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Abstract. An infinite-parameter family of discontinuous area-preserving maps
is studied, using geometrical methods. Necessary and sufficient conditions are
determined for the existence of some bounding invariant sets, which guarantee
global stability. It is shown that under some additional constraints, all orbits
become periodic, most of them Lyapounov stable, and with a maximal period
in any bounded domain of phase space. This yields a class of maps acting on a
discrete phase space.

1. Introduction

In this work we shall be concerned with the stability problem of an infinite-
parameter family of piecewise linear discontinuous area-preserving maps. At the
same time, we intend to exploit the peculiar properties of this class of systems to
reproduce in a simplified form some features of smooth nonintegrable
transformations.

A generic smooth canonical map of the plane is known to possess both regular
and irregular orbits. Regular orbits correspond to irrational rotations on invariant
circles, due to the KAM theorem [1], whereas the irregular ones, which develop in
the place of rational rotations, are still not fully understood. It is known, however,
that about transverse homoclinic intersections of separatrices, hyperbolic in-
variant sets exist over which the map reduces to a shift [1]. The truly random
evolution which characterizes this class of solutions has placed them beyond the
scope of modern analytical methods.

The main difficulty to be overcome is rooted in the very definition of dynamical
instability, which is essentially equivalent to asymptotic (|ί|—>oo) discontinuous
dependence of the solutions upon the initial conditions [2]. This property, shared
not only by all unstable periodic orbits, but rather by the entire set of intersect-
ing separatrices, is the source of that infinite variety of topologically distinct solu-
tions which is a synonym for random dynamics. An additional complication stems
from the fact that in smooth nonintegrable systems regular and irregular mo-
tions always form a nested pattern repeating itself on every scale.
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In an integrable system most solutions are rotations, yet its topological
characterization derives from the zero measure set of separatrices. Thus, from a
topological viewpoint, an integrable system and a small perturbation of it are
never close to each other, due to the dramatic evolution of separatrices under the
influence of a perturbation. It is therefore unclear to what extent, if any, irregular
motions can be reproduced by means of sufficiently complicated regular ones. The
asnwer to this question is known to be negative when an integrable system is
obtained from a nonintegrable one by truncating its Birkhoff normal form (or
similar asymptotic series of canonical transformations), which is the only
systematic approach to this problem available to date [3]. These methods are ill-
founded since they attempt to force upon the perturbed system the simple features
of the unperturbed one.

One way of circumventing these pathological obstacles is to consider
nonsmooth systems, to which the KAM theorem does not apply. For instance, it
has been recently shown that non-differentiable maps display some features of
nonintegrable systems in a more manageable form, and at the same time they can
still exhibit bounding invariant curves [4, 5]. Furthermore, a class of noninte-
grable discontinuous plane billiards are known to possess (non-toroidal) invariant
integral surfaces, which yield a remarkable simplification in the geometry of the
phase space [6-8].

Here we shall consider discontinuous canonical maps of the plane, constructed
geometrically by means of convex polygons (see Sect. 2). The purpose of our
investigation is three-fold:

1. Establish that, in spite of the discontinuity, isolating invariant sets can exist,
which afford the formulation of a criterion for global stability in closed form.

2. Show that under certain assumptions, these systems can be made fully
periodic, and with a finite number of topologically distinct orbits in any bounded
region of the phase space. Due to this simplification, the entire structure of the
phase space can then be described via finite computation.

3. Demonstrate that discontinuous maps are very efficient tools for exploring
the roots of irregular motion, for its true source, namely the discontinuity, is here
explicitly exposed.

This paper is organized as follows. In Sect. 2 we define the family of maps to be
studied, and in Sect. 3 we establish some of their properties. A criterion for global
stability is formulated in Sect. 4, while in Sect. 5 we obtain conditions for the full
periodicity of the system. Finally, in Sect. 6 we present concluding remarks.

