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Determinants of Laplacians*
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Abstract. The determinant of the Laplacian on spinor fields on a Riemann
surface is evaluated in terms of the value of the Selberg zeta function at the
middle of the critical strip. A key role in deriving this relation is played by the
Barnes double gamma function.

1.

In recent years the problem of evaluating the determinants of certain elliptic
operators has received considerable attention. The case of determinants of
Laplacians on Riemann surfaces is crucial in Polyakov's string theory [P]. It also
comes up in Ray-Singer's analytic torsion [R-S]. In recent papers DΉoker and
Phong [D-P1,2] and Kierlanczyk [KIE] computed these determinants of
Laplacians in terms of special values of the Selberg zeta function. They succeeded
except in the case of the Laplacian corresponding to the Dirac operator on spinors,
for which they conjectured the determinant should be related to the Selberg zeta
function at the middle of the critical strip. Our aim in this note is to prove that this
is indeed so. The method followed by the above authors is to use the precise heat
kernel for the hyperbolic plane, and the Selberg zeta function appears somewhat
surprisingly. Our approach is more in the spirit of the analysis of the Selberg zeta
function given in Hejhal [H], Selberg [S], and Vigneras [VI]. We show that the
Selberg zeta function may be realized as a functional determinant (in fact as an
analogue of a characteristic polynomial). The precise statement is given in
Theorem 1. Our result follows from an asymptotic analysis in which a key role is
played by Barnes' double gamma function and in particular Stirlings formula. The
determinants in question are computed by specializing the parameter in
Theorem 1.

Our notation will be as in DΉoker and Phong [D-P 2]. We review it briefly. M
is a compact Riemann surface of genus h ̂  2 carrying a metric ds2 of constant
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curvature — 1. Let z be a local conformal variable and ds2 = ρ\dz\2. Let Tn be the
space of tensors f(z)(dz)n on M. We also allow n to be half an integer by choosing a
spinor structure. Thus T° denotes the space of functions and T 1 / 2 a space of
spinors. Define operators Vn:T

n^Tn'1 and y":τ
n-+Tn+ι by

Vn = ρ-ιd, Vn = ρndρ-\ (1.1)

then

Vϊ=-Vn~\ (n*=-P»+i. (1.2)

The Laplacians Δ+ and zl~ on Tn are defined by

ti = -V«+J\ Δ~ = -Vn-"Vn. (1.3)

Thus zl0 = zl^ is the Laplacian on functions and A j~/2 is the Laplacian correspond-
ing to the Dirac operator F 1 / 2. The operators A* are non-negative selfadjoint. If B
is such an operator and 0^λo^λί^λ2... its eigenvalues we define

detB= Π V (1-4)
j = o

This product is regularized by the usual zeta function method (see Sect. 2). We also
define

dGt'B= Π K (1.5)

In order to make computations we make use of the uniformization theorem. M
may be realized as ί)/Γ, where ί) is the upper half plane and Γ a discrete subgroup of
PSL(2,R). To give an explicit spinor structure on M, let Γ be the subgroup of
SL(2, R) which projects to Γ. Let χ: f -> {± 1} be a character for which χ( -1) = -1.
We denote by S(2n) the space of automorphic forms / on ί) satisfying

ĵ̂ lJ (1.6)

/* *\
where y = . We remark that our space S(2n) corresponds to the space S(n) in

\c dj
DΉoker and Phong [D-P2]. We use this convention so as to be consistent with
the notation in automorphic forms, e.g. [H]. With this convention S(l) corre-
sponds to the space of spinors. S(2ή) is a Hubert space with the inner product

</.g> = ί /(z)g(z)—r- (l 7)
ί>ιr y

5(0) is, of course, the space of functions on M. The operators

- (1-8)

are self-adjoint on S(2ri). Furthermore, the isometry / : Γ"->S(2n) defined by

/(z)^//(z), (1.9)
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conjugates

Δ+ with D2n + n(n+l) and Δ~ with D2n + n(n-l), (1.10)

see [D-P2, pp. 538]. It follows that

det'(zJ0Hdet'(D0),

det/(/lΓ/2) = det /(D 1-l/4).

