passage
through a discontinuity for Φn. Thus, if Φ is continuous on a horizontal interval
y = {θ = θ0, s1^s^s2} the 5-length of y, s(γ) = s2 — st is preserved by Φ.

2. Structure of Discontinuities of Poincare Map

The following construction is useful in many considerations concerning the
billiard flows, including the proof of our theorem.
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Let us consider a billiard orbit starting from Γ. Instead of reflecting the orbit
about a side of Zl, we reflect the polygon about the same side and continue the orbit
as a straight line. When this line meets a side of the reflected polygon we again
reflect the polygon, etc. The sequence of reflections obtained that way depends on
the orbit, but it is the same for all nearby orbits as long as they intersect the same
sides of Γ. This process can be extended indefinitely along any orbit which does not
hit a vertex of Γ. If it does, the straightened orbit will hit a vertex of one of the
reflected polygons.

Let for u e V the associate line, L(u\ be the straight line parallel to u and passing
through the foot point of u. Let us call a set B C V a bundle if the foot points of
vectors from B cover a segment on one of the sides of Δ and their associate lines are
either all parallel or pass through the same point. The following lemma follows
immediately from the definition.

Lemma 1. // the map Φ is continuous at all points of a bundle BcV, then Φ(B) is also
a bundle.

A straightforward computation shows that in (τ, /) coordinates bundles are
represented by line segments and vice versa. Thus, Lemma 1 immediately implies

Lemma 2. // the map Φ is continuous at every point of a segment y in (τj)
coordinates, then Φ(y} is also a segment.

Let us consider now the structure of discontinuities for the iterates of Φ. As we
mentioned above, the reflection process associated with a billiard orbit stops if the
straightened orbit hits a vertex of the corresponding reflected polygon. Let us
denote the point of R2 representing this vertex by A. Then if we move the foot
point of the original vector along Γ, the billiard orbit whose associate line hits A
will move along a bundle in V. An endpoint of this bundle is the foot point of a
vector u whose associate line L(u) directed toward A meets another vertex in the
process of reflection before A. We will call the segment representing this bundle
and associated with a fixed sequence of reflections and a particular vertex A of a
reflected polygon, a branch of discontinuity and will denote it by βA. There is a
slight ambiguity in that notation because another admissible sequence of reflection
may place the image of a vertex into the same point.

It is easy to see that the branch βA connects two other branches of
discontinuity, in the case represented by Fig. 2, βB and βc. The vectors from βA

represent singular points of a certain iterate Φn of Φ. We will call the number n,
the order of the branch βA.

It is convenient to call the set of vectors with the foot point at a vertex of Δ a
branch of discontinuity of order 0. These points are also singular points for Φ.

If the branch βA connects branches βB and βc as on Fig. 2, the order oΐβA is not
less than the orders of βB and βc. The pre-image Φ~^(βA) of any branch of
discontinuity of order n^ί consists of several branches of discontinuity of order
n+1. Replacing Φ by Φ"1 we define branches of discontinuity of negative order.

Lemma 3. Given D > 0 and ε > 0, there exists N = N(D, ε) such that any branch of
discontinuity of order n, \n\^.N which passes through a point (τ0, /0), where |τ0| rgD
makes in coordinates (τ, /) an angle less than ε with the horizontal direction.
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Fig. 2

Proof. The coordinate representation of a branch βA passing through the point
-,, __/ τ ] \ iς
tin — I i<r\, in; Aϊ> 7 7

υ W '

where PF= Tsin#0, T is the distance from the foot point of u0 to A. Since by the
assumption the angle Θ0 is bounded away from 0 and π, W goes to infinity with T.
But it is well known that T >c1\n\ — c2, where n is the order of the branch βA and
c l 5 c2 are constants, because the number of successive reflections of a billiard orbit
near a fixed vertex is bounded by a constant which depends only on the angle at
that vertex. Thus, under the assumption of the lemma W-*ao as |n|->oo. Π

All branches of discontinuity of orders 0 and 1 divide the strip V into a finite
number of convex polygonal regions which we will call l-cells. Convexity follows
from the fact that the endpoints of every branch of order one are interior points of
other branches of order 0 or 1. The map Φ is defined and continuous inside each 1-
cell so that by Lemma 2 the image of any segment inside an 1-cell is a segment.
Actually, the map Φ inside each 1 -cell is a projective map in (τ, /) coordinates. Let us
denote the partition of V into l-cells by ζ. For a while we will speak about
partitions of V meaning partitions of the set of continuity for some iterate Φ". In
Sect. 3 the word "partition" will be given a slightly different meaning. Let

We will call elements of this partition n-cells. More generally, elements of the

partition φ-'ζv ... v Φ ζ v ζ v φ - ' C v ... vφ-«+ 1C

will be called (w, n)-cells.
Let K be the total number of different branches of discontinuity of orders 0

and 1.

