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Abstract. Previous proofs of asymptotic completeness and related results on
scattering in field theories are restricted to P(¢), models in the 2- and 3-particle
regions. In this paper, new cluster expansions that are well adapted to more
direct proofs and generalizations of these results are presented. In contrast to
previous ones, they are designed to provide direct graphical definitions of
general irreducible kernels satisfying structure equations recently proposed
and shown to be closely linked with asymptotic completeness and with the
multiparticle structure of Green functions and collision amplitudes in general
energy regions. The method can be applied as previously to P(¢), and can also
be extended to theories involving renormalization which are controlled by
phase-space analysis. It is here illustrated in detail for the Bethe-Salpeter kernel
in %, in which case a new proof of its 4-particle decay (which yields asymptotic
completeness in the 2-particle region) is given.

1. Introduction

1.1. Background and General Ideas

Past results on asymptotic completeness and related results in constructive theory
apply to weakly coupled, superrenormalizable P(¢), models in the 2-particle [1, 2]
and 3-particle [3] region. (For some previous preliminary results related to
spectrum see also [0].) In [1a] the Bethe-Salpeter kernel G is defined through the
B.S. equation

F=G+F-G, 1)

where F is the connected, amputated 4-point function and F o G is a Feynman-type
convolution integral }—@®—@—3 with 2-point functions on internal lines. G is
then shown to satisfy in Euclidean space-time 3-particle decay, or in an even theory
(e.g. %) 4-particle decay of the form e ™1 ~9d(x1--2x4) with:

X1 o0+tX X3 0+ X
d(xl,...,x4)=4} 1'02 20 3’02 4’Oi+[xl,o—x2,0|+|x3’o—x4,0|, (2
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where m>0 is the bare mass (close to the physical mass m,, in the models
considered when the coupling constant 1—0) and ¢é—0 as A—0. Equivalent
analyticity (=2-particle irreducibility) of G follows in momentum-space, via the
Laplace transform theorem, below the 4-particle threshold [s <(4m,,)* —¢ in the
even case, ¢ -0 as A—0, where s is the center of mass squared energy in Minkowski
space).

It is then shown for the same models in [5, 1b] that this analyticity of G, to-
gether with a related property of the 2-point function (isolated pole at the physical
mass), yields asymptotic completeness e.g. in the form of the relation

F,—F_=F,xF_ 3)

in the 2-particle region (2m,,)? <s <(4m,,)* — ¢, & >0 as 10, where * denotes on-
mass shell convolution over two internal energy-momenta. The existence of an
analytic continuation of F in a two-sheeted domain around the 2-particle
threshold (with possible poles) is also established. The absence of pole in the
physical sheet, hence of 2-particle bound state, at s<(2m,,)* is obtained for ¢3.
One such bound state is present for other P(p), models such as ¢$— @3 near
s=(2m,,)* [4]. In this connection, we note that a quasi-equivalence has been as a
matter of fact established in a more general axiomatic framework, between the 2-
particle irreducibility of G (and the related property of the 2-point function) and
the asymptotic completeness equation (3), first in the earlier work [5] and in a
more complete way in [6]. It yields, in particular, a general derivation of (3) from
the irreducibility of G, apart from possible poles of F. The latter will be excluded by
a general argument (in the 2-particle region) in [7], where the analysis of bound
states and resonances for P(¢), models and its extension to the Gross-Neveu
model will also be given by an adaptation of the method of [5, 6]. (A different
technical approach was used in [1, 2, 4].)

Another method in which a somewhat different type of irreducible kernel and
Bethe-Salpeter equation is introduced, has been proposed and applied in the 2-
particle region in [2b]. The results above have been, on the other hand, extended in
[3b] [for even P(¢), models and up to some technical limitations] to the 3-particle
region, a case in which significant complications already occur, but which still
involves important simplifications with respect to more general energy regions (see
[8]). The derivation of irreducibility of relevant kernels is obtained there by the
method of [1]. The subsequent derivation of asymptotic completeness properties
is linked with the analysis of [9] (given in the same 3-particle region in an even
theory) which extends the previous works [5, 6], and makes use of a new integral
equation involving the six-point function and a 3-particle irreducible kernel. It has
been believed for a long time that more general results should be obtained in a way
similar to above. However, important difficulties have been encountered in this
program. A (limited) class of irreducible kernels and integral equations has been in-
troduced in [2a, 3a, 3c] (see also [9]). A more heuristic analysis has then been
proposed in [8] where structure equations, involving more general irreducible
kernels, that are generalizations, in each energy region, of the Neumann series of F
in terms of G, and from which suitable sets of integral equations might be
ultimately derived, have been conjectured. Together with some mathematical
conjectures, they have, moreover, been shown, at least in a formal sense (thus for
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theories without bound states), to yield asymptotic completeness relations in
general energy regions, as also further results on the multiparticle analytic
structure of Green functions and collision amplitudes.

