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Abstract. In the local potential approximation, renormalization group equa-
tions reduce to a semilinear parabolic partial differential equation. We derive
this equation and show the relation with the hierarchical model. We construct
a family of non-trivial fixed points u\w n = 29 3,4,..., which have the form of
n-well potentials and exist in the ranges of dimensions 2<d<dn = 2 + 2/(n — 1).
As d\dn, u%n tends to zero. For the Wilson fixed point u\, we give bounds on
critical exponents. In the case of dipole gas in this approximation we show that
no non-trivial fixed points exist.

1. Introduction

Non-trivial fixed points of the renormalization group (RG) play a crucial role in
the understanding of statistical mechanics systems in the vicinity of the critical
point [1]. In the case of a symmetric scalar field (a classical statistical mechanics
system with one-component order parameter) the non-trivial fixed points are
expected to appear as bifurcating from the trivial massless fixed point as one varies
continuously the dimension d of space [2]. These bifurcations occur at the
thresholds dn = 2 + 2/(n — 1), n = 2,3,4,..., where the linearized RG acquires a zero
mode (see Fig. 1. The dotted lines represent branches which are believed to be
unphysical). The fixed point relevant for three dimensional physics is given by
extrapolating to d = 3 the branch bifurcating at 4 = d2 dimensions.

This pattern is not well understood from a rigorous point of view, but some
pieces of it were established in toy models like Dyson's hierarchical one [3]: Bleher
and Sinai [4] proved for this model the existence of a non-trivial fixed point if
d = dn — ε, where ε>0 is small enough. Their result was refined by Collet and
Eckmann who proved that the ε-expansion is asymptotic [5]. Gawedzki and
Kupiainen considered the case of an N-component spin system in the hierarchical
approximation and constructed a fixed point in three dimensions for N large
enough [6]. Recently Witter and Koch [7] succeeded in constructing a fixed point
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Fig. 1. Fixed points in the space of hamiltonians as functions of the dimension d. G is the Gaussian,
W the Wilson fixed point

in three dimensions and N = 1 for Gallavotti's [8] version of the hierarchical model
with the help of a computer.

In this paper, we study a continuous scale version of the hierarchical model. It
is given by the partial differential equation

1-2
-xuy (1.1)

describing the flow of the effective potential u(t, x) on momentum scale e * as a
function of the field xelR. A similar equation was studied numerically by
Hasenfratz and Hasenfratz [9] who found a non-trivial fixed point in three
dimensions. Brydges and Kennedy [10] also studied similar equations in
connection with the Mayer expansion.

Equation (1.1) can be derived in two ways: either as a limit of infinitesimal step
of the recursion relation of the hierarchical model, or as the local potential
approximation (LPA) to Wilson's "exact" renormalization group equations
[11,12]. These derivations are given in Sect. 2.

The spectrum of the linearization at u = 0 of (1.1) is

in
d-2

dx

and thus the bifurcation picture discussed at the beginning of this section should
hold. Unfortunately conventional bifurcation analysis does not work here due to
the nasty non-linearity, and we have to use other methods.

It turns out that RG fixed points must be identified with global stationary
solutions of (1.1). Besides the trivial fixed points w = 0 and u = x2 — \jά (high
temperature fixed point), Eq. (1.1) has non-trivial global stationary solutions u%n(x)
with the form of n-well potentials in the ranges 2<d<dn = 2 + 2/(n — 1), n = 2,3,....
These solutions converge pointwise to zero as ά\dn. Their large x behaviour is
dictated by (1.1), u%n(x)~x2 as x-> + oo, as one easily sees, making the ansatz u(x)
~ Axp for x-^ oo. These results as well as some remarks on dynamics are contained
in Sect. 3. Another equation which could be simpler to analyse as far as the
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dynamics is concerned is the LPA of the dipole gas. In the sine-Gordon
1 f\

representation the field x of canonical dimension is replaced by a
T

d-dimensional vector xl (the gradient of the field) with canonical dimension -. The
equation becomes

u^Au-Ί-x Fu + du-^Fu)2. (1.2)

(here d has to be taken integer). In this case the methods of Giga and Kohn [13] can
be used to show that no non-trivial fixed points exist (Theorem 3.3).

The paper is organized as follows: in Sect. 2 we derive (1.1) from the LPA of
Wilson's equation and from the hierarchical model as the scale factor L-»l. In
Sect. 3, we discuss the equation and state the results. The φ4 fixed point wf is
constructed in Sect. 4, and the general construction of w*n is in Sect. 5.

A short version of these results appeared in [14].

2. Derivation of the Partial Differential Equation

The P.D.E. we study in this paper can be understood in two ways: it is the local
potential approximation to Wilson's continuous parameter renormalization
group equation, and it is also the L-»l limit of the recursion relation of the
hierarchical model, where L is the scale parameter (the size of the block).

(a) The Local Potential Approximation. Renormalization group equations de-
scribe the change of the effective hamiltonian as the scale is varied. The effective
hamiltonian can be written as a sum of the Gaussian fixed point and a potential,
which is, in general, non-local. The local potential approximation (LPA) consists
in projecting at each renormalization step the potential onto its local part. We
describe this approximation in detail for Wilson's "exact renormalization group"
equations [11]

dH Ί/ 2 Γ δH δH δH δH~] id „ \ δH
-XT = % ) j— ? -- j— -. — + φq — + ί ~φq+qvqφq }j—,
dt J Lδψqδψ-q δφqδφ.q

 q φ J *q\2 V δΦ«

but the same result can be obtained from other RG schemes with continuous scale
parameter, such as Polchinski's [15] (with a suitable cut-off function). The
notation in (2.1) is the following: H = H(t, {φq}) is the effective hamiltonian on scale
e~l expressed as function of the Fourier components φq of the field variable. The
2π-conventions are:

We neglect systematically φ independent quantities on the right-hand side of (2.1),
which only affect the zero point energy and are thus irrelevant to the computation
of expectations. We set furthermore η = 0 for consistency, since wave function
renormalization is not present in this approximation.