2. Formulation of the Problem

We consider a map φ of the exterior E of an oriented closed plane convex curve Γ
onto itself (Fig. 1). The mapping φ is defined as follows [1,9]: from any point p0 e E
we draw the tangent L to Γ, denoting by q the point of contact. The line L is selected
among the two possible tangents according to the orientation of Γ. We denote by
φiPo) the point obtained by reflecting p0 with respect to q. [If the segment LnΓ is
non-degenerate, we denote by q its midpoint, because only in this case does
φ{E) = E.~] Similarly, we define the inverse image Po = φ~1(Pi), where Pi = φ(po)
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Fig. 1. Construction of the map φ

The collection {Pk = Φ\Po)}> keΈ, is called an orbit through p0. The map φ
constructed in this way is uniquely determined by Γ. It can be shown that these
transformations are area-preserving, and that affine equivalent curves generate
affine equivalent orbits [9]. Thus we have an infinite-parameter family of
canonical maps which we call dual billiards.

Dual billiards have been proposed as crude models for orbital motions [1,10],
and the main problem is to establish whether or not all orbits are bounded. This
problem is easily solved in the only known integrable case, namely the circle, where
all orbits lie on circles. In nonintegrable cases, one seeks to find bounding invariant
curves, located at sufficient distance from Γ. The existence of these curves can
actually be demonstrated via the KAM theorem, provided that Γ is six times
continuously differentiate [1]. If such boundaries do not exist, then some orbits
could disperse to infinity following spirals of increasing radius.

In what follows we shall restrict ourselves to systems for which Γ is a polygon;
these systems yield discontinuous mappings, as evident.

3. Basic Properties

Let Γ be a generic convex N-gon, and Γk, k = l,2,...,N, its sides. We begin by
constructing the set WcE of straight lines over which either φ or φ'1 are
discontinuous (Fig. 2). If we denote by Wk the line tangent to the kth side, then

N

W= (J Wk, where for convenience Γ itself has been included in W. Let S be an
k=l

open domain in E. If S does not intersect W, both φ\s and φ~ ι\s are merely rigid
transformations of S, a reflection with respect to one vertex of Γ. On the other
hand, if S does intersect W, not all its points are reflected with respect to the same
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Fig. 2. The set of tangent lines Wk for a quadrilateral, with the corresponding sectors Σk

vertex, so that S is cut into two or more pieces. This mechanism constitutes the
only means of deforming area elements of the plane, and hence of distinguishing
the evolution of initially close trajectories. For this reason it is useful to consider
the set T of all those points that will eventually land on W, namely

τ= u
k= - 0 0

(3.1)

T is an invariant set (by definition), consisting of lines, rays and segments which
design an intricate web on the plane. Some examples of the set T are depicted in
Figs. 3-5,7. We remark that the points on T are the only ones that will eventually
experience the discontinuity of the map, and therefore they correspond to the set of
separatrices in smooth systems.

We first note that the set T is connected. Indeed W— φ°(W) is connected and
φn(W) is obtained from φn~ 1(W) by adding a finite set of rays and segments with
ends belonging to the set φn~ \W). Now let S be the complement of T in E. Then S
is disconnected. We shall regard S as the collection of its connected components:
S= (J Sf. Each Si is itself a convex polygon, and it can at most have 2N sides. The

i

Lebesgue measure μ(Si) of St is bounded from above [see (4.9)], but in general it can
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also vanish, that is, some S/s may be segments or points. All points of a given St

generate a bundle of orbits which always maintain their relative position, and
therefore they should be regarded as a whole.

Of particular interest are those S/s having positive measure, which enjoy some
remarkable properties.

Lemma. // μ(Sι) > 0, and an orbit of some point in St is bounded, then orbits of all

points in St are periodic and Lyapounoυ stable.

Since all points of St move in the same way, the orbit of the whole St is bounded.
Let D be a bounded domain containing all images of Sf. Then for some k,k'>0 two
images φk(Sι) and φk'(Sι) must intersect, since μ(Sf) > 0. Now we note that φk(Sι) and
φk\Si) must coincide, although not necessarily pointwise. Indeed the boundary of
φk(Sι) cannot intersect φk'(S^ (and vice versa), since it belongs to T. Both assertions
of the lemma now follow from the fact that on Sf the composed map φ2^k~k>) is just
the identity. In particular, all orbits in St are periodic with period equal to some
divisor of 2{k-kf). Q.E.D.

From the above considerations we can also say that if Sf is periodic with period
k and k is even, then all its points have the same period fc, whereas if k is odd then all
points in St have period 2/c, except the center of symmetry of Sh which has period k.

