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Abstract. A new index formula of Atiyah Singer type for scattering operators
is proved. The index corresponds to the vacuum polarization of the Fermion
(on the Minkowski space) coupled to an external non abelian gauge field.

1 Introduction

Geometric features of gauge theories have been extensively investigated since the
discovery of instantons. In spite of several successes, the methods have been based
on the compactification of the space-time manifold, which is of great disadvantage
if we wish to find precise relations between the obtained results and realistic
quantum field theories. Even though the non-compactness of ίR4 is controlled by
the boundary condition at infinity, we don't know how to relate results for compact
Riemannian manifolds to the Minkowski space (the theory of elliptic operators,
e.g. Atiyah-Singer's index theorem to the theory of hyperbolic differential operators).
In the Minkowski space, we have no effective geometric tools for the study of
anomalies and other topological effects.

The motivation of the present work is to find a geometric invariant of gauge
theories in quantum systems on the Minkowski space. We explain the background
of our results in more detail now.

Consider a (second) quantized charged Fermion coupled with an external field
on a Fock space. Mathematically the Fermion field is an element of a CAR
(canonical anticommunication relations) algebra which is isomorphic to an infinite
dimensional Clifford algebra 51 on a complex Hubert space 3£ with an antiunitary
involution. The Fock representation is an irreducible representation of 21 with a
special vector Ω called vacuum. This representation is completely specified by a
projection P on jf. See [1].

In most physical situations, the representation u(g) on J f of a compact group
G is given which is canonically lifted to an action ag of G on 91 via Bogoliubov
automorphisms. ag is identified with the global gauge transformation, and the fixed
point subalgebra 2IG of this action is regarded as the observable algebra.
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In the free Dirac field, the projection P above is the positive spectral projection
of the free Dirac operator and G = l/(l) = {ZeC, |Z| = 1}, which distinguishes
particles and antiparticles. If [P, w(#)] = Pu(g) - u(g)P = 0, the above G action is
unitarily implemented on the Fock space associated to P by W(g) satisfying

W(g)Ω=Ω, W(g)QW(g) = ag(Q\ Qe%. (1.1)

For the global 1/(1) gauge transformation in the free Dirac field the infinitesimal
generator of W(g) is identified with the charge operator.

Given a gauge potential, the associated scattering operator S of the Dirac
equation defines a scattering automorphism α s of 9Ϊ via a Bogoliubov auto-
morphism. as is unitarily implemented on the Fock space associated to P if and
only if [P, S] is in the Hilbert-Schmidt class. If this condition is satisfied, the
implementor Ws for ocs is regarded as the second quantized scattering operator.
In this framework, the in and out vacuua are identified with Ω and WSΩ
respectively,

Ωin = Ω, ΩmΛ=WsΩ. (1.2)

The charge defined by W(eιθ)(G = (7(1)) is not necessarily conserved in the
scattering, i.e. \_W(eιθ\ Ws~] φ 0 even though it is at the quantum mechanical level
on #P. We can only show

W(eίθ)Ωout = einθΩouV (1.3)

The integer n is the shift of charge of vacuum during the scattering. The appearance
of non-trivial charge shift is referred to as vacuum polarization. The mathematical
meaning of the phase factor in (1.3) is that the cyclic representation of the vector
state ί20Ut of the observable algebra $ΪG is non-equivalent to that of Ωin if n φ 0.

By the result of [3], the charge shift is computed by

(1.4)

where the right-hand side of (1.4) is the index of the operator PSP restricted to
Pjf. (Note that the Fredholm property of PSP is ensured by the compactness of
[P,S] and unitarity of S. See Lemma 3.9.) See also [7]. Thus we are led to the
following question:
(A) Can we find potentials with scattering operators S satisfying

(i) [P, S] is in the Hilbert-Schmidt class,
and

(ii) indp^PSP φ 0?
In [3] and [12], only trivial answers were given; under very restrictive conditions

on potentials the index always vanishes.
A possible variant of (A) which seems interesting is the following:

(B) Can we find potentials with scattering operators S satisfying
(i) [P, S] is compact,

and
(ii) indp^PSP φ 0?
The goal of this article is an index formula to the problem (B).
In the massless Dirac case of 1 + 3 dimensional space-time, we will consider
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the index corresponding to the chiral charge shift. Under some technical conditions
the index of the scattering operator of the Dirac equation will be shown equal to
the instanton number,

\\ΎFF, (1.5)

where F is the curvature (the energy of the external gauge field) for the connection
(gauge potential).

We remark that the integrality of the right-hand side of (1.5) was proved for a
fairly large class of potentials by K. Uhlenbeck in [13], but we feel some additional
conditions are necessary for the unitarity of S and the compactness of [P, S].

We conclude this introduction by a brief summary of the rest of this article.
In Sect. 2 basic standing assumptions and the main results are presented.