104 G. Felder

The perturbative treatment of (2.1) was developed by Wilson and Kogut [11]
and Wegner [12]. We recall here some of their calculations: the Gaussian critical
fixed point of (2.1) is, for η = Q,

H*G =tiVf(q)φqφ-q9 V*(q) = 2^-2q2 (2.3)
q q -re

The linearization of the generator of (2.1) at H%,

-? (2.4)
q q _ q q

has the translation invariant eigenfunctions

φj' δlι9l, (2-5)

to the eigenvalues

(2.6)

where r labels the homogeneous polynomials Pr, and |r| is the degree of Pr The
function

_2 , --2β2

plays the role of the cut-off function in this approach. Wick-ordering is defined
with respect to the co variance V f ( q ) " 1 :

q - q q - q q - q

: e q : = e q q . (2.7)

The LPA is given by a projection of Eq. (2.1) onto the space spanned by the local
operators (9n0. Acting on field monomials the projection operator is defined by
taking the kernel at zero momentum:

P J V(q1,...,qn-1)flφJ(qt)δΣβ=V(0,...,0)shφJ(qf)δτqt. (2.8)
qι...qn i=l i=l

The equation for the potential V=H — H% is

r- (2 9)
δψqδφ-q

To compute the LPA we assume that V is in the range of P and act with P on the
right-hand side of (2.9). The practical way of doing this is to expand V into 0w's:

V=ΣμnΘn, &n = $Σ (<pJ(qfWz9l (2.10)
i= 1
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and compute the various terms explicitly:

^ = ίJ%W)2>(«-i)tfn-2,
iφ-q \ι

δ&n

105

(2.1 la)

(2.1 Ib)

) , (2.1 Ic)

where (2.1 Ic) was computed by scaling variables in the integral over q in (2.10) and
by using the fact that / ~* Vqf=0 at q = 0. We then identify V({φq})^μnΘn(φ) with

n

the function in one variable V(φ) = ̂ μnφ
n (the "density" of the local potential)

dt dφ2 2 d(

Equation (1.1) is obtained from (2.12) by the transformation

(b) The L-»l Limit of the Hierarchical Model The hierarchical model [3] in the
version introduced by Gallavotti [8] reduces to the recursion relation which maps
the effective potential on scale μ to the effective potential on scale L~~1μ given by

,̂

Here xeIR is the field (classical spin) variable. This recursion relation defines
effective potentials on the discrete set of scales L~kA, k = 0, 1, 2, . . ., where A is some
cut-off. In the limit L->1 this recursion relation becomes a differential equation

du
(2.14)

L = l

The factors (L — 1) in (2.13), (which are irrelevant as long as L is a fixed number
larger than one) were chosen so that the limit L-> 1 of the right-hand side of (2.1 3) is
tt(μ,x). Taking the derivative of the right-hand side of (2.13) with respect to L at
L = l is straightforward. The result is (1.1) in the variable μ — e'*:

du ,d2u d-2 du
-ϊr=2^-2--^-x^-
dμ dx2 2 dx

du .̂  _
2.15
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The reader may be confused by the fact that we did not impose a normalization
condition on the zero point energy. This could be done by adding a Lagrange
multiplier

(1.10

to enforce, e.g., the condition u(t, 0) = 0. But solutions of (1 .Γ) are in a trivial one-to-
one correspondence with solutions of (1.1) obeying ι/(0,0) = C, for any fixed
constant C. Indeed if u is a solution of (1.1) with this property,

β(ί,jc) = tι(ί,x)-w(t,0), θ(ί)= -tt,(ί,0) + ώ*(ί,0) (2.16)

is a solution of (l.Γ) The inverse map is

dtC~ }ed(t-s}θ(s)ds. (2.17)
o

3. Discussion of the Equation, Results

We begin this section by discussing some elementary properties of the partial
differential equation derived in the previous section. The conclusion will be that
non-trivial fixed points must be identified with the global stationary solutions of
(1.1). We then state our main result (Theorem 3.2) and conclude with some remarks
and further results.

At first sight, the fixed point equation

u"(x) -(d- 2)xu'(x) + 2du(x) - u'(x)2 = 0 (3.1)

has a lot of solutions, parametrized by the initial condition w(0) [u'(0) = 0 if u is
even]. Note however that (3.1) admits solutions that blow up (like — ln|x — x0|) at
finite value x0 of the field variable x. A solution of (3.1) going to infinity at x0

corresponds to a Gibbs factor p = exp( — u) which vanishes at x0. The following
theorem states that all fixed points which are limits for ί->oo of effective Gibbs
factors ρ(x,t) = exp( — u(x9i)) with ρ(;c,0)>0 are positive. Thus the relevant fixed
points are global solutions of (3.1).

Theorem 3.1. (i) Let T>0, d>2, and let ρ(t,x) be a bounded classical solution on
[0,T]xRo/

1 r\

(3.2)

with positive initial data ρ(0, x). Then ρ(f, x) is positive.
(ii) Let ρ* be a bounded non-negative stationary C"(IR) solution of (3.2). Then

either ρ* vanishes identically or ρ*(x)>0 for all xelR.