We now illustrate some easily solvable cases [10]. The simplest nontrivial
polygon is just a single line segment. In this case T= Wisa, straight line, and every
orbit in S escapes to infinity along a pair of straight lines parallel to T, while orbits
in T are periodic with period 2. The displacement of all points (in S) under φ2 is the
same, and equal to twice the length of Γ. Thus the line segment is the generator of
rectilinear and uniform motions.

11
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Fig. 3. The set T for the square, with an invariant annulus
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Fig. 4 The set T for the triangle, with invariant annuli of the first (inner) and second (outer)
kind. The corresponding integral polygons <5f are represented as dashed lines

For the square, the lines Wk are pairwise parallel, so that T is an orthogonal
grid dividing the plane into squares of the same size as Γ (Fig. 3). All orbits are
periodic, with periods An, n = 1,2,..., and they close after one complete revolution
around Γ. All points having the same period form concentric invariant annuli
constituted by 4N squares joined at vertices. These annuli model nonlinear
resonances of order 4iV. To make this similarity more precise, we can regard the
square as the limit of a sequence of smooth curves, say x2m + y2m = 1, where m is a
positive integer. When m is sufficiently large, the points in the center of the squares
are elliptic periodic points: as m-^oo their rotation number [11] goes to zero.
Similarly, the points of contact of adjacent squares in an annulus are the associated
hyperbolic periodic points, and the element of T emanating from them are the
corresponding limit eigendirections.

In the case of a triangle, the plane is divided into triangular and hexagonal
regions, whose points have period 12n and 6(2n — 1), n = l,2,..., respectively
(Fig. 4). Also in this case we can divide the plane into invariant annuli, of two
different kinds. Finally, the set Γfor the regular hexagon is identical to that of the
triangle.

4. Stability

In this section we shall provide necessary and sufficient conditions for the existence
of an infinite array of invariant annuli, for polygons with an arbitrarily large
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Fig. 5. The set T in the case of a rational quadrilateral, with an invariant annulus of the first kind

number of sides. These annuli are the generalization of those seen in the case of the
square and the triangle, and they guarantee the global stability of the mapping (see
Fig. 5).

We begin analyzing the asymptotic structure of the orbits (excluding the
special case in which some sides of Γ are parallel). In what follows, the index k is
assumed to be periodic with period 2N (with Wk + N=Wk and Γk+N = Γk). At
sufficiently large distance from Γ, the N lines tangent to the sides of Γ divide the
plane into 2JV sectors Σk (Fig. 2). The orientation of Γ is chosen in such a way that
φ2 rotates points clockwise near infinity, and the sectors Σk are ordered
accordingly. Let us denote the lines bounding Σk by Wk _ 1 and Wk, respectively, and
the sides of Γ are labelled so that ΓkC Wk.

Let peΣk, and define the vector ξk by the equation

(4.1)
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Note that ξk depends on k alone, and not on the choice of p in Σk. Moreover

We now construct the 2iV-gon y with vertices ξk. This polygon is convex and
centrally symmetric, by construction, and its sides are parallel to the lines Wk. The
polygon y, which is uniquely determined by Γ, will be called the fundamental
polygon of Γ.

It is useful to consider the polygon y* dual to y, that is, the Legendre
transformation of y [12]. We construct it by considering the family of lines
my = Ix + n which are tangent to y. For any fixed value of n (for which we do not
make a specific choice here), we first consider the Legendre transformation of the
kth axis of y. Thus let ξk have coordinates (xfc, yk). Then the feth axis of y is the segment
joining (xk9yk) and ( — xfe, — yk\ which is transformed into the pair of lines
l = l(m) = myk/xk±n/xk, which are parallel to ξk (here we identify the new
coordinates I and m with y and x, respectively). These two lines bound a strip,
which we call Hk. y* is now defined as the boundary of the intersection of the strips
Hk, which is a convex and centrally symmetric polygon, whose sides are parallel to
the axis of y. Since the Legendre transformation is involutive (it transforms y* into
y), the axis of y* are parallel to the sides of y. Moreover, if dk is the half-width of the
strip Hk, then \ξk\dk = n, independent of k [this property will be used later, see (4.5)].