Sections 3 and 4 are devoted to the proof of the main theorem. We show that the
computation of index of the scattering operator is reduced to that of a pseudo-
differential operator in Sect. 3, and we derive an index formula of Toeplitz type
operators using a general result of L. Hormander in Sect. 4. In Sect. 5 we give some
remarks.

2. Statement of Main Results

We first introduce Dirac operators on U3. We consider both massive and massless
cases. For the massless case the basic Hubert space is Jf = L2 (tR3) (x) C 2 (x) CN, where
Pauli matrices (spinors) act on C 2 and the U(N) gauge group acts on C^ in the
standard way. In the massive case, Jf = L2(R3)(g)C4(g)CΛΓ, and the 4 x 4 Dirac
matrices act on C4.

The free massless Dirac operator is an essentially selfadjoint operator (on
C$(U3)® C2®CN) defined by

where pk = - (id/dxk) and {σk; k = 1,2,3} are 2 x 2 Pauli spin matrices which are
selfadjoint and satisfy

0* = 1, σkσ1 = ίεklmσm. (2.2)

(εklm is the totally antisymmetric tensor with ε 1 2 3 = 1.)
The massive Dirac operator is defined by

3

Ho = Σ *kPk + mβ = ot'p + mβ, (2.3)
fcl

where m is a positive constant corresponding to the mass and {ak;k= 1,2,3} and
β are 4 x 4 Dirac matrices satisfying

*2

k=β2 = l {α k,α i} = {αfc,j8}=0 {kφ\\ (2.4)

where {A,B} = AB + BA.
Let Ak(t, x) = Ak(t)(k = 0,1,2,3) be skew selfadjoint N x N matrix valued (time
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dependent) gauge potentials. We assume for simplicity

Ak{t)eCco(U4)®MN.

(MN is the set of all complex N x N matrices.)
Λk(t) acts as a multiplication operator on ffl. We use the notation Ak(t) or

Ak(t,x) instead of H ®Λk(t,x). The Dirac operator coupled with gauge potentials
is defined by

3

H o + i ^ &kAk(t) — iΛ0(t) (massless case) (2.5a)

Ho + * Σ αfe^/c(0 ~ ί^oW (massive case). (2.5b)
k=ί

If Ak(t) are bounded the domains of H(t) and Ho coincide,

D(H0) = D{H(ή) for arbitrary ί. (2.6)

The unitary propagator C/(ί, s) for H(t) is characterized by

(i) U(t9 s) is a strongly continuous two parameter unitary,

(ii) U{t,s)U(s,u)=U{t,u), (2.7a)

(iii) U(t,s)D(H0) = D(H0), (2.7b)

(iv) 4-U(t9s)f = H(t)U(t,s)f, (2.7c)

-i^U(t9s)f=U(t,s)H(s)f (2.7d)

for / in D{H0).

The two parameter unitary satisfying (2Ja ~ d) is unique.
The scattering operator S is defined by

S = s t - lim eitΠoU(t,s)e~isHo, (2.8)
ί->oo

s-> — oo

provided that the limit exists in the strong operator topology. The projection to
the positive spectral subspace of Ho is denoted by P. By the Fourier transformation
P is represented by a multiplication operator P(ξ).

ί
p Ί

1 + —— > (massless case) (2.9a)

2 2TΪ/2 ί ( m a s s i γ e c a s e ) (2.9b)

1/2

Let <x> = | 1 +

Assumption A

(i) Ak(t,x) is a smooth bounded function.

(ii) II Ak(t9 x) II < C——J-, (2.10)
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where C and δx are some positive constants and || || denotes the norm of finite
matrices. (C may depend on t)

(iii) There exist constants T+ and unitary valued functions W+ (ί, x) satisfying
Assumption B below such that

\\Ak(t,x)-(dkW+(t,x))W+(t,xr\\S7\s-2xG(t) for t^T+, (2.11a)
\X /

\\Ak(t,x)-(dkW_(t,x))WAUx)*\\Sy^2><G(t) for ί^T_, (2.11b)

and

where dΌ = (d/dt)9dk = (d/dxk)(k = 1,2,3), δ2 is a positive constant and G(t) is a
positive integrable continuous function on U satisfying G(t)~+0 as |f |-»oo.

(iv) δ2 in (iii) satisfies δ2 > 1.

3

(v) Let ^ = A0(ί, x)Λ + £ AΛ(ί, x)dxfc be an 1 form on U4 and F = Λ4 + A A A.

F is square integrable on 1R4 and

3-<5 3 '

where C is a positive constant independent of t,δ3 <min(c>2,1 + δ) and δ is the
constant appearing in (2.12).

(vi) lim

Assumption B

Let W(U x) be a (/(AT) valued smooth function on U4.

(i) \\d*x(W(t,x)- 1)|| ̂  Cα—-jφpj, (2.12)

where Cα and δ are positive constants independent of ΐ and α is a multi-index,

α = (oc l Jα2,α3), 3"= — - — .