Corresponding to forms of weight 0 and 1 we form the Selberg zeta functions

' * + * ) > (1-12)Π Π
γ primitive k = 0

v = 0,1 and where γ runs over the primitive conjugacy classes of Γ (these
correspond to the primitive closed geodesies on M). ly is the length of the
corresponding geodesic.

The Barnes double gamma function Γ2(s) is defined by the canonical product

( u 3 )

y is Euler's constant. One checks that Γ2 satisfies

Γ2(l) = l, Γ2(S + 1 ) = ^ , Γ2(n + i ) = i ^ ^ . (1.14)

Theorem 1.

det(D1

where E=-i-

In the above theorem ζ(s) is the Riemann zeta function. The constant ζ'( — 1)
comes through the relation ζ'(— 1)==^— log^l, where

= lim Σ fclog/c + +
2 12

see Vardi [VA1]. A is known as Kinkelin's constant [KIN]. 1 This constant also
appears in det'(Zl) where A is the Laplacian on S2, see Vardi [VA2].

Corollary 1.

where N is the dimension of the space of zero modes of the Dirac operator.

1 A = ί -28242713...
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The value above for det'(zl0) agrees with DΉoker and Phong [D-P2]. The
determinants det'(J*) for all n may be calculated from (1.10) and Theorem 1 by
using the fact that the spectrum of D2n_2h leΈis essentially the same as that of
D2n, as is easily seen via the operators Vn and Vn (the difference is merely a finite
number of explicit eigenvalues coming from holomorphic forms of various
weights, see Hejhal [H, p. 408, Theorem 5.6]).

2.

2.1. Regularization of Determinants

Let λ0 S Λi S λ2 . be the eigenvalues of one of our Laplacians B. As is well known
from differential equations, see Gilkey [G] for example,

satisfies

Q(t)~-+ϊf+γt... as ί->0. (2.1)

We begin by defining det(£+ s(s — 1)) for s real s(s — \)>λ0. Consider

00

H(w,s)= Σ (Λk + Φ—l))~w f°r Re(w)>l
k = 0

GO At

(2.2)
1 IWJ o I

Formally,

dH
-^ = - Σlog(λk + s(s-l)), (2.3)

so one defines

(2.4)

1 °° ̂
Γ(w)0

w = 0

00

Jo

r(φ-l)

iog(4

t

+Φ-i)),

To see that this makes sense one shows that H(w, s) is meromorphic in w and
regular at w = 0. Indeed, a little manipulation shows that

H(w,s)= 1 }
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From this the regularity of H(w, s) at w = 0 as well as the smoothness of —— (0, s)
oo OW

in 5 for s(s —1)> — λ0, is evident. We always interpret any γ\ μn by the above
fe = 0

regularization. Using this notation we have

l)) Π (
k = 0 fc = 0 fe=K+l

(2.6)

for any K. Since the second factor is defined now for 5(5-1) > —λR+u while the
first for all 5 we may define det(B + s(s—1)) for all real 5. It is smooth in 5 and
vanishes only at those s for which λk + s(s — ί) = O for some k. One could define
det (£ +s(s — 1)) for complex s as well and show that this function is entire. We do
not do so since it will follow from our considerations anyhow.

Returning to (2.2) and differentiating w.r.t.s.,

= Σ (-wXλfc+φ-i) )-*- 1 ,
2s-1 55

Hence if F{s) = — (0, s) = - log det (B + 5(5 -1)), then

We will need to know the asymptotic behavior of det (B + 5(5 — 1)) as 5-> 00. If θ(t) is
defined by