Let Wk be the line (Φ Wk) parallel to Wk and tangent to Γ. Also let hk = Γn Wk. By
analogy with Σk, we now denote by Σk the sector bounded by Wk and Wk-1. Let cx

be a point on Wί (at sufficiently large distance from Γ). From cx we draw a segment
parallel to ξ2 which meets the line W2 at a point c2. By repeating this process 2N
times, we obtain a polygonal arc δ, with vertices c l 5 . . . , c2N. Let Lk be the side of δ
joining c k _ x and ck. Then Lk lies in Σk, and is parallel to ξk as well as to Lk+N. We
intend to show that the polygonal arc δ is in fact a polygon (its convexity is obvious
from the way the ξks are ordered). We may view the polygonal arc δ as obtained
from a centrally symmetric polygon similar to y* via a sequence of parallel
displacements of some of its axes, and we will now show that such shifts cannot
transform a polygon into a polygonal arc.

Let wk be the line parallel to Wk through the point W1nW2 (Fig. 8). Then wx

= Wγ and w2 = W2. Let δm be the polygonal arc constructed in the same way as <5,
but using Wu ..., Wm, wm+15..., wNin place ofWu...9WN. Let c™ be its vertices. Then
δ2 is similar to y*, that is, δ2 is a polygon, and δN = δ. We now proceed by induction
on m, assuming that δm'1 is a polygon and that w m φ Wm. We denote the points
δm~1nWmby sm and s m + N (sm is the nearest of the two to c™), and the segments O m ,
C+fiZ+i, cZ+Nsm+N, by gm, gm + ί, and gw + i V, respectively (i = l , . . . , N - l ) . Then
none of these segments is degenerate. Moreover gm = gm+N' To see this, let the
vector ξ% denote the feth vertex of y* which is the dual of the side of y joining ξk + λ

and ξk. Then ξjf is parallel to Wk, whence to Wk and to wk. Since gm+i/\ξ^+i\
= gm+i+i/\ξm+i+il Ϊ = O , . . . , J V - 1 (by construction), and |ξ*| = |ξ*+ J V |, y* being
centrally symmetric, it follows that gm = gm+N. This implies that δm is a polygon.

We now show that hk is the midpoint of the segment ckck+N. Suppose ckhk

>hkck+N. Then also ck+ίhk + ί>hk+ίck+N + ί,a.s easily verified. But then ck + Nhk+N

>hk+Nck, and since hk = hk+N, we obtain a contradiction.
The lengths of Lk and Lfc+iV are related by the equality

Lk = Lk+N + 2ΔLk\ξk\, (4.2)

where ΔLk is equal to 1 if ΣkcΣk, to —1 if ΣkDΪk, and to zero otherwise.
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The polygon δ is not invariant under φ. The images of most of its points will
either oscillate about it or spiral away from it. We shall therefore speak of annular
and spiral orbits, respectively. More precisely, if peLk, after changing sector its
images lie on a line parallel to Lk+1 and whose distance from it is smaller or equal
to Γk. Thus the maximal radial excursion of a point upon completing one
revolution about Γ cannot exceed twice the length of the perimeter of Γ.
Asymptotically, the relative distance between Wk and Wk goes to zero, and so does
the relative size of Γ. Hence the polygon δ becomes similar to the dual fundamental
polygon y* for their respective sides and axes are pairwise parallel. In particular, all
orbits at a sufficient distance from Γ follow the shape of the dual fundamental
polygon for many revolutions.

We shall now show that under suitable conditions the polygon δ can become
the skeleton of an invariant annulus (see e.g. Fig. 4). We begin by seeking
conditions on Γ under which there will exist a denumerable sequence of polygons
δι whose sides Lk h for fixed i, are all integral multiples oϊ\ξk\. When this is the case,
we shall speak of an integral polygon δt with integral sides Lkti.

6-

Fig. 6. The basic construction



634 F. Vivaldi and A. V. Shaidenko

This requirement yields conditions on Γ, whence on y*. Let ξ% have coordinates
(x*, yk) and consider the N determinants,

m^Όetiξtξi-JMxϊyi-^ytxt-Λ, k=l,...,JV, (4.3)

i.e. mk is twice the area of the fcth sectors of y*. We say that Γ is weakly rational, if the
linear space generated by the mks over Q is isomorphic to Q. When this is the case,
we can always take the mks to be coprime integers.