(ii) The following limit exists uniformly in υ in ίR3.

lim W(t,tv)=ίV±(v). (2.13)

Theorem 1. Let Ak(t, x) satisfy Assumptions A and B.
(i) The scattering operator S of (2.8) exists, is unitary and [P,5] is compact.

(ii) PSP restricted to PJίf is Fredholm and its index is given by

mάp^PSP = —2 j j Tr F Λ F, (massless case), (2.14a)
θ7Γ p4
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indP j f PSP = 0, (massive case), (2.14b)

where inάPjf PSP denotes the Fredholm index of the operator PSP restricted to PJf7.

Remark 2.1. The integral in (2.14a) is called the instanton number.

The main part of the proof of Theorem 1 is given in Sects. 3 and 4. In the rest
of this section, we give the latter half of the proof assuming the following formula
(2.15) whose proof is given in Proposition 3.1,

mdP3fPSP = -indPJrPW+(t+)P + mdPMrPW-(t-)P9 (2.15)

for any ί+ ^ T+ and any t _ rg Γ_.
In the massive case the right-hand side of (2.15) always vanishes due to

Theorem 2 (ii) of Sect. 4 while in the massless case it is equal to

(2.15) = y ί Tr{{dW+ W%)3 -{dW. Wt)3). (2.16)
24π 3̂

Note that dTr(F Λ A -\A A A A A) = ΎrF A F. (This identity is seen as
follows. Using the trace property, T r X Γ - ( - l ) d e g X d e g y T r YX for matrix valued
differential forms. X, Y. In particular, Tr A* = 0. The rest of the computation is an
exercise.) By Green's formula,

f ί Tr (F A F) = lim ( J Tr (F A A - ±A A A A A)t = τ
ιπ)4 T ~~> 0 0 ιπ>3

- $ Tr(F Λ A-iA Λ A Λ A)t=-T). (2.17)

By (2.11), (2.12), and

Tr (A3 - (dW± W*)3) = Tr((A - dW± H^*)3 + 3(A - dW± W\fdW± W*

+ 3(A- dW± W*±){dW± W*±)2\

\\AAAA A -{(dW±)W*±)31| ^ CG(t)-l—9

where p = min {3δ2,2δ2 + 1 + (5,δ2 + 2(1 + δ)}9

p > 3, since δ2 > 1 by our assumptions.
By Assumption A (v) and (vi)

(2.17)= lim - ^ x ^Tr((dW+W%)f=τ~{dW^Wt)f=:_τ).
T - > oo û 3

Thus (2.14a) follows from (2.15).

Example. Let U(x) be a U(N) valued function satisfying assumptions of Theorem
2 of Sect. 4 satisfying

= n. (2.18)

(U(x) satisfying (2.18) exists due to the Remark at the end of Sect. 4.) Set



Index of Scattering Operators of Dirac Equations 559

W(t, x) = U(x/t), and let Ak(t) be potentials satisfying

\dkW{t,x)W(t9x)* for t>T0,

0 for t < 0.

W(t,x) obviously satisfies Assumption B and the potential satisfying (2.18), and
Assumption A gives rise to an example of a scattering operator with index n in
(2.14a). (Note that F vanishes if t < To or T > 0).

3. Proof of Theorem 1

The aim of this chapter is to give a proof of Theorem 1 (i) and that of the following
proposition.

Proposition 3.1. Let Ak(t9x) satisfy Assumption A (i)~(iii). Then

ind PSP = ind PW (t )P + ind PW (t )P (3.1)

for any t+ ^ T+ and any ί_ ^ T_.
As explained in Sect. 2, Proposition 3.1 implies Theorem 1 (ii).
We now collect basic properties of Fredholm operators and compact operators

which we will use in our proof.

Lemma 3.2. Let ̂  be the set of all Fredholm operators equipped with norm topology
of bounded operators.

(i) The index map ind: g —• Z is continuous,
(ii) If Ae% and B is compact, then A + B is Fredholm and

ind(A + B) = mdA. (3.2)

(iii) For A1,A2e$, inάAίA2 =indA1 -f-ind^ (3-3)

Lemma 3.3.

(i) The set of all compact operators on a Hilbert space is norm closed.
(ii) Let Φ(x) and Ψ(ξ) be continuous functions ofUn satisfying

1 1

(3.4)

for some positive constants C, C, δ, δ'. Let Ψ(DX) be an operator defined by

Ψ(Dx)u(x) = ί ί eίξx Ψ ^

where {),(ξ) l$
Then Φ{x) Ψ{DX) is compact.

(iii) A pseudo-differential operator a(x,Dx) with symbol a(x,ξ) in s$~b'~b> is
compact if δ and δf are strictly positive. {The definition of s$m'm> is given in
Sect. 4)

Throughout this chapter we give a proof for the massless case. The massive
case may be treated by the same way.
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Lemma 3.4. Let W(t, x) satisfy Assumption B. Then,

st- Urn eitHo W(t, x)eitHo = W± {v)9 (3.6)
t^±oo

where V = HQ1P = P/HO and W± (v) is defined in (2.13).