Proof, (i) Let ρ = e(d~2)χ2/4g; then g obeys the equation

(3.3)
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Since ρ is bounded, g is L2 and the "potential" q is bounded below. The claim
follows using the Feynman-Kac formula.

(ii) Suppose the claim is false. Then there exists an x0 e IR and a δ > 0 such that
ρ*(x0) = 0, and ρ*(x)>0 for xQ — δ<x<x0 [or for x0<x<x0 + δ but the latter
case can be reduced to the former by noting that if ρ*(x) is a solution, so is ρ*( — x)].
Since ρ* is, by assumption, nonnegative, ρ*' must vanish at x0. Let r2(x) = ρ*(x)2

-f ρ*'(x)2. By continuity r(x)->0 as xfx0. We show that this is not possible: r obeys

/ 1 \
rr' = (d-2)x(ρ*')2H-ρ*ρ*' 2dln—+ 1 . (3.4)

V Q /

For ρ > 0 small enough ρ ln(l/ρ) is positive and increasing in ρ. Estimate the right-
hand side of (3.4) by using ρ*^r, |ρ*'|^r, and, if δ' is small enough, ρ*ln(l/ρ*)
^ r ln(l/r), for x0 — δ' < x < x0,

+ ί ) = -r2d]a-,
r J r

We get thus the estimate on r(x0) in terms of r(x0 —<5'),

Thus r(x0) > 0 which is a contradiction. Π

We are now ready to state our results. The proofs are contained in the next two
sections.

2
Theorem 3.2. Let 2<d<dn = 2-\ -, n = 2,3,4,.... Then there exists an even

n — 1
fixed point u$n, the "02" fixed point", (i.e. an even global solution of (3.1)J. The
function wfnW has 2n—l critical points and grows to infinity as x-» + oo.

This picture of "n-well potentials" is in agreement with (the lowest order)
ε-expansion which predicts the existence of fixed points

where H2n is the 2nth Hermite polynomial.
We cannot establish that the ε-expansion is asymptotic, but we can show that,

as ε-»0+, wfnM-^O pointwise in x. We defer the proof of this fact (for 2w = 4) to the
end of Sect. 4. Of course, no stronger convergence to zero is expected since the
large x asymptotics of u*n is x

2 as dictated by (3.1).
A numerical study around d — 4 shows that the ^-expansion is accurate [in the

sense that the initial condition wf (0) predicted by the ε-expansion does correspond
to a global solution] for ε > 0. No fixed points corresponding to ε < 0 seem to exist.

Critical exponents are given in terms of eigenvalues of the linearized flow
equation at the non-trivial fixed point. The information contained in Theorem 3.2
is sufficient to give some (rough) bound on these eigenvalues: consider the
renormalization group equation linearized around the Wilson fixed point u\ in
2<d<4 dimensions:

Λ2 / Λ _ O \ d
-Γ+dι (3.5)
dx v ;



108 G. Felder

L is selfadjoint in L2 (]R.9 e 2 "4* dx). The obvious eigenfunctions 1 to the

eigenvalue λQ = d (corresponding to a trivial rescaling of the zero point energy) and
uf to the eigenvalue λ3 = (d — 2)/2 have, respectively, no zero and three zeros.
Therefore there exists an odd eigenfunction with one zero and eigenvalue λv and an
even eigenfunction with two zeros and eigenvalue λ2 such that

7 /Λ

[The oscillation theorem holds since L can be represented as minus a Schrόdinger
operator on L2(R, dx).'] The critical exponents of the correlation length, suscepti-
bility and magnetization

are given by (17 = 0 in our approximation)

/ \ c J£AI
V = V 7= V ' =I^2'

and obey the bounds

Unfortunately, our control on the P.D.E. is not sufficient to say something
about the flow in the vicinity of the fixed points beyond the linear approximation,
or to construct the basin of attraction of the fixed point. A simple argument,
though, gives a necessary condition for a potential to be in the basin of attraction
of a fixed point u$n. In fact, for "generic" solutions u(t,x) of (1.1), the number of
critical points

is a non-increasing function of t. To see this consider the set

and let v(t, x) = ux(t, x). We make the "genericity" assumption that (vt9 vx) φ (0, 0) on
C. Then C is a collection of curves, locally represented by functions x(t) or ί(x). If, at
time ί0, n(t) jumps, there exists a point x0 such that t0 = t(x0) and ί'(x0)
= —vx(to>xo)/vt(to>xo) = Q and if n(t) increases, t"(x0)^Q. The derivative of (1.1)

i-2 ^r f+2
-7Γ- xv x + -^r- v - vυx (3.6)

gives that

Thus n(ί) cannot increase.
Actually, we cannot expect the condition (vt9 vx) φ 0 on C to hold for generic

even solutions since at x = 0 by symmetry v = vt = 0 for all ί. We can weaken this
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condition by requiring (vt/x,(υ/x)x)ή=(Q9Q) on C* = {(t,x)\v(t,x)/x = 0}. For
this is equivalent to the previous condition. If a new pair of zeros appears at x =
C* can be locally described by a function t(x) with f(0) and f"(0)^0. But

and taking the partial derivative with respect to x of (3.6) yields £"(0) = — 2/3 <0, a
contradiction. We conclude that, generically, a necessary condition for a function
w(0,x) to be in the basin of attraction of u$n is that it has at least In — 1 critical
points.

We conclude by stating a result on the dipole gas case (1.2) about non-existence
of fixed point. We use a method introduced by Giga and Kohn [13] to study self-
similar blowing up solutions of a non linear heat equation.

Theorem 3.3. Let ubea C" global stationary solution of (1.2) which is bounded below.
Then u vanishes identically.