Let now Γ be weakly rational, and consider again the basic construction
(Fig. 6). Prolong (if necessary) the segments Lk and Lk+l9 to meet Wk-X and Wk+1 in
the points cfc_ 1 and 4+1> respectively. Since the triangles hkckc'k_ι and hkckc'k+ί are
now equivalent to the kth and fc + 1 t h sectors of y* respectively, we can choose ck on
Wk in such a way that their areas be mkβ and m fe+1/2, respectively. We define

βfc = L fe/|^|, Pfc = β f e-z)L f e. (4.4)

Then δ is integral precisely when the Pks are integers. Since \ξk\Pkis the length of
the segment ckc'k-l9 and |^fc + 1 | P Λ + 1 that of ckc

f

k+1, we obtain the relations

\tk\PA = rnh9 \ξk\dk = \ξk + 1\dh+l9 (4.5)

dk {dk+1) being the distance of Lk {Lk+1) from ?ιk. Since the triangles hkckc'k+1 and
hk+1ck+1ck are congruent, Eqs. (4.5) are valid for all k. From (4.5) one obtains
m k + Λ = m fΛ+i5 whose smallest solution is just Pk = mk, since the mk$ do not
have common divisors. Then we obtain at once an infinity of integral polygons δi9

whose sides are given by

i = l , 2 , . . . . (4.6)

Before constructing invariant annuli about the integral polygons δi9 we shall
characterize more precisely those regions (near infinity) where φ (p) = p-\-2ξk. Let
Wk be the line obtained by reflecting Wk with respect to Wk. The lines Wk and Wk

bound a strip which we call i^. Then the sector Z ^ ^ u - R f c - i ) —# f c has the
desired property. The sectors Σk9 Σk9 and Σ'k are related in different ways. There are
four possible cases, as detailed below:

Type

I
II
III
IV

ΔLk

- 1

+ 1
0
0

ΣkDΣk

yes
no
no
no

ΣkCΣk

no
yes
no
no

yes
no
no
yes

ΣkCΣ'k

no
yes
no
yes

** = * , - :

no
no
yes
yes

If the fcth sector is of Type I (Type III), the (fc + JV)th sector is of Type II (Type IV),
and vice-versa. Since hk = hk-ί for Type III and IV, Type I (whence Type II)
sectors must always occur.

Proposition 1. All orbits of a weakly rational polygon are bounded.

Let a polygon δt be integral. We first consider the case in which all Qk f are even
(whence i must be odd). We now show that an invariant annulus can be
constructed as the union of all images of a fundamental polygon y whose center
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Fig. 7. The set T for the pentagon

coincides with a vertex of δi9 say ck _ x. Then y is tangent to Wk _ ± as well as to Wk_ 1,
that is, γ is contained in the strip Rk-U whence in Σ'k. Within each sector Σ'k9 the
map φ2 displaces y along the direction of the kth axis of γ, by definition. Since this
axis is twice as long as ξk, φ2(y) touches y at the corresponding vertex, and
moreover y and φ\y) do not have any other point in common. Since Qk f is even, by
assumption, the polygon φQk' f(y) is centered on the vertex ck of δu and therefore it is
also tangent to Wk as well as to Wk\ i.e. lies within the strip Rk. By repeating this
procedure for all sectors, the chain of fundamental polygons with centers
belonging to 5t closes up, and we obtain an "annulus" consisting of Mt

fundamental polygons, where

Σ
k=l

Σ (4.7)
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m - i

W
m

Fig. 8. Construction of the polygon δ from the dual fundamental polygon y*

Thus each polygon is invariant under φM\ and since none of them intersect W, they
all belong to S from (3.1). Annuli constituted by fundamental polygons will be
referred to as annuli of the first kind.