Proof. First note that

eίtHo W{t, x)eitHo = W(t, tυ(t))9

where v(t) = e~itHox/teitHo. For an ε > 0 there exists a T> 0 such that

|| W(t, tv(ή) - W± (v(t)) || <ε for ± ί > Γ, (3.7)

due to the uniform convergence of (2.13) and the joint spectral decomposition of
commuting operators vk(t) = e~itHo(xk/t)eίtH°, (fc= 1,2,3). Thus we have only to
show

st- lim W± (v(ή) = W± (v). (3.8)

By Theorem VIIL20(b) of [9], (3.8) follows from the strong resolvent con-
vergence of v(t) to v which we prove now.

It is easy to check

o ,x f c ]=-ισ f e , [ i f o ,σ k ] = 2iίo( σ k - ^ l .

By integrating (3.9),

- it Hot
Pk

for
Note that pk/H0 and (1 - e~i2Hot/2iHot) are bounded operators.
Set

and

Then for δ sufficiently small,

(3.9)

(3.10)

I uδ - u | | L 2 ( Λ 3 ) = II fia - fi | | L 2 ( Λ 3 )

On the other hand

l - (

if t Φ 0 because of || σκ \\ = \\(pk/H0) || = 1 and the support property of ύδ.

(3.11)

(3.12)
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Consequently

-—ί

l - (

561

2iH0

p

ί_e-i2Hot

2iH0 L2

L2

ΓT II x*u \\L2 + 21| uδ - u \\L2 + — II uδ \\L2 < ε,

provided that | ί | > T9 T = max{(3/ε)||xfcw||L2,
This proves

Next

\v(t)k L2

lim v(t)u = vu for

ivk-Όk(t))——U

(3.13)

vk(t) L2

- vk(t)))
vk

L2

(3.14)

Since Sf is dense in L2(R3), (3.13) and (3.14) imply the strong resolvent
convergence of vk(t) to vk. This completes the proof of Lemma 3.4. (q.e.d.)

Lemma 3.5. Let Ak(t,x) satisfy Assumption A (i)~(iii). The scattering operator
exists, is unitary and is represented by the formula:

S = eiT+H° W+ (v)W+(T+,x)* V+ U(T+, T_)F_ W_(T_,x)W_(υ)*έτ-n\
(3.15)

where v = (p/H0), and

00

F + = 1 + Σ ί
1

W(T+>x)e-'(τ+~Si)H°

• W(Sl, x)*B+(Sl, x) W(Sl, x ) β -

•e~Ks^τ+)H°W(T+,x)ds1---dsn

_ = 1 + Σ ( - I)" ί

_ (s,, x) • B_ («

flo W(s2,x)* -B+(sH, x) W{sn,x)

(3.16a)

-, x)*e~liτ- -S»)H°

x)* ds1 ds2 - dsn, (3.16b)

B±(s9x) = t σk(Λ(s,x) - dk W±(5, x) W±(5,x)*) + (A0{s9 x) ~ d0 W{s, x) W(s9 x)*).

(3.17)

Proof First we remark that (3.16) is convergent. In fact, by (iii) of Assumption A



562 T. Matsui

the operator norm of n-th term in (3.16a) is bounded above by

Cnj J G(sι)G(s2)-'G(sn)ds1ds2^dsn = Uc]G(s)
TV^5n^ ^ s2 = s l < 0 ° n ' \ T+

(The integral may be carried out inductively.)
These same estimate works for (3.16b) and as a consequence,

Next by the identity,

eitHo l/(ί, - s)eisίlΌ = (eitHo U{t, T+)) U(T+, T_ )(£/(T_, - s)eisHo)

We have only to show that existence and the unitarity of

lim eitHo U(t, T+) and lim l/(Γ_, - t)eitHo.

Let A^ and Aψ be gauge potentials, Uί(t,s)U2(t,s) be corresponding pro-
pagators for Dirac equations.

We use the Dyson expansion for U1(t,s)*U2(t,s). More precisely we consider
l/1^,^)* L/2(ί,s) as the unique solution of the following equation with the initial
condition Uί(s9s)*U2{s,s)=l,

jt(U1(tisrU2(t,s))=U1(tisrX(t)U1(t,s)(U1(t,srU2(tis)\ (3.18a)

where

X(t) = {<r(A<2)(ί) - AW(t)) + A$\t) - Aφ(t)}. (3.18b)

The integration of (3.18a) leads to

u1(t,sru2(t,s) = ί + f; f uHh^rxitjuHtutiWh)...

t2- dtn. (3.19)

We set 4 υ = dk W+ W%, A[2) = Ak. Obviously £/(2)(ί, s) = C/(ί, s), and it is easy
to check

U1(t,s)=W+(t,x)e-iit~s)HoW+(sίx)*.

Then

eitHo U(t9 T+) = eitHo W+ (t)e-itHoeιT+H° W+ (T+ )*((7X(ί, T + )* t/ 2 (ί, T)).