Lemma 4. Each (w, n)-cell σ is a convex polygonal region with ^ K(m + n) sides. The
maps Φn and Φ~m restricted to σ are continuous.

Proof. We will only give a proof for n-cells. The general case is completely similar.
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We proceed by induction in n. For n = 1 the statement of the lemma follows
from the definition of 1 -cells. For any n-cell σ we can find an (n — l)-cell σ' and an 1 -
cell d such that

By the inductive assumption, σ' is a convex polygonal region with ^ K(n — 1) sides.
Since Φn~ 1 is continuous on σ', it is a projective map so that Φn~ V is also a convex
polygonal region with the same number of sides. Since d is also convex and has no
more than K sides, the intersection Φn~ Vnd is convex and has no more than Kn
sides. Furthermore, Φ~n + 1 is continuous on ΦM~V so that σ = Φ~" + 1(Φn~Vθίi)
is also a convex polygonal region with ^ Kn sides. The map Φ" is continuous on σ
because Φ is continuous on d. Π

Remark. It is easy to see that the sides of any n-cell are branches of discontinuity of
order at most n.

Lemma 5. Let σn,n=ί,2,... be a sequence of embedded n-cells and let σn be the
_ 00

closure of σn in V (cf. (\}). Then the intersection γ= f) σn is either a point or a
horizontal segment, n = ί

Proof. By Lemma 4, y is a closed convex set. Let us show that y cannot contain a
non-horizontal interval. If y contains such an interval, then a parallel interval of the
same length is contained inside an n-cell for n = 1, 2, 3, . . . . This will mean that the
reflection process for all billiard orbits corresponding to a certain bundle of non-
parallel vectors and of fixed size does not meet any obstacle, so that the sequence of
reflections is the same for all those orbits. But this is impossible, because at every
reflection about an image of a side of A an image of a vertex can be found at the end
of the side, i.e. bounded distance away, whereas the cone generated by the orbits
beginning from the initial bundle becomes arbitrary wide. Π

3. Topological Entropy of Poincare Map

Let Cn be the number of different n-cells. In this section we will prove the following
proposition

Proposition, lim - - = 0.
M^OO n

Before proceeding to the proof of this proposition we will show how it implies
the theorem about generalized diagonals. Any generalized diagonal containing
n — 1 reflections corresponds to the intersection of a branch of discontinuity of
order 0 corresponding to the vertex x0 and a branch of discontinuity of order n.
Such an intersection is a vertex of an n-cell. By convexity (Lemma 4) each n-cell
may contain not more than four vertices which belong to branches of discontinuity
of order 0. On the other hand, any generalized diagonal of length T contains at
most KT reflections where K is a constant. Thus

so that the Proposition implies the Theorem.
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Proof of the Proposition. Let N = Card ζ be the number of different 1 -cells and let
us denote those cells by dl9 . . ., dN. Let furthermore F0 C V be the set of all points
where all iterates Φn, n e% are defined and continuous. Obviously, a point belongs
to FO if and only if it lies in the interior of an (n, rc)-cell for every positive integer n.

Let ΩN= (1, ..., JV}Z be the space of all doubly infinite sequences of symbols
1, . . ., N with the product topology and let S : ΩN-^ΩN be the left shift. The "coding"
map ψ : V0-+ΩN is defined by

where ωn(x) is defined from Φnxedωn(x).
Since ωn _ ι(Φx) = ωn(x), we have Φ-ψ = ψ'S. Let Σ C ΩN be the closure of the set

φ(F0) in the product topology. If ω = (ωn)neZeΣ, then ω can be arbitrary well
approximated by a point of the form ψ(x), x e F0 so that for every n,

n d^φ. (3)
k= -n

Let dk be the closure of the 1-cell dk in F [cf. (1)]. Thus, by (3) we have

d f °°

°ω= (Ί 4nΦΦ
n= — oo

By Lemma 5 the set σω is either a point or a horizontal segment.

Lemma 6. For every point ueV there are at most countably many ωeΣ such that
ueσω.