The case in which at least one of the Qk ti is odd is treated in an analogous way,
but now the annuli are constructed by suitably assembling polygons identical to Γ
itself (annuli of the second kind). More precisely, to construct the annulus, we
begin by replacing the fundamental polygon centered on c k _ x with two polygons
identical to Γ (Fig. 9). One of these (which we still call Γ) is obtained by translating
Γ in such a way that fcfc_ λ coincides with cfe_ l9 while the other (which we denote by
Γ') is the reflection of the former with respect to ck _ x. Then Γ u Γ is tangent to both
Wk and Wk, i.e. it belongs to Rk-ι. Again Γ u Γ ' touches its image under φ2 at
precisely one point. We now assume that i is even in (4.6), that is, Qk t has the same
parity as ΔLk. For Type III and IV sectors, ALk = 0, whence Qk t is even, and the
QkJ

th iterate of Γ u Γ ' lies within Rk9 being tangent to both Wk and Wk9 by
construction. Moreover in this case hk^λ= hk, so that this section of the annulus is
properly joined to the successive one. For Type I and II, QkΛ is odd, so that the
image of Γ u Γ ' in the strip Rk is congruent to Γ'u</>2(Γ) (for Type I), or to Γuφ 2 (Γ')
(for Type II), which is tangent to Wk and Wk. Since the image of Γ' in Rk is now the
reflection of that of Γ with respect to hk, we can again proceed further, and
complete the annulus.

The number M f of polygons in an annulus of the second kind is given by

fc=l
(QKi-ALk) = mk.

(4.8)
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Fig. 9. Joining segments of an invariant annulus of the second kind at the vertices of an integral
polygon <5f. This construction refers to the case of Type I sectors

Now we note that both inner and outer boundaries of an annulus are invariant
under the mapping. This property is obviously true for those elements of the
boundary which belong to the interior of each sector, and it holds also on the
discontinuity lines, from the way the map was defined on them (see Sect. 3). For
this reason all orbits within an annulus are bounded. In conclusion, we have
invariant annuli of the second kind for even i [in (4.6)], and annuli of the first kind,
or no annuli at all, for odd i. Our assertion now follows from the fact that invariant
annuli can be found at any arbitrarily large distance from Γ. Q.E.D.

From the above considerations we can also conclude that the fundamental
polygon itself is the largest member of the family {St}. This is because no polygon
containing y can have congruent images within each strip Rk, and therefore it will
be "cut" by the discontinuity lines. Thus the following inequality holds

(4.9)

which is independent on Γ being weakly rational.

5. Finite Structures

In Fig. 5 we display the set T for the case of a rational quadrilateral, with
parameters mk = 4,2,3,2, respectively. Here the stability is ensured by annuli of
both the first and the second kind, the innermost one being visible near the edge of
the picture. In addition the measure of the S/s is bounded away from zero, and only
a finite number of different shapes is available. In other words, all orbits are
periodic (see below) and have a maximal period in any bounded domain of the
plane. The strips between annuli model the regions of instability of smooth
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systems. Irregular orbits are represented by spiral orbits, which perform bounded
radial excursions and correspond to small polygons. Within each strip we also find
regions of stability, represented by annular disconnected sets of polygons. On the
whole, we note that T accumulates more in some regions than others.

In the case of the regular pentagon (Fig. 7) there are annuli of both the first and
the second kind. The map is still fully periodic, but now the period can be
arbitrarily large, that is the S/s arbitrarily small. The structure of T is hierarchical,
and is invariant under an obvious renormalization. The map generated by the
pentagon offers the simplest example of a nested set of stable and unstable periodic
orbits which characterize smooth nonintegrable maps.

The case of the quadrilateral discussed above constitutes one example of a
finite approximation to some smooth nonintegrable map. It is therefore desirable
to find conditions under which similar properties are shared by rational JV-gons
with arbitrarily large N. It is clearly necessary and sufficient to require that the
measure of the Sf's be bounded away from zero. To this end we note that, despite its
complexity, T can be embedded in a set with simple geometrical properties. Indeed
all iterates of a given line Wk are parallel to it, so that T itself is embedded in N
families of parallel lines. Construction of these lines involves reflection of each Wk

with respect of all vertices vt of Γ. More precisely φ(Wk)uφ~1(Wk) belongs to the
union of lines parallel to Wk at a distance 2dk i9 where dk t denotes the altitude of the
vertex vt with respect to Wk. This set of lines will then be reflected again from all
vertices and so forth, ad infinitum. The distance between neighboring parallel lines
of the resulting set is bounded away from zero if and only if the linear space
generated by the vectors ξk over Q is isomorphic to Q 2 (for then the ξks can be
chosen in such a way as to have rational coordinates). When this is the case we say
that the polygon Γ is rational. Rational polygons are dense among all convex
curves (with the standard topology).