The limit of e1'^0 W+(£)έΓ ί ίHo was computed in the previous lemma. By (3.19),
lim U1^, T+)*U2(t, T+)=V+. Thus
r->oo

lim eitHo U(t9 T) = /ι H° W+ (v) W(T+, x)* F + . (3.20)
ί->oo

(Note that [u, i ϊ 0 ] = 0 implies [e I ί / / o, M^+(ι?)] = O.)K+ is an isometry as it is a limit
of unitaries. If we consider V%, it is also an isometry. This tells us that V+ is unitary.

The same argument works for the limit of l/(T_, - s)eUsHo. (q.e.d.)
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Lemma 3.6. [W+(ί,x),P] is compact.

Proof Let φeCw(U3) satisfying φ(ξ) = 1 if \ξ\ > 1, = 0 if \ξ\£$. Then

lW±(t,x),F] = l{W±{t9x)-1)MDx)F] + l(W±(t,x)-t)^ - φ(Dx)F]. (3.21)

The second term is compact because (W±(t,x) — H)(H — φ(Dx)) and (ί—φ(Dx))
(W+(t,x) — H) are compact due to Lemma 33 (ii).

Next note that φ(Dx)P, W±(t,x) — H are pseudo-differential operators with
symbol in A0'0. (See Sect. 4.) The commutator of these operators is also a
pseudo-differential operator with symbol in A'1''1. (The symbols of the above
operators commute as matrices and the term in ^4°'° of the asymptotic expansion
vanishes.)

Combined with Lemma 3.3 (iii) this proves the compactness of the first term
of (3.21). (q.e.d.)

Lemma 3.7. Let Ak(t9 x) satisfy Assumption A (i) ~ (iii). Then [P, £/(£, 5)] is compact.

Proof Recall that eitHoU(t,s)e~isHo is given by the norm convergent Dyson
expansion:

eitHoU(t9s)e'isHo= f J e^'^Xit^

If X(t,x) defined in (3.18b) is compactly supported in x, the commutator
[P,Z(ί)] is compact by the same proof as in Lemma 3.6. The norm convergence
of (3.22) suggests the claim. The case that X(t, x) is not compactly supported in x
may be proved as follows.

Let φ in C°°([R3) satisfying

φ(x) = < ~~, O ^ φ -^1, (3.23)

Let UR(t,s) be the propagator with A(t) replaced by A(t)φ(x/R). As A(t)ψ(x/R)
is compactly supported in x, [P, UR(t,s)~] is compact, as we have already seen. By
Assumption A (ii),

;)-X*(ί,x)||^C~ (3.24)

where C is a constant independent of t and x.
By (3.22) and (3.24)

norm- lim [P, UR(t, s)] = [P, U(t, s)]. (3.25)
R-κχ)

As the left-hand side of (3.25) is compact, the proof is completed. (q.e.d.)

Lemma 3.8. [P, V+ ] is compact.

Proof By (3.16a),

V+ = W(T+, x)e-iT+H° V+ eiT+H° W(T+, X)*,
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V+=Σ ί ei8lHoB{sl9x)e~lSlHo'''B(sn9x)e-~iSnHods1ds2'''dsn9 (3.26)

where B(s, x) = W{s, x)*B(s, x) W(s, x).
It suffices to show that [P, F+] is compact, since \_P,W(T+)2 is compact by

Lemma 3.6.
Consider the operator

[P, e ί s / / 0 5(s, x)e " faHo B(sn ,x)e"iSnHo ]. (3.27)

[P,l?(s,x)] is compact by the same reasoning as in the proof of Lemma 3.7. By
the identity [A9BC] = [A9Bί]C + B[A9C]9 (3.27) is compact. As (3.26) is norm
convergent by Assumption A (iii) [P, F + ] is compact. The same argument leads
to the compactness of [P, F_]. (q.e.d.)

Lemmas 3.4. ~ 3.8 imply Theorem 1 (i). Next we show Proposition 3.1.

Lemma 3.9. Suppose that UX,U2 are unitary and [P, I7f](z = 1,2) are compact.
Then PUkP(k = l,2)9PU1 U2P on Ptf are Fredholm and

indP^PU1 U2P = mdP^PUίP + indP^PU2P. (3.28)

Proof. To see PUjP is Fredholm, it suffices to show that it is invertible modulo
compact operator. In fact PUfP is the inverse of PUjP in the following sense:

PUfPUjP = P - P[P9 Uj][P, UjlP, (3.29a)

PUjPUJP = P- PIP, Uj^lP, l/J]P. (3.29b)

Next note that PUXU2P-PU1PU2P = P[P9 UJU2P is compact. Equation
(3.28) is valid due to Lemma 3,2 (ii) and (iii). (q.e.d.)