Proof. If ueV0 then ω is unique. If weF\F 0 then u belongs to a branch of
discontinuity. Let us first assume that u is not one of the two infinity points
corresponding to θ = 0 and θ = π. Let us fix a positive integer n and consider all
branches of discontinuity of orders fc, \k\^n passing through u. These branches
divide a small neighborhood of u into sectors belonging to different (n, n)-cells.
Each cell corresponds to a word from {1, ..., JV}211"1 and if weσ ω , ω = (coπ)neZ, the
word (ω_n + 15 . . ., ω0, . . ., ωn_ J must coincide with one of the words represented by
the cells. As n increases, the new branches of discontinuity passing through u
become more and more horizontal (Lemma 3) so that for every n the number of
sectors not belonging to any fixed sector around the horizontal direction is
uniformly bounded. This allows us to count all sectors appearing on all stages
according to the angle with the horizontal direction.

If u is an infinity point, let ω<=Σ and assume uneV0 and un-*u in F and
ψ(un)-+ω. Then for any meZ, ψ(Φmun)-+Smω. Assuming that ω is not a constant
element, we have that a subsequence of Φmun converges to a point u1 e F which is
not an infinity point. For each m there are only finitely many such u'. We have
u' G σSmω so that for every given u' by the first case of the lemma, there are only
countably many ω for which it is true. Thus for each m, Smω may only have
countably many values and the lemma is proved. Π

Lemma 7. Every ergodic non-atomic shift-invariant measure μ on Σ is supported by
the set ιp(VQ).
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Proof. Let ΣQ = {ωeΣ, σω belongs to the interior of a 1-cell}. Let us show that
μ(Σ0) = 1 . If ω 6 Σ\Σ0, then σω, which is a point or a horizontal segment (Lemma 5),
intersects a branch of discontinuity. If σω is a segment, only its endpoints may
belong to such a branch. If μ(Σ\Σ0) > 0 then by the ergodicity, μ almost every point
ω visits the set Σ\Σ0 infinitely many times, i.e. there are infinitely many n such that
Snω e Σ\Σ0. lϊσω is a point, that means that σω belongs to more than one branch of
discontinuity, but there are only countably many points in V with such a property.
By Lemma 6, there are only countably many ω for which σω may be one of those
intersection points. Similarly, if σω is a segment, one of its ends must belong to the
same countable set and Lemma 6 applies again. Thus, the set of points visiting
Σ\Σ0 infinitely many times (actually, more than once) is countable and since μ is a
non-atomic measure, μ(Σ\Σ0) = 0.

Since ψ(V0) = f) S"Σ0 we have μ(ψ(V0)) = 1. Π

Lemma 8. lim - - is equal to h(s\Σ\ the topologίcal entropy of the shift S
fi-* oo n

restricted to the set Σ.

Let us construct a natural partition of Σ corresponding to the partition ζ of F0.
Namely let

Sets ck are disjoint and form an open cover of Σ which we will denote by ξ. The
number of n-cells is equal to the number of elements in the cover

Since this cover is a topological generator for S, by definition

n->oo n-»oo

Lemma 9. For every Borel S-inυariant ergodic measure μ supported by the set Σ the
entropy hμ(S) is equal to zero.

Proof. Let us discuss the relationship between the partition ζ of V0 and the
partition ξ oϊΣ. Since by Lemma 7 μ(ψ(V0)) = 1, from the measure-theoretic point
of view ξ can be viewed as a partition of the set ψ(V0). Let ω = (ωπ)M6Z e ψ(V0) and let

σ~= n φ~Xn
n = 0

00

This set is an element of the partition ζ~ = \/ Φ~nζ. Since the map is a one-to-one
« = o

map between F0 and its image, the set φ(σ~) coincides with the element of the
00

partition ξ~ = V S~nξ containing ω.
n = 0

To prove the lemma it is enough to show that up to a set of //-measure zero
Sξ~ = ξ~. For, since ξ is by definition a generator for S, we have

ξ-) = 0 [1].
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By Lemma 5, the set σ~ is either a point or a horizontal interval. Since
σs- ιω C Φ 1(7ω 5 then the set of ω for which σ~ is a point is S-invariant and by the
ergodicity of μ, this set either has full measure or has measure zero. In the former
case ζ~ is a partition into points so that ξ~ is also a partition into points, and since
always Sξ ~ ̂  ξ ~ , we have Sξ ~ = ξ ~ . In the latter case let us consider the invariant
transversal length s(σ~) (cf. end of Sect. 1). Since Φ is continuous on σ~, we have
s(#O = s(σ ~). But since Sξ ~ ̂  ξ ~ , we have σs~ω D Φσ~, so that s(σ<Γω) ̂  s(σ ~). Thus
the function s(σ~) does not decrease along the orbits of S. Since the measure μ is S-
invariant this implies that s(σ~) is S-invariant almost everywhere, and since μ is
ergodic, s(σ~) = const μ-almost everywhere so that σ^~ω = σ~ and Sξ~ =ξ~. D

0/ the Proposition. By Lemma 8 and the variational principle for topological
entropy (cf. e.g. [2, Sect. 18]) we have

)= sup
suppμcl
μ-ergodic

By Lemma 9 the quantity at the right is equal to 0. This finishes the proof. Π

4. Concluding Remarks

Our results allow us to estimate several other asymptotics related to a polygonal
billiard. We will say that a certain quantity depending on a real parameter (as
DT(Δ) in the Theorem) or on a natural parameter (as Cn is the Proposition) grows
subexponentially if the assertion of the Theorem or the Proposition holds.