Proof. Let ρ = exp [ — u((2/d)l/2xj]. If u is a solution of (1 .2) with ut replaced by 0, ρ is
a positive solution of

0, (3.7)

where

a(χ) = e-
χ2/2.

The key step is to use the identities

Q, (3.8)

which are obtained by multiplying (3.7) by ρ, x2ρ, and x - Fρ, respectively, and
integrating over Rd. Summing up the three identities we get

Thus ρ is constant and by (3.7) equal to one. Π

This "miraculous cancellation" is peculiar to the borderline case of Eq. (1.2): it
depends crucially on the ratio between the coefficient of u and the coefficient of
x Vu being — 2. A similar property is shared by the Giga-Kohn equation.

4. The Non-Trivial φ4 Fixed Point

This section is devoted to the construction of the non-trivial fixed point u% (the φ4

fixed point) in 2<d<4 dimensions. As pointed out in Sect. 3, a fixed point is a
global solution of the ordinary differential equation

u"(x) -(d- 2)xuf(x) + 2du(x) - u'(x)2 = 0. (4.1)
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After the rescaling v-*]/d + 2v(]/d + 2 ), the equation is reduced to

It is convenient to take the derivative of this equation and study the equation for
v(x) = u'(x):

v" -(d- 2)xvf + (d + 2)v - 2vvf = 0 . (4.2)

(4.3)

(4.4)

»"-*<
σ

d + 2
d-2'

which we view as a dynamical system on the phase plane (x is "time"):

/w = — w — v + 2vw.
σ

It is an easy exercise to solve this equation in closed form in the limit σ-> oo (d->2)1,
but if d > 2 the system is non-autonomous, and more difficult to handle. It is
sufficient to construct a global solution (v(x\ w(x)) for x ̂  0, since the continuation
for negative x is given by

(v( - x), w( - x)) = (- v(x\ w(x)),

provided the initial condition is such that υ(0) = 0, (we restrict ourselves with even
potentials). Divide the plane into six regions I,II,..., VI (Fig. 2)

(4.5)

The arrows in Fig. 2 show the direction of the vector field (for x > 0), on the
boundaries of these regions: one sees that these boundaries can be crossed in only
one way by solutions of (4.4). We show more: the solutions leave all regions except
IV within finite time.

Ill

_L
IV

VI

Fig. 2. The partition of the phase plane in six regions

1 The σ = oo trajectories are given by the equation (w—^)exp(2(w — v2)) = J, J^. —\, They are
closed for — ̂  J<0 and blow up at finite x for J>0. The trivial fixed points correspond to



Renormalization Group in the Local Potential Approximation 111

Proposition 4.1. Let 1 < σ < oo, x0 > 0, and (VQ, w0) e ̂ 4 = I, II, III, V or VI. Then there
exists a time x1>x0 (depending continuously on σ, x0, DO, w0y) swc/i that if (v(x), w(x))
is the solution of (4.4) vwί/z V(XO) = VO and w(x0) = w0, (φc^Mφq) zs in a region
BE {I,..., VI} such that there is an arrow from A to B in the following diagram:

I > II > oo

\/
III »IV . (4.6)

I
V < - VI

The arrow from II to oo indicates that all solutions going through II, and only these,
blow up in finite time.

Proof. We prove all statements represented by (4.6) separately calling V(XQ) = VO,
W(X0) = W0.

X
(a) I->IL In region I we have v' ̂ , w' ̂  — w. Thus, as long as (v, w) e I, v(x) ^ v0σ

+ i(x — x0), w ̂  w0 exp [(x2 — Xo)/σ], implying that the solution does not blow up in
I and that after a time at most —2v0, (v,w) enters II.

(b) II -> oo. In II, v'^.%, thus v ̂ ^{x — x0) and, if x is larger than x0 -f |/^σ, xv ̂  σ.

Let us set, for later purposes, x/

0 = max(x0 + |/2σ,|/2σ). Now either (i) w(xx

0)
>ί;(x;

0)
2 or (ii) w(x'0) ̂  ί;(x'0)

2. In case (i), w(x)>φc)2 for all x^x'0 since, if
w(x) ̂  ι (x)2,

(w-t;2)=-w-t;^(-t;-l U^O. (4.7)
dx σ \σ J

Hence ί/(x) > v2(x) for x > xr

0 with escape to infinity in finite time. In the second
case, (ii), either at some XQ, vφc'ό) > v 2(x'ό) and we are back to case (i), or w(x) ̂  ι;2(x)
for all x>xr

0. Then using (4.4) and the fact that w^| in II, we get

(4.8)
|/2σ

x
since, by assumption, —=- ̂  1 the solution blows up again.

y2σ
(c) III-^I, III->II, III -> IV. In III, v' ^0 and solutions cannot blow up in this

x
region. The bound w' ̂  — w implies that, if w0 > 0, w(x) ̂  w0 exp(x2 — Xo)/2, and the

o
solution leaves III in finite time. If w0 = 0, the bound w'^—v>Q implies that for
xΌ>x0, w(xΌ)>0 and the previous argument can be used.

(d) V->ΠI. We only prove the statement for x0 = 0, which is all we need to
construct the φ4 fixed point. The general case will be proven in Sect. 5. Let

xw
/ ( x , e , w ) = - - t > . (4.9)
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We claim:
(i) For x = 0, SX=V.