Proof of Proposition 3.1. By Lemmas 3.5 and 3.9 it suffices to show

indP^PU(t, s)P = indP^PV± P = 0. (3.30)

As the Dyson expansion for eitH°U(t,s)e~ίsHo is norm convergent we have the
estimate

\\eitH°U{t,s)e-isHo -111| ^ C(^x | i~ s | - 1). (3.31)

By [P, eίtHo~] = 0, and Lemma 3.2 (i),

indP j f Pl/(ί, s)P = indPjf(PeitHo U{t9 s)e~isHoP)

= lim i n d p ^ P e ^ 0 U{t9 s)e~isHoP) = 0. (3.32)
t-*s

Next let Vλ

± be defined by (3.26) replacing B(s,x) with λB(s,x). It is easy to
show that V\ is norm continuous in λ. Thus,

i n d P ^ P F ± P = lim indPjrPVλ

± P = 0. (3.33)

This completes the proof of Proposition 3.1. (q.e.d.)

Remark. Hubert norm estimates of [P,<S] are given in [8, 11, 12] under more
restrictive situations.
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4. An Index Formula for Gauge Groups

Theorem 2. Let U(x) be a U(N) valued smooth function on U3 acting as a
multiplication operator on Jf. Suppose that there exist positive constants δ and Ca

such that

mύC.T-La (4.1)

for an arbitrary multi-index α = ( α l 5 α 2 , α 3 ) . Then PUP restricted to PJf is a
Fredholm operator and,

(i) inάp^PUP = - ^ j f Tτ((dU-1/*)3) for the massless case. (4.2a)

(ii) indPjePUP = 0 for the massive case. (4.2b)

We remark that the integral of (4.2a) gives rise to an element of π3{U(N)) = Z,
where IR3u{oo} is identified with S3. On the odd dimensional compact sρinc

manifold, the formula corresponding to (4.2a) is a special case of Atiyah-Singer's
index theorem. See [2]. We derive (4.1) from a result of L. Hormander in [5].

First we introduce a symbol class of pseudo-differential operators. For real
numbers m and m! we define j / m ' m ' by

in C « ( R ^ | δ ; 3 f φ , { ) | g C β f / l < x > M - w < ί > l l l ' " I Λ } (4.3)

For a(x9ξ) in j / m ' m ' , the pseudo-differential operator a(x,Dx) is defined by

a(x, Dx)u(x) = Os-J μiξ xa(x, ξ)u(ξ)^ (4.4)

for u in Sf(Mn) where Os-J denotes the oscillatory integral, and ύ(ξ) = je~iξxu(x)dx.
a(x, Dx) extends to a bounded operator on L2(Rn) if both m and m' are non-positive.

The following formula is fundamental.

Product of Pseudo-differential operators. Let a^x.ξ) be in stfm\nχ{i= 1,2). Then
there exists a symbol b{x,ξ) in jtfmi+m^+nz such that

aί(x9Dx)a2(x,Dx) = b(x,Dx) (4.5)

and

^ ^ + m 2 - J V "1+»2-Λr. (4.6)

For the proof, see [5] or modify the proof for S^δ in [6].
L. Hormander has computed the index of elliptic pseudo-differential operators

on Rn in [5].

Theorem 3. Ifa(x, ξ) in jtfOtO takes values inkx k matrices such that a{x, ξ)'1 exists,
is bounded outside an open ball B in U2n, then a(x,Dx) is a Fredholm operator in
L2([R")(x)Cfc with index

^J^^ff1ώ)2--^ (4.7)
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if U2n is oriented by dx1 A dξ1 A dx2 A dξ2 Λ dξn > 0.
(See Theorem 19.3.1 and its remark of [5] and also [4].)

We study first massless case in Lemmas 4.1 and 4.2.

Lemma 4.1. Let φ be a smooth function on U satisfying

0^φ(x)Sl φ(x) = 0 (if * ^ i ) , = l (if * ̂  1). Set Pφ(ξ) = P(ξ)φ(\ξ\).

Then a(x, ξ) = H + (U(x) — ί)Pφ(ξ) satisfies assumptions of Theorem 3 and

indP j r PUP = ind^{1 + (U - 1)Pφ(x, D J } . (4.8)

Proo/ Clearly indP^P£/P = ind^[(H - P) + Pt/P]. Hence (4.6) is proved if {(H - P) +
PC7P} - {1 + (U - ί)Pφ} is compact. In fact,

{(1 _ p) + Pί/F} - {1 + (C7 — 1)Pφ} = (£/ - 1)(1 - φ)(x,DX)P + [P, t/]P. (4.9)

(U — H)(H — φ)(x, Dx) and [P, ί7] are compact due to Lemma 3.3. (iii) and the proof
of Lemma 3.6. Thus (4.8) is verified. a(x, ξ) is obviously in j/°'°. Next we check
that α(x, ξ) has a bounded inverse outside a compact set of U2n. To see this, let
b(x, ξ) be a symbol in J</ 0 ' 0 determined by

b(x,ξ) = t+(U(x)*-t)Pφ(ξ). (4.10)

α(x, ξ)ft(x, ξ) = b(x9 ξ)a(x, ξ) = 1 (4.11)

Let Λo be a constant sufficiently large that || U(x) - H || < 1 if |x| < Ro. Then
by the Neumann expansion,

f j φ

1 (4.12)
Λ = l

for | x | > i ^ 0 .
Thus α(x, ξ) has the bounded inverse on { | £ | ^ l } u { | x | > . R 0 } . (q.e.d.)