We note that rational implies weakly rational. To prove this, it is sufficient to
show that when Γ is rational, the linear spaces (over Q) generated by the ξks and
£jf's, respectively, are isomorphic. Using the Legendre transformation, we find that
ξ% = n(ξk + 1 — ξk)/Det(ξk+uξk). This linear transformation is the required isomor-
phism, since it is invertible and its coefficients generate a linear space isomorphic to
Q. Weak rationality implies rationality only for N^4. The case N = 3 is trivial. As
to N = 4, we observe that the fundamental polygon of any quadrilateral can be put
in "canonical" form: ξ1 = (—1,0), ξ2 = ( —1,1), ξ3 = (0,1). Then, using the isomor-
phism described above, it is a simple matter to verify that the weak rationality
of Γ implies that ξA has rational coordinates, i.e. Γ is rational.

Examples of polygons which are weakly rational but not rational are provided
by the regular iV-gons with N + 2,3,4,6. Indeed, the linear space generated by the
corresponding vectors ξk is isomorphic to the additive group of the Nth cyclotomic
field (the extension of Q generated by the Nth roots of unity), whose dimension over
Q is Φ{N\ Φ being the Euler Φ-function [13]. Now Φ(N) is smaller or equal to 2
only for JV = 2,3,4, and 6, which are precisely the solvable cases described in
Sect. 3. At this stage the above claim is justified only for odd N (here y is a 2N-
gon, but the Nih and 2iVth cyclotomic fields are the same, when TV is odd). Regular
polygons with an even number of sides have opposite sides parallel, and have been
excluded from our analysis. We remark, however, that the procedure we have
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described to construct invariant annuli can be suitably generalized to this case
(also note that for a regular 2iV-gon, Γ = γ).

The results of the previous section are strengthened by the following:

Proposition 2. All orbits of a rational polygon are periodic, and most of them
Lyapounoυ stable. In addition their period is bounded from above in any bounded
region of the plane.

For orbits in S, the validity of this statement can be deduced from the Lemma
and Proposition 1. If pe T, the orbit through p is obtained by reflecting p with
respect to the vertices of Γ, as well as to the midpoints of the sides of Γ. Since Γ is
rational, all these points belong to a two-dimensional lattice, and so do all images
of p. Now all orbits are bounded (including those in T), and therefore the set of all
images of p is finite, i.e., any orbit in T is periodic. From the fact that μ(5f) is
bounded away from zero one can also establish that the family {SJ inside an
annulus can contain only a finite number of elements.

It is worth noting that the boundness and periodicity of the orbits in T depend
crucially on the way the map was defined on the discontinuity lines.

6. Concluding Remarks

The mapping of a rational polygon enjoys the remarkable property of supporting
only periodic orbits. The importance of this class of orbits for the analysis of
irregular motions has been long recognized and emphasized, most notably by
Poincare, who wrote [14]

"... These periodic solutions are so valuable for us because they
are, so to say, the only breach by which we may attempt to enter
an area heretofore deemed inaccessible."

In our case, the algorithmic content of the map of a rational polygon is finite, so
that the problem of determining the evolution of all orbits for all times lies within
computational range. We could therefore speak of "algorithmic integrability" [8,
15]. The situation here is somewhat similar to that of maps acting on bounded
domains of integers, all whose orbits are also periodic (a fine example of one such
map will be found in [16]). This analogy becomes more stringent if one considers
that integral maps can still be viewed as acting on the continuum, by permuting
squares rather than individual points. In fact with this device all orbits become
Lyapounov stable, with the sole exception of those belonging to the discontinuity
set, which is now an orthogonal lattice. However, unlike the case of integral maps,
the discontinuity set of polygonal billiards is system-dependent, and moreover it is
shaped by the unstable manifold of some nearby nonintegrable system.

In closing we would like to remark that the limit JV-»oo should be taken with
much care. As a symptom of singular behaviour we note that, when the number
of sides of Γ increases, the invariant annuli we have constructed in Sect. 4 are
forced to migrate to infinity. Our results, however, do not rule out the possibility
that other kinds of invariant sets could provide narrower bounds for the radial
excursion of the orbits.
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