(ii) If (ί (x), w(x)) e V for x e [xl5 x2] and (φq), vφcj) e SXl then (φc), w(x)) e Sx

for all xe[x1,x2].
(iii) All solutions (ι (x), w(x)) e Sx enter III after a finite time.
These properties immediately imply V-*IΠ, if x0^0. Proof of (i), (ii), (iii): (i) is

obvious, (iii) follows from the fact that, in Sx,

w' = σ~ *(1 -2w)/(x, v, w) — (1 - σ~*) (1 - 2w)v^(\—σ~l)υ. (4.10)

X i wf X i ̂
If (ϋ(x1),w(x1))eSΛ.1 for some x^O, φq)^-——-—-<0, and, if (v(x), w(x)) is a

1— 2w(x1)
solution in Sx, v(x) ^ ̂ x^, since v' = w < 0, and from (4.10), w' ̂  (1 — σ~ x ) ^(xj)! and
w becomes positive within finite time. No escape to infinity is possible in this region
since by (4.10) w' ̂  0, so that w, and thus ι/, are bounded below by w0. To prove (ii),
we show that /(x, φc), w(x)) is non-decreasing in x as long as (φc), w(x))eSJC:

;(x))= ~Λ ^TΓ + TΛ ^7^2 = 0' (4.11)

by (4.10).
(e) VI ->V. In VI, ι»0, w^O. Thus, by (4.4), u'^0, and w'<0 for x^x0, and

(υ, w) a solution in VI,

(4.12)

These bounds can be inserted again in (4.4) to yield

V'(X)£WQ, w'(x)^-w(x)-v0(ί-2w(x)). (4.13)
σ

The second (linear) bound implies that no solution can blow up in VI, and the first
that ι (x) becomes negative within finite time, provided w0 < 0. If w0 = 0, we can use
the bound wr rg — v, to show that for x'0 > x0, w(x'0) < 0, and the argument applies.

The next step is to construct two solutions, one of which blows up without
crossing the positive v axis and one going once around the origin and crossing the
positive v axis. These two solutions are drawn on Fig. 2.

Proposition 4.2 (Construction of wx). Let (v(x\ vφc)) x^Obea solution of (4.4) with
initial condition (0, w0) at x = x0 ̂  0. There exists a constant w x = w^σ) < 0 such that
if WG ̂  w1? (φc), vφc)) enters region II (and thus blows up) in a finite time xl going
successively through regions V, III, I.

Proof. Note first that J(υ, w) = (w— ̂ )exp(2(w — t;2)) is an increasing Liapunov
function. Indeed,

4-J(v(x),w(x))= — wV ( w~ϋ 2 )^0, x^O, (4.14)
ax σ

as can be checked by explicit calculation. Its level sets are the trajectories of the
limiting equation σ-» oo. The solution (ι?, w) with initial condition (0, w0) enters III
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after finite time. Thus there exists an χ1 > 0 such that wfo) = 0 and v(xί) < 0. Since J
is non-decreasing,

J(v(Xl),0)2:J(09w0)9 φ1)
2^|w0|-iln(l+2|w0|). (4.15)

Thus v(xl) can be made as negative as desired by choosing |w0| large enough. In
region III, v' = wrgi, hence, for xg xj, v(x)^v(x1)+^{x — x1). We consider times x
such that

x-x^KxJI. (4-16)

For these times

w'^-w-i^ίi-w), i^ΞΞφq). (4.17)
σ

As long as w^i, we use the second term on the right-hand side of (4.17):

w'^iMxJI, wM^KUix-xJ, (4.18)

so that after a time at most - — -, w(x)^τ. For
N

j^w(x)^i and x^- — -+x 1 =x 2 ,
l^ii

we use the first term in (4.17):

w'^, w^i+ -L(x2_xf), (4.19)
4σ 4σ

and w(x)^i for some x^x3 = x1 +- — r + j/i, and the solution enters I, provided
l^i l

the condition (4.16) is fulfilled for x = x3, which is the case if v(xl) is chosen large
enough. Π

Proposition 4.3 (Construction of w2). Let 3<σ<oo (i.e. 2<d<4) and let
(v(x), w(x)), x^O be a solution of (4.4) with initial conditions (0, w0) at x = 0. Γ/^erβ
^x/5ί β constant w2 = w2(σ) < 0, swc/z ίAαί // 0 >w0 ̂  w2, (ί;, w) enters region VI m α
finite time x2, gomg successively through regions V, III, IV.

Proo/ Consider first the linear approximation to (4.4):

υ"--υ' + v = 0. (4.20)
σ

We prove in the appendix that the odd solution of this equation has, for σ > 3 and
x>0, at least one zero and at least two critical points. Let x^ be the smallest
positive zero and yί9 y2 be the smallest positive critical points, then 0 < yl < x1 < y2.
If the initial condition w0 = t/(0) is negative, the solution of (4.20) enters VI in time
y2 + δ going through the path described in the proposition. Choose then |w2| so
small that the solution of the non-linear equation is so close to the solution of the
linear equation (4.20) up to time y2 + δ that it also has the property of entering VI
after visiting V, III, IV. Π
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The next step is the actual construction of the fixed point (υ*9 w*). It is a
solution with initial condition lying between w2 and w l 5 which goes (for x^O)
through regions V, III to region IV, and stays there forever. In IV i/ = w g^ , thus no
blow up in this region is possible and the solution is global. The function u*(x),
xeR, has three zeros so that the corresponding solution of (4.1),

d + 2
w*(0)

2d

has three critical points. The construction of (v*9 w*) relies on the so-called Bleher-
Sinai [4] argument: to formulate it in a clear way we first modify (4.4) in the regions
II and VI. Since the goal is to construct a solution that does not enter these regions,
it will not matter how the equation looks like there. The modified equation is

f w , if (v,w)φVl,

(4.21)
'x
-w-v + 2vw, if (υ9w)φll,

w' =
X .«
-w, if
σ

Note that the vector field (4.21) is continuous except for the negative w axis. This is
not a problem since no solutions of (4.21) cross this axis. Equation (4.21) has the
two following properties:

(i) All solutions (φc),w(x)) of (4.21) exist for all x>0.
(ii) For all w1 < w2 < 0 there exists an x3 > 0 such that all solutions (v(x), w(x)) of

(4.21) with ι;(0) = 0, w x < w(0)< vv2, have the property that φc)>0 for x>x3.
Property (i) follows from the fact (Proposition 4.1) that only solutions going

through II can escape to infinity in finite time. In this region (4.21) is linear and no
escape is possible. Again by Proposition 4.1, the solutions considered in (ii) enter
after a finite time xx region II or region IV. The vector field was modified in such a
way that VI is invariant and no return to v < 0 is possible and (ii) holds. Any other
modification of (4.4) in VI and II with (i), (ii) can be used for the following
argument. The construction of (i;*, w*) is contained in

Proposition4.4. Let 3<σ<oo (i.e. 2<d<4). There exist a w0<0 and times
0<x1<x2 such that the solution (φc), w(x)), x^O of (4.21) with initial conditions
υ(0) = Q, w(0) = w0, obeys

(v9w)eV9 0^

(4.22)

and is thus a solution of (4.4) as well.

Proof. We consider the interval of initial conditions J0 = [w1? w2], where w l 5 vv2 are
the constants introduced in Propositions 4.2, 4.3. Let, for x>0, φXtXQ denote the
flow generated by (4.21). Choose x >max(Jcl5 x29 x3), where xί9 x29 x3 are defined in
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Proposition 4.2, 4.3 and (ii), respectively. From (ii) we know that φx,0(0 x /0) is a
continuous curve lying in {υ>0}. Moreover, by Proposition 4.2, φx >0(0, wjell
and, by Proposition 4.3, φXf 0(0, w2) e VI. Thus there exists a piece Pβ of the curve
φXt 0(0 x 70) lying in IV such'that P e {(v, w)\v > 0, w =^} and Q E {(v, w)\v > 0, w = 0}
(see Fig. 2). Correspondingly there exists a closed interval Jx = [w ,̂ w(

2

υ] C I09 such
that x ( O x / = P2. Consider now φ x + ι ( 0 x / ) :

since, if w=^5 w'>0. Similarly, φΛ + 1 ̂ (OjW^eVI, since, if w = 0, w'<0. Thus a
piece P±Q\ of <^+ Ij0(0 x /J lies in IV and

P1e{(t?,w)|ϋ>0,w=i}, Q1e{(t;,w)|t;>0,w = 0}.

This argument can be repeated, the result being that there exist closed intervals

/ 0 D / ι D / 2 ^ j such that 0*+M,o(°x JH + I) lies in ΐV The set
00

ΓH« = o

contains (at least) an initial condition with the desired properties. Π

The proof of Theorem 3.2 is finished. In the rest of this section we prove
that, as d\άn, the fixed point u%n goes to zero pointwise in x. We write the
proof explicitly only for the case n = 2.It is sufficient to show that for d = 4 — ε there
exists a δ(ε)>0 such that (5(e)->0 as εjO and that the solution of (4.4) with ι?(0) = 0
and w(0) = — <5(ε) blows up in finite time going successively through regions V, III,
IV, II. This refinement of Proposition 4.2 can then be used with Proposition 4.3 to
give (by the same Bleher-Sinai argument of Proposition 4.4) a global solution of
(4.4) with

where w2(ε) is the constant appearing in Proposition 4.3.
The idea to prove the existence of the function <5(ε) is a perturbative argument

to control the solution until it enters region IV together with a monotonicity
argument to compare solutions of the non-linear equation to solutions of the
linearized equation. Consider first the case d = 4 (σ — 3). We show that all solutions
with initial conditions (0, — δ) and δ sufficiently small blow up in finite time going
through V, III, IV, II. To set up perturbation theory we rescale (4.4), v->δv,

x
w'= -w — v + δ2vw. (4.23)

σ

Let $£X1 denote the flow of (4.23). For 5 = 0, φ(°2\Xi is linear and given by

< O ) - _ < 0 ) / ( O ) \-ι j(0 _

where

Ua(x) = Ua(σ~ l'2x) , Va(x) = σ
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and Uσ, Va are given in the appendix. First order perturbation theory gives

0 \ ,,m / 0 \ * .,„,/ 0

= CM " Λ ,„,« l+0(δ2). (4.25)

-2δ]e~y216 V(y)2 V'(y)dy = 12γ6π > 0. (4.26)
0

Choose x^ >0 so large that — F3(x1)>0 and

a(x J Ξ - 2 7 e ~y2/6 F2 F'dj; > 0. (4.27)
o

Assume also x{ >6 for later purposes. Let furthermore

zw\x) = φ™xιoφ«l/ ° ^ ' - "" ( °_4

The preceding argument implies that

3 (4.29)

But, by the results in the appendix, F3, F3

r -» — oo and f/3, 1/3 -> + oo, as x-> oo and if
δ is small enough (depending on x±)

X-+00.