Lemma 4.2. Let a(x, ξ) and b(x, ξ) be defined as above. Then

f Tr((rfαdb)3), (4.13)
. R 3 χ { ί : | ί | < 1 }

ί/ẑ  orientation is same as in Theorem 3.

Proof By Theorem 3

f f Ίx{{a-Han (4.14)
•'• 3BR

where BR is the ball of radius R centered at origin and R > Ro + 1. As a~γdaa~ι =

f j Tr((β" J ώ ) 5 ) = f J Tr (β~ J (rfα(rfα~x))2dα). (4.15)
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We first prove

|J J {Tr{a-ι{dada-ι)2da)-Tr{b{dadb)2da)}\<C1—δ. (4.16)
δBR

 R

As b(x,ξ) = a~x(x, ξ) if \ξ\ ̂  1 by (4.11), we estimate the contribution of the
integral from \ξ\ < 1, \x\2 = R2 - \ξ\2 > R. As a(x9ξ)is in J / ° ' ° ,

| |δ X k a(x,ξ) | | ^ C 2 , | |δ X k b(x,ξ) | | ^ C 3 ^ 1 + ^ . (4.17)

On the other hand

U{x)* = X ( - ί)n(U{x) - D)n (4.18)

if |x | > JR0 due to U{x)* = [U + ( l / ( x ) - 1 ) ] " 1 .
Thus by (4.12) and (4.18) the following estimates hold if |x | > Ro.

a(x,ξΓ1-b(x,ξ)= f (-l)n(U(x)-l)nPφ{φ(\ξ\)n-1 - 1}, (4.19a)
n = 2

( 4 , 9 b )

oo 1

& » - b ( x , ξ ) \ \ £ C 5 Σ n I I t/(x) -11|"Φ(£) ^ C 6 Z ^ Φ ( ί ) , (4.19c)
n=2 \X/

w h e r e Φ(ξ) is a s m o o t h f u n c t i o n s u p p o r t e d i n {\ξ\ ̂  1}.

^ l l (4.19d)

Consider the integral of the type

j J Tr {c{dadc)2da) c = a~1 orb.

The integrand is differentiated in x directions more than twice. Taking into account
of (4.16) and (4.19b) the above integral is uniformly bounded in R. This estimate
and (4.18) imply (4.16) due to the following identity,

{a-^dada-ψda} - {b(dadb)2da}

= (a~1 - b){dada~ι)2da + bdad{a~1 - b)dada~i da + bdadbdad(a~1 - b)da.

Next note that d[Tr(b(dadb)2da)~\ = -Tr(dadb)3. Then

j J Tr(b(dadb)2da) = - J f Tr (dadb)3. (4.20)

Using dfo = — a~1da-a~1(\ξ\ ^ 1), anticommutativity of one forms and trace
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property lead to Tr ((dadb)3) = - Tr (da a~ xf = 0. Thus

( 4 . 2 0 ) = - j j Tr (dadb)3. (4.21)

By (4.14) (4.16) and (4.20),

^ (-20

Letting R tend to infinity, we obtain (4.13). (q.e.d.)

Proof of Theorem 2. The Fredholm property is due to unitarity of U(x) and
compactness of [P, U(x)~\ (see Lemma 3.9). We prove (4.2a) first. By definition,

da = (U- ί)dPφ + PφdU, db = (17* - 1)dPφ + PφdΌ\

Thus

(dαdb) = [(1 - U*)dPφ + Pφdt/ 17*][(1 - U)dPφ - PφdU-17*]. (4.22)

In the integration of ξ coordinate in (4.13) only the following terms occur,

lίi < l φ ^

j J Tr((dP,)3P,V) = ij

+ \\φ6Ίx{{dPfP)

= 2f, (4.23b)

J I Ύr{(dPφPφf) = 0. (4.23c)

(The integrals of (4.23) may be carried out by the polar coordinate.)
By (4.14) and (4.22),

indφ,£y = - ^ U J Ίxl(A*dPφ + PφB)(AdPφ-PφB)γ,

(4.24)
where Λ = 11 - E7, B = dU U*.