Corollary 1. The total number of branches of discontinuity of orders
fc = 0, ±1,..., ±n grows subexponentially as n-+cc.

Proof. Follows immediately from Lemma 4 and the Proposition.
Any periodic orbit of the billiard flow in a polygon appears either as a member

of a family of "parallel" orbits of the same length if the orbit contains an even
number of links, or it is isolated and is surrounded by a family of parallel orbits of
double length if the orbit has an odd number of links. The boundary of any family
of parallel orbits consists of a number of generalized diagonals of the same or
smaller length. Any generalized diagonal can appear as a part of the boundary for
at most two different families of periodic orbits. Thus we associate with every
isolated periodic orbit or a family of orbits of length T, a generalized diagonal of
length ^2T, and no diagonal can appear in such a count more than four times.
Thus, we have from the Theorem

Corollary 2. The total number of isolated periodic orbits and families of parallel
periodic orbits of length ^ T grows subexponentially with T.

The subexponential asymptotics asserted by the Theorem, the Proposition,
and the Corollaries can be generalized to the billiards in polyhedra of higher
dimension. For an m-dimensional polyhedron A ClRm we consider the number of
continuous families of singular orbits starting on a given fc-dimensional face,
k^m — 1 ending on a given /-dimensional face l^m — 2 and containing an orbit of
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length ^ T. All these numbers grow subexponentially. The generalized diagonals
correspond to the case k = I = 0. In the multi-dimensional case, periodic orbits in
general do not appear in families. However, every periodic orbit corresponds to a
sequence of reflections from the faces of the polyhedron which belongs to the
compact part of the group generated by those reflections. Nearby orbits follow the
same sequence of reflections and the boundary of the region is formed by several
families of singular orbits of the above-mentioned type with k + l = m— 1.

The scheme of the proof remains the same as for the two-dimensional case. It
includes the construction of appropriate coordinate systems on the set of tangent
vectors with the foot points on Γ = dΔ including Euclidean coordinates for the foot
points on each face and projective coordinates for the tangent vector, the
construction of branches of discontinuity and the piecewise-projective structure of
the Poincare map, the coding and the description of elements of the partition

00

ζ~ = \J Φ~nζ as "horizontal" convex sets so that Φ acts isometrically on every
« = o

such element in appropriate coordinates. We are planning to present the details for
the multi-dimensional case in a separate paper.

The subexponential estimates for the asymptotics proved in this paper are
weaker than the expected behavior of the quantities involved. It is easy to see that
DT(Δ)> const T. The quadratic asymptotic Dτ(A}~cT2 which is obvious for the
classical integrable billiards, i.e. for A being a rectangle, equilateral triangle or a

71 71
right triangle with an angle — or — , has been generalized by Gutkin [3] for a

6 4
broader class of "almost integrable" billiards. For a rational polygon, i.e. a
polygon all of whose angles are commensurable with π, a polynomial estimate for
the growths of DT(A) is known. Gutkin suggested the following elegant form of that
estimate: DT(A)< const Tg, where g is the rank of the translation subgroup of the
group generated by reflections about the sides of A. He also pointed out that in the
non-rational case this rank is infinite (personal communication). We conjecture
that a polynomial estimate Dτ(A)<cTk holds for any polygon and similar
estimates hold for all qualities described above for the polyhedral billiards.

For the polygons it is even possible that k = 2 always, but we do not think that
this is likely. The strongest evidence in favor of that conjecture is a recent result of
Masur [7] who proved it for rational billiards. His result is based on Teichmϋller
theory considerations and on some previous results of Boshennitzan [4], who also
showed that the quadratic estimate implies the main result of [5].

It is not known whether any polygonal billiard contains a periodic orbit.
Recently Masur also using the methods of Teichmϋller theory proved the existence
of a periodic orbit for any rational polygon [6].

It is possible that for any rational polygon the total number PT(A) of different
parallel families of periodic orbits of length ^ T satisfies the inequality

PT(A)^ const DT(A}.

On the other hand, we think that in the non-rational case typically

Γ T Γ .
hm sup f ^ < lim mf

logT logT
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