In this work, the definition of irreducible kernels and the derivation of
irreducibility are reconsidered. First, “p™ order” cluster expansions that are simple
generalizations of previous ones are introduced. (A similar expansion of order 3 is
used in [10] for mass renormalization purposes.) They yield, with p=4, a
corresponding explicit graphical definition of G and a new, direct proof of its 4-
particle decay. By direct graphical inspection, G is known, on the other hand, to
satisfy the Bethe-Salpeter equation (1). The analysis is presented for simplicity for
@3, but applies also to other P(p), models. The type of expansion of G that is
introduced has the advantage, in contrast to the method of [1], of giving a direct
graphical interpretation of irreducibility very close to that of perturbation theory,
and can be easily adapted for p large enough to the definition (and proof of
irreducibility properties) of general irreducible kernels satisfying the structure
equations of [8]. In fact, this expansion exhibits G as an infinite sum of terms
associated with 2-particle (or 3-particle in the even case) irreducible graphs in
space-time that join squares of a unit lattice containing X, ..., x, and possibly
intermediate arbitrary squares. A propagator, that yields an exponential fall-off
factor e~ ™~ 9! is associated to each line [ of the graph. An exponential fall-off in
e~ mA =G0 %0 where ¢ >¢ and I5(x,, X,, X3, X4) is the shortest length of all 3-
particle irreducible graphs joining x,...,x, and possibly other points is then
obtained. This fall-off, which generalizes the tree-graph decay introduced previ-
ously for connected functions in statistical mechanics in [11] and in constructive
theory in [12], is stronger than the decay factor (2) (which is sufficient for present
purposes). The factor e ™! ~¢) is first extracted for all terms of the expansion of
G. Remaining factors e ™® -9l for each line are then shown to ensure
convergence at small values of the coupling constant 4 (first in a finite volume A
and then in the 4— oo limit). The convergence of present expansions of F and G,
in contrast to the divergence of the perturbative series, is due to the suitable use
of a lattice. In the perturbative series, each square of the lattice contains an
arbitrary number of vertices. Hence there is an arbitrary number of propagators
between any pair of squares, whereas only a finite number (< p) of propagators
are made explicit between squares in the cluster expansions, which are in fact
“minimal” expansions with respect to the lattice.

In Part II of this work (to be published elsewhere) the method will be extended
to theories involving renormalization, hence in which the usual B.S. equation (1)
does not make sense (divergence of F o G), and more precisely to the massive Gross-
Neveu model (in dimension 2) whose existence has been recently established [10,
13]. The result then applies to a kernel G,, satisfying a regularized, non-
renormalized, B.S. type equation:

F=Gp+Fopy Gy, 4

where ¢, is defined as o, but (besides 2-point functions) well specified analytic
cut-off factors with sufficient decrease at infinity in Euclidean directions are
attached to each internal line in momentum-space. The 4-particle decay of G,
and Eq. (4) are now obtained through phase-space expansions of F and G,, that
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extend those introduced previously. (A 4*™-order cluster expansions is used in the
slice of lowest momentum, with still 1% order expansions in higher slices.)
Kernels satisfying a regularized equation of type (4) are those most appropriate
for the derivation of asymptotic completeness: in fact, the analysis of [5, 6]
applies equally in this case, and was indeed made in terms of kernels G,
satisfying this type of equation. An alternative approach using Bether-Salpeter
kernels G, in a theory with cut-off (satisfying F,=G, + F, ¢, G,) would introduce
problems in the limit when the cut-off is removed. The (non-simple) perturbative
content of the kernels G,, and their connection with the kernels G, and with the
“renormalized” irreducible kernel G,, (i.e. from the perturbative viewpoint the
formal sum of renormalized 2-particle irreducible graphs) have been indicated in
[14]. This will be made precise in the framework of constructive theory in [15],
where renormalized B.S. equations of the type proposed in [16] and in [17, 14]
will also be established in that context. As explained in [15], renormalized
kernels and B.S. equations might be used alternatively to obtain 2-particle
asymptotic completeness for the G.N. model. However, this introduces un-
necessary complications. The use of regularized kernels allows a more direct
exploitation of the local analyticity (= irreducibility) properties in momentum
space which are the important feature needed in the derivation of asymptotic
completeness, whereas renormalized kernels and B.S. equations are also linked
with asymptotic properties in momentum space (in Euclidean directions), i.e.
with short distance behaviour in space-time (see [16, 17] and [15]).

