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Abstract. Forrester and Jancovici have given sum rules for a two-dimensional
generalized plasma with two species of particles interacting through logarith-
mic potentials with three independent coupling constants. They have also
found a specific one-dimensional solvable model which satisfies the analogs of
their sum rules. A class of one-dimensional models for which the partition
function is evaluable is given as well as a more general result evaluating multi-
dimensional integrals.

1. Introduction

Forrester and Jancovici [1] have given an exactly solved model for a one-
dimensional generalized plasma with two species of particles (roman and greek),
interacting through logarithmic potentials, with three independent coupling
constants. This was motivated by their discovery of sum rules for such a
generalized plasma in two dimensions (see also Halperin [2] and Girvin [3]) and
the desire to at least verify the one-dimensional analogs of these rules.

The two-dimensional system with roman and greek particles of density ρR and
ρG, respectively, and independent coupling constants gRR,gRG>&GG has
Hamiltonian

tofy-gGG Σ ln^

(1.1)

where the particle-background and background-background interactions have
been chosen in a way which compensates the remote particle-particle interactions
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so that we can expect the system to have a well-behaved thermodynamic limit.
Forrester and Jancovici's exactly solved model is for the system where all particles
lie on a circle of radius R:

£RR = SRG = 2, £GG = 4. We shall consider the more general case of this one-
dimensional model,

The excess partition function is

j < k

We shall show that

aN 2π bN 2π

Π IdθjU \dθΛ
j=l 0 α = l 0

x Π \eiθJ-eίθk\2y Π |^α-e^|2y+2ΠI^-^α|2". (1-2)

_ (ayN + b(y + ί)N)\ bNl R

'bN

where (y)n = y(y +1) ...(y + n — 1).

2. A General Identity

Since \eiθj-eίθk\2 = (l -ei(θj~θk))(l -eί(θk~θj}), the partition function Z as defined in
Eq. (1.2) is simply the power of R times the constant term in

x V + 1

1-^
j < k \ xk/ \ Xj/ α < 0 \ XjS/ \ Xα/ J » α \ xα/ \ Xj/

Equation (1.3) follows from a proposition proved in a more general setting by the
authors [4].

Proposition 2.1. Let al9...,an be positive integers, A be an arbitrary subset of
{(i,j): 1 ̂ i<j^n}9 ®^ be the set of permutations on {1, ...,n} whose inversions are
contained in A:

®A = {σ 6 ®π: χ* < 7 βwί^ σ ~ 1(f) > σ~ 1(7) implies (ί, j)eA}9

and let χ(T) be the characteristic function which is 1 if T is true, 0 otherwise. If [1]
denotes the constant term in the succeeding expression, then

( γ \ f l ί / Y Y

"iJQUO'v I1"?)
Y V * / Y \aj-χ((i,j)φA)

l '
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Equation (1.3) is the special case of this proposition where n =
or aN + \^i<j^aN + bN}, &A^&aN*&bN, and

For A = {(iJ): \^i<j^n}, one observes that

n 1 I

Π 7 T T T = (2 2)
in 1=1 (aσ(ί)+ ~ + aσ(l)) 01^2 -••'«»

This can be proved by induction on n. For the inductive step, we observe that the
only term involving σ(n) is

which can be factored out of the summation. The sum is now rewritten as a sum
over possible images of n of the sum over all permutations of the remaining n — 1
elements.

Proposition 2.1 thus implies an identity conjectured by Dyson [5] and proved
by Gunson [6] and Wilson [7]:

iftsΛ" V V *J aί\a2\...an\

In fact, the proof of Proposition 2.1 will essentially follow Good's proof [8] of
Eq. (2.3).

3. Proof

To prove this proposition, we shall need a lemma. Let T be a tournament (a
complete directed graph) on n vertices,

We say Γ is transitive if it contains no cycles and thus corresponds to a
permutation, σ, of {1, ...,n}, where σ(i) is the vertex with in-degree i — 1.

Lemma 3.1. Let α = (α1? ...,αM), T be a tournament on n vertices, then

[i] Π
(iJ)eT

(βι+ - +*„)! " 1 ., „, . ,
TT-j—7 TTJ 11 , ij T is transitive,

that

0, otherwise. (3.1)

<?/ Lemma. By the Lagrange interpolation formula (see Good [8]) we have

n n 1

1= Σ Π - - (3-2)
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Let C(Γ, a) = [1] fl ( 1 - — ) l ( * ~ — ) ' Multiplying both sides of Eq. (3.2)

by Π 1 L ( 1 ~ ) and taking constant terms yields
(i,j)eT\ Xj/ \ XiJ

C(T9ά)=^C(T,a-δi)9 (3.3)

where δt is the unit vector in the ith direction. We also have the initial conditions
that if ak = 0, then

Γ l , if fc = n = l,

C(T,a)= I C(T\fc,α1,...,αk_1,αk + 1,...,α l l), if vertex k has in-degreeO,(3.4)

[ 0, otherwise,

where T\k means the tournament obtained by removing vertex k and all incident
edges. It is readily verified that the right-hand side of Eq. (3.1) also satisfies this
recurrence (3.3) and set of initial conditions (3.4). Π

Proof of Proposition. We begin the proof of Eq. (2.1) by observing that

γ\aj-χ((i,j)φA)

= Π(1-- l- Π l - . (3.5)
i<Λ XJ/ \ Xi

We now consider the formal expansion of

(ί,j)eA\ XiJ

For each pair (ϊ, j)eA, choosing the first term, 1, will leave the product to the left
unchanged. Choosing the second term, — x/xf, yields

x;\
UJ

Thus, choosing the second term has the affect of reversing the order of i and j in the
corresponding term of the product. Thus we get that

/ X \ f l ί / χ\aj-χ(ί,j)φA) / v V * / v V j - 1

Π(ι--) i-- =Σ Π i-- (i-^) , (3.7)

where the sum is over all tournaments on n vertices such that if (ij)e T and j<i
then (7, i) e A. The proposition follows by taking the constant term of each side of
Eq. (3.7) and using Lemma 3.1.
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