Let now zlz^z —z(0)^ ( , I. We claim that
^Jw/

Jw^O, for all x^x x . (4.30)

An immediate consequence of (4.30) is that z(x) blows up since it must enter the
(rescaled) region II = {(v, w)|ι; ̂  0, w ̂  l/2δ}. The claim is proven by noting that the
set

contains Q = (Av(x1),Aw(xί)) and is invariant if x^xlf Indeed, in S

-:-(Aw — Av)> -^-Aw — Av — Aw>Aw — Av. -—
dx 3 dx

where we used A^ ̂ 6 and the negativity of the non-linearity —2vw.
For each δ > 0 sufficiently small we can thus choose a time x2(δ) such that z(x2)

is in the interior of region II. If ε = 4 — d > 0 is small depending on δ the solution of
(4.4) with initial condition (0, - δ) still has the property of being in region II after
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x2. This defines a function ε(<5)->0 as δ-+Q which is the inverse of the desired
function δ(s).

5. The Non-Trivial φ2n Fixed Points

In this section, we prove the existence of all φ2n fixed points (Theorem 3.2). In the
preceding section we have proven only the part of Proposition 4.1 which is
relevant to the construction of the φ4 fixed point. We first complete the proof of
Proposition 4.1, and then construct a solution which winds around the origin n — \
times if 2 < d < dn, a generalization of Proposition 4.3. We eventually construct the
fixed point, replacing the Bleher-Sinai argument by a slightly more abstract one.

Proof of Proposition 4.1 (continued). What is left to prove is V-»III in the case
where x0>0. It is convenient to change variables: define s = v/x; (4.4) becomes

xs' = w — s, w' = x I — w — s + 2sw ). (5.1)
\σ /

Region V is then further partitioned in three parts V l 9 V2, V3 [note that
(v, w) e V o (s, w) e V] :

We prove that

V3^V2-»V1^IΠ, (5.2)

in the notation of Proposition 4. 1 . Note first that on the boundary V1 2 = {s =
sf = 0, and w' >0, so that the vector field points into region V x and this boundary
can only be crossed in one direction. Similarly, on V2 3 = {w = 2σs(l +2σs)~1}nl^
w' = 0, s'<0, so that also V2 3 has this property. The arguments to prove (5.2) are
very similar to the ones used in Sect. 4 to prove Proposition 4.1. Therefore we will
be rather sketchy. We always assume x0 > 0.

(a) Vi-JII: In V1 ? w^O implies that

s'^-- => 5^50^.
X X

Using this and w^s we conclude that in V1)

since σ > 0. Thus w becomes positive within finite time.
(b) V2->V1: In V2, w — 5 is negative but increasing

d (w-s)
-— (w-5)> -- .
dx x
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It follows that after a time xί=x^Q9sθ9yθ9ε)9 w — s^ε. For x>xl9

^w

which is bounded below by a positive constant if ε is small enough. This bound
together with s' > 0 implies the claim.

(c) V3-»V2: w'ίgO => w^w0. We then use the bound defining V3:

s'rg —mini - — - -- s, w0 — s ] ̂  — min((σ— I)s,w0 — s)
X \ J. ~τ~ ^(TS J X

implying that after finite time, (s, w) enters V2.
As in Sect. 4, we modify the equation, this time only in region II, to avoid

solutions which blow up:

x
— w —

-w
σ

(5.3)

Again this modification does not affect solutions which do not enter II. We
consider now solutions with initial conditions (at x = 0) on the w-axis and define a
winding number as the number of times the solution winds around the origin until
it crosses a coordinate axis for the last time. In formula, let (t;, w)φ(0,0) be a

w
solution of (5.3) with ι;(0) = 0, and tgφ = — . The winding number,

is well defined since — = (v 2 + w2) \wv' — vwf) is continuous and finite. Since, by

Proposition 4.1, all solutions with finite winding number eventually stay in ΠuIV,
we see that JVeN if w(0)>0 and NeN + ̂  if w(0)<0. The φ4 fixed point
constructed in Sect. 4 has N=%. Theorem 3.2 can be restated as follows: if 2n — 1
<σ<oo, n = 2,3,..., there exists a solution (^2«>w2n) of (5.3), with ι;|n(0) = 0, not
entering region II, with winding number

Assume for definiteness that n is odd. The even case can be dealt with the same way.
We want to construct a solution of (5.3) with integer winding number and initial
condition (0, w0 > 0) at x = 0. View N( ) as a map from the set R+ = {w0|w0 > 0},
with the induced topology, to the integers. This map has the following properties:

' Here, [ ] means integer part
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Proposition 5.1. Let φXίV be the flow of (5.3).
(i) {w0eIR+ |JV(w0) = ]V and φx^0(Q,w0)ElI for some x] is open for ]VeN.

(ii) {w0eR+ |JV(w0)^N} is dosed for all NeN.
(iii) If w^\ w2

π) are two sequences converging to w0, then

Proof, (i) II is invariant, and the vector field on its boundary does not vanish and
points to the interior of II. Thus if φXt 0(0, w0) e II for some x, then for any xx > x,
φxι 0(0, w0) is in the interior of II. By continuity of φ, if \δ\ is small enough, also

(ii) Let w 0 eR+ be an accumulation point of WN = {w0elR.+\N(w0)^N}. Let
us suppose that N(w0)^N+ 1 and derive a contradiction. The solution φx,o(Q, w0)
winds around the origin N times ending up in region IIuIV and then crosses the
i -axis to begin the next wind. At some time x1 the solution is in the interior of
region VI after TV turns. But by continuity, initial conditions in a whole
neighborhood of w0 give solutions which share this property at x = x1? which is a
contradiction, since all these solutions have winding number > N.