The integrand of (4.24) consists of 6 C 3 ( = 20) terms. After using trace property
and anticommutativity of 1 forms, we obtain

Tr {ί(dPφ)
3Pφφ

2 AA*(A + A*)B3 + 6(dPφ)
2PφdPφPφφ-AA*B{A + A*)B2}.

(4.25)

Recall that AA* = A* A = A + ̂ * = 211 - U - 17*.
Next we give several formulae of differential forms,

JΎrUB3 =$Ίτ(dUU*dUU*dU)= -$Ίr(dUdU*dU)= -$d(Tr(UdU*dU)) = 0.
(4.26a)
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Similarly

j T r £ / * £ 3 = 0. (4.26b)

We now show

jTr IUBU*B2 + υ*BΌB2~] = 0. (4.27)

Equation (4.27) is a consequence of the following two identities:

$Tr(dUdUU*dU* - UdUdU*dU*) = $Tτ{d(UdUU*)dU*)

JTr UBU*B2 = JTr (dUU*){U*dUU*)dU = - \Tτ(dUdUU*dU*).

Finally

JTr {UBUB2 + U2B3) = - JdTr {V2{dVdV* + dU*dU)) + JdTr (U2dU*dU) = 0.

(4.28)

By (4.25) -(4.28),

JTr(dαdfe)3 = ( - 2πi) x 10 x j £ 3 .

This proves (4.2a).
Next we prove (4.2b).
Recall that P is given by the formula (2.9b) and (3.5). Let P o be a projection given
by the symbol P(ξ) with m = 0. Then {1 + ([/ - U)P} - {H + (U - H)P0} is compact.
In fact this operator is given by (4.4) with the symbol c(x, ξ),

c(χ • ξ) = (U(x) - ί)- , | 2

m ^ 2 -.1/2 + (u(χ) ~ ί >

(-m2)α ξ

By Lemma 3.3, the symbol (U{x)-ί)(l/[\ξ\2 + m 2 ] 1 / 2 ) gives rise to a compact
operator. Thus

indPMPUP = ind^{1l +(U- ί)P0}. (4.29)

The * algebra generated by ak = af and y9 has the unique irreducible repre-
sentation (up to unitary equivalence). Thus we set

(σk 0 \ o /0 1

In this representation of Dirac matrices the operator in the right-hand side of
(4.29) decouples into two operators and

(4.29) = ind(1 +{U- ί)P) + ind(D + (U - H)(D - F))9

where P denotes the projection with symbol (2.9a). The operator (U +(U — H)P)
(H + (U - W ~ F)) - U = (U -ί)PU{ί - P) is compact by the proof of Lemma 3.6.
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This combined with Lemma 3.2 (iii) leads to

inάP^PUP = ind^ (7 = 0 (4.30)
(q.e.d.)

Remark. A non-trivial example of index in (4.2a) is given by

! ^ 4 + ^ ** a-sum.
By integrating (4.2a), we have mdPjePUnP = n. (For the detail of the computa-

tion, see Sect. 4 of [10].)

5. Remarks

We conclude this article by two remarks.
1. As explained in Sect. 1, if [P, S] is of Hilbert-Schmidt class and indP j f PSP = n,

the second quantized scattering operator shifts n charges. But we have not tried
to estimate the Hilbert-Schmidt norm.

It is plausible that the finiteness of this norm leads automatically to the triviality
of index because the integer invariant (e.g. instanton number, monopole charge)
appears only when the local gauge transformation enters into the systems, and we
know that the local gauge transformation on R3 is not unitarily implementable
on Fock representations of free fields.

We may of course improve our results by use of more refined methods than
the Dyson expansion, but we do believe that the essential mechanism giving rise
to the non-trivial index is the same as our results.

We also remark that the index in the massless case studied in this article
corresponds to the chiral charge shift while the index for the ordinary charge
vanishes in our assumptions by the same reason to the massive case.

In contrast with higher dimensional cases, the index of the scattering operator
and the Hilbert-Schmidt norm can be exactly computed in the 1 + 1 dimensional
massless case. The result is that both chiral and ordinary charge shifts may occur.

2. We now discuss the physical relevance of our technical conditions A and B.
First recall that the physical observable quantity is not the connection A(t, x)

itself but the curvature F(t, x). So we may claim that the change of the connection
yields no physical effects as far as the curvature is fixed.

We consider the curvature F with compact support which is the most easy and
physically reasonable case. If the curvature vanishes the potential is a pure gauge,

Ak{t9x) = dkW{t9x)'W(t9x)* for |x | + | ί | » 1 for some W(t9x) in C°°([R4, U(N)).
(5.1)

If the variables x are written by the spherical coordinate (r, ω),

W(t9x)=Wt(r,ω)' (5-2)

W can be viewed as a smooth family of mappings from S2 to U(N) for each t. It
is known π2(U(N)) = 0. As a consequence, we may deform, without change of
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physical contents, Wt to Wt satisfying

Wt(r9 ω) = H for r ^ C, where C is a constant. (5.3)

Thus for the compactly supported curvature F we may deform continuously the
potential satisfying Conditions A and (i) of B.

The condition (ii) of B is necessary for the unitarity of the scattering operator.

Conclusion. If the curvature is compactly supported, we may deform continuously
the connection to fit to Assumptions A and B. This deformation gives no physical
effects.
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