θ(t)= Σ
k = 0

then

+j + y . . . as ί^O (2.8)

for suitable constants α, j8,7. We may write

i f ( w , s ) f θ ( ί ) e ί ,
i (w) 0 ί

and if we split this integral as we did in (2.5), we get

dH 1

— (O,s) = F ( s ) = f / ( ί ) g - t s ( s - 1 ) Λ - α φ - l )
ow 0

+ <xs(s — 1) logs(s - 1 ) - β logs(s — 1) - (xs(s -1)

x J e~'7ϊ-|8 ί e~yi- (2-9)
( i ) y ( i ) y
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Here f(t) = -ί θ{t)---β) which is bounded. The first and last two terms of (2.9)

tend to 0 as s-» oo, hence

-l)) = αφ-l)logs(s-l)-αs(s-l)

-βlogs(s-ί) + o{ί) as 5->oo. (2.10)

2.2. Selberg Zeta Function

On applying the Selberg Trace Formula in the case of S(0) and S(\) to the function
1 1

+ (s-l/2)
partial fraction expansion for Zv(s) as defined in (1.12).

h(r)=~2— 2 —2—Έΐ> s e e Hejhal [H, pp. 448 and 72], we obtain the

1 v 1 V ί\ \ °° / 1 1

- 1 Z o

 i 5 j 2iδ Z o V2 V - = o U 0 ) + Φ " 1) W ~ 1/4 + ̂

25-1 Z /

In the above A^0) are the eigenvalues of Do and λ^ of D^
From the canonical product definition of Γ2(s) in (1.13) one verifies that

d( 1 d / (Γ2(5))(2π)^
( l 1 J J = Jo

and

1 ά \ 1 °° 1
-(-log(Γ2(S+l/2))2(2π)s) )=—-—2+ "

(2.13)

We define

^ / Λ ΛΓ2(s))2(2π)^2"-2

Differentiating (2.11) and using (2.12), (2.13), (2.14), we have

F '-*••(215)

This together with (2.7) yield

ώ l
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Hence

det(Dv + s(s-l)) = ̂ + l ? v ( s ) ( s - 1 ) Z v (s)Z V f C 0 (s) (2.16)

for some constants EV,FV, v = 0,1.

To evaluate these constants we consider the behavior of the logarithms of both
sides of (2.16) as s-»oo. The left-hand side has asymptotic expansion given in (2.10).
The right-hand side gives

£ v + F v s ( s- l ) + logZV5θ0(s) + o(l) (2.17)

as s-»oo, since logZ(s)->0 with s->oo [as is apparent from the product definition
(1.12)]. The behavior of logZ v ^(s) as s-> oo is easily determined from the "Stirling
series," see [B],

x 3 (x2 1 \

logΓ2(x + l) 1 = ~log2π + C ( - l ) - ^ x 2 + ( y - j ^ ) l o g x + o(l) as x-+oo.

(2.18)

Using this and the previous comments we obtain for the S(l) case,

as 5-^00. (2.19)

Comparing (2.19) with (2.10) gives

α A , F 1 (2fc2), β ^ ,
12 (2.20)

£ 1 = ( 2 A - 2 ) ( 2 Γ ( - l ) - l / 4 - l / 2 1 o g 2 π ) .

One does the same for v = 0, and finds

( )

E0 = Eί.

The evaluation of these constants together with (2.16) gives Theorem 1. We turn to
the proof of the corollary. Clearly,

det(D0 + s(s-l)) = φ - l ) ίϊ (40) + 5(5-l))
k=l

and (2.22)
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Hence

det'(D0)=-(det(D0

dott(D1 + 1/2(1/2-1))=
(2N)l ds2

s= 1

Φ ~ ))) s=l/2

P. Sarnak

(2.23)

The right-hand sides of (2.23) may be evaluated in terms of Selberg Zeta Functions
using Theorem 1. Indeed, since Z0(s) and Zγ(s) have, a simple zero at s = ί,
respectively a zero of order 2N at s=l/2, the corollary follows at once. [Recall
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Note added in proof. Professors Phong and DΉoker have informed me that they have also derived
Corollary 1 by different methods. The method of deriving the relation in Corollary 1 for Ao,
described in this note, has been independently found by Voros in "Spectral functions, special
functions, and the Selberg zeta function" preprint 1986.