(iii) Let Λ^—lim N(wjM)), ι = l,2. We can assume that Ni<N2 and, by (ii),
M-»OO

N(WQ) = JV\. First note that, if (v (x), w(x)) = φXf 0(0, w0), lim v(x) = oo, since the only
x-> oo

possibility for v to stay bounded in IIuIV is that w(x) = t/(x)-»0 as x-»oo, i.e. that
(v, w) converge to a fixed point on the positive v axis, which does not exist. Let A be
a large positive number to be chosen later. Let xi be so large that (v(x\ w(x)) winds
around the origin N1 times for O r g x ^ X j and v(x1)^A. Ifn0 is large enough and
n^n0, also (v(n\x), w(n\x)) = φx> 0(0, w(

2

n)) winds Ni times up to time xΐ and v^xj
Ξ> A/2. Since (for n large) N(w(

2

M)) = N2 there exists an x2 ̂  xί (depending on n) such
that w(Λ)(x2) = 0 and w(w)(x)>0 for X!<x<x 2 . In IIuIV, ί;' = w^0, so that

v(n\x2) ^ -y. The argument in the proof of Proposition 4.2 can be used: choose A so

that J(A/2,Q) = J(Q9wί), where w1=w1(σ) is the constant defined in Proposi-
tion 4.2. Since J is increasing (v(n\ w(n)) will cross the negative w axis below wx(σ),
and will enter the invariant region II doing N1 +1 turns around the origin. Π

The proof of Theorem 3.2 is now simple: fix σe]2w —1, oo[ for nodd^2. The
function JV:R+->N takes the value zero [if w0>l/2,]V(w0) = 0] and a value
^(n-fl)/2 [if w0 is small enough so that the linear analysis in the appendix is
applicable, one constructs as in Proposition 4.2 a solution with N(w0)^(n —1)/2].
By (iii) in Proposition 5.1, N( -) has discontinuities of at most one and thus takes all
integer values between 0 and (n + l)/2. Hence there are (at least) (n — ί)/2
discontinuity points w1 ?..., w ( M_ 1 ) / 2eR+ such that

lim N(w)= Πϊn N(w) — \=m.
w-» wm w-^ww

By the lower semicontinuity property (ii), N(wm) = m. But by (i), φXf 0(0, wm) φ II, for
all x ̂  0, and thus φx^ 0(0, wm) is also a global solution of the unmodified equation
(4.4) with winding number m, and the proof of Theorem 3.2 when m is odd is
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complete. If n is even, note that N: R_ -»N+| takes the value \ by Proposition 4.2
and a value ^ (n + l)/2 by linear analysis. Then proceed exactly as in the odd case.

Appendix

In this appendix we count the zeros of the solutions of the linearization of (4.3).

After changing variable x->xj/σ the equation becomes:

u"-zu' + σu = 0. (Al)

Let Uσ(z) and Vσ(z) be the solutions of (Al) with data

[7,(0) = 1 , U'σ(0) = 0 , VM = 0 , VM = 1 . (A2)

These functions can be represented by the integrals

'-Vί, Reσ<0,
1 ( — σ 2) o

(A3)
V '2/2r*-Mί, Reσ<l,< (1 ( — (σ—

and can also be expressed in terms of parabolic cylinder functions. To compute
Uσ, Vσ outside the range of validity of (A3) one can use the recursions,

U'(z) = -σVσ_ ,(z) , V'a(z] = I7σ_ ,(z) , (A4)

whose proof is based on the fact that if u is a solution of (Al) then υί is a solution of
(Al) with σ replaced by σ — 1.

Proposition. Let Uσ, Vσ be the solutions of (Al) with data (A2). Then Uσ has no zero
if σ ̂  0, and exactly 2n zeros ίf2n — 2<σ ^2n,n^\;Vσ has exactly one zero if σ ̂  1
and exactly 2n — \ zeros if 2n — 3<σ^2n — 1, n^\.

Proof. The facts that Uσ is positive if σ < 0 and that Vσ(z) > 0 for z > 0 if σ < 1 follow
from the integral representation (A3). From (A4) we deduce that l/0(z) = l,
F!(Z) = Z. Next we prove inductively:

(i) If 2n — 2<σ^2n, π^O, then Uσ(z) has exactly n positive zeros
0<zί < ... <zπ; signU'σ(Zi) = ( — I)1 and, as z-^oo, [7σ(z)->( — l)Moo, except for σ = 0.

(ii) If 2n — 3<σ^2n— 1, n^O, then Fσ(z) has exactly n nonnegative zeros
0 = z1<...<zn; sign ϊς'ίz,) = (-!)' and, as z->oo, Vy(z)-*(-\)n~^.

These properties are readily checked for n = 0. We first prove (ii) for n = N -f 1
assuming (i) for π = ΛΓ. Let 2(AΓ+l)-3<σ^2(iV+l)-l andletO<z 1< ...<zNbe
the positive zeros of Uσ _ x . For 0 < z < z ! , Fσ

x > 0, and, since t^(0) = 1 , V(z) > 0. From
Vteύ=Uσ-ι(zύ = Q and sign O^ = sign [7^^ = (-!)'', it follows, using (Al),
that sign FCT(Z;) = ( — l)ί + 1. Thus between two consecutive zeros z f,z ί + 1 of Uσ_i

there is a zero zί + 1 of Vσ. This zero is unique and ϊ^(zί+1)=t=0, since Fσ'(z) has a
definite sign in ~\zi9zi+l[. Similarly, (-l)]vί/σ_1(z)>0 for z>z^, and C7σ_1(z)
->(— l)Noo (z-> oo ) imply Fσ(z)->(— l)Noo monotonically for Z]V<Z->GO. But since
signVσ(zN) = (— 1)N+1, there must be exactly one zero of Vσ in the interval ~]ZN, oo[
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making a total of N +1 zeros. In the same way one proves that (ii) forn = N implies
(i) for n = N +1, and the proof is complete.
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