The method is again well adapted to more general regions: it yields explicit
definitions (and irreducibility properties) of general irreducible kernels satisfying
again (by a graphical analysis analogous to that of [8]) regularized structure
equations of the type conjectured there and shown as before to be closely linked
with asymptotic completeness and with the multiparticle structure in general
energy regions. More details in general energy regions will be given elsewhere both
for P(¢p), and for the Gross-Neveu model. All results apply, as those of [1-3], for
small couplings, although similar results can be expected in pure phases at large
values of A.

The paper will include a self-contained presentation of previous results, such as
the existence of ¢4 and (in Part II) of the G.N. model. This presentation differs from
the earlier works on some technical points and includes on these points some
simplifications and improvements. Contents are described in Sect. 1.2. More
specific introductory comments will be given in Sect. 2.

1.2. Description of Contents

The model is defined in Sect. 2. Connected functions H(zq, ...,z;) are first de-
fined in Euclidean space-time1 in a finite box 4. The non-connected function
H,(zq,...,2), is equal to Z, I,(z,,...,2,), where Z, is a normalization factor.
Cluster expansions of order p of I,, p=1, are introduced in Sect.3 by a
generalization of a cluster expansion due to [18, 19], which is more simple and
convenient than previous ones [20]. They provide expansions of the form:

Ligw-w2)= T I I0G 1), 0

..... X i=
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where the sum runs over all partitions of the set of unit squares of A into subsets
Xy, ..., X,. I(X;), which depends on the set [z,]; of variables z, in X, has the form:

I(X)=§I(X,G), (6)

where the sum runs over a class of connected graphs G linking the squares of X,
which in the cluster expansion of order p have at most p lines between any pair of
squares of X. Each line is associated with a propagator C. Bounds on |I[(X, G)|,
including fall-off factors e =™ ~4® for each line [ of G are then exhibited. If X is
composed of only one square 4 containing no point z,, I(X) is equal to a constant
a+0 independent of A4 and (5) can thus be written in the form:

a Ml (zy.02)= ¥ Y H (I(X a™ 1), (™)
qz1 Xy,..., Xq i=1
where the sum runs now over g2 1 (non-overlapping) subsets X 4, ..., X,, g=1, of
squares of 4 such that |X;|=2 or |X,|=1, z,€ X, for at least one r.

On the other hand, I(X,G) and hence I(X) satisfy, for p>1, factorization
properties that will be useful in the study of irreducible kernels. In fact, if G can be
divided into two subgraphs G', G” by cutting a set S of p’<p lines, then I(X, G)
factorizes in a natural way as a convolution product, with propagators on each line
of S, of functions associated with X', G’ and X", G”, respectively (X', respectively
X", is the set of squares of X linked by G, respectively G”). More generally, a
similar factorization property follows if G is decomposed into its “(p—1)-
irreducible” components: by definition, a subgraph is (p—1)-irreducible (in all
channels) if it cannot be divided into two parts by cutting less than p lines, whereas
each (p—1)-irreducible component can be separated successively from the rest of
the graph by cutting less than p lines. It yields the formula:

I(X;[z,])= 2 Y (1, )7 § TT dudv,Cluy, vy)
partitionsof X G leG
intosubsets X y,..., Xq
gz1
a
x 11 an(X 5 (25 [u, v, )
j=

where the second sum runs over graphs G whose “vertices” are the sets X, ..., X p
and which contain no (p — 1)-irreducible part, the points u,, v, are integrated in the
respective sets X ,, X, ]omed byline/, n, zis the number of lines between X, and X,
and the function I(m)(X ) is the sum of all terms I(X, G) corresponding to (p—1)-
irreducible graphs. [I(X,G) is defined in a way analogous to I(X,G), but the
dependence on the variables u,v in X is somewhat different.]

More precisely, two different types of cluster expansions will be presented.
They both provide Egs. (5)~(8) with the same functions I(X), I;,(X), which are in
fact defined by Egs. (5), (8), but with a different class of graphs G and different
functions I(X, G). The first one, whose description is the most simple, is described
in Sect. 3.1. It can be used in a natural way in Part II for the Gross-Neveu model.
On the other hand, as will be discussed, its use is possible but not satisfactory for
bosonic models like P(¢),. We then present, in Sect. 3.2, alternative p'® order
expansions. For any p=1, they can be constructed in various ways depending
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on the choice of a first square and of some subsequent ones. Individual terms
I(X, G) depend on this choice. However, bounds used later do not depend on it: see
Sect. 3.3.

In Sect. 4, an a la Mayer procedure analogous to that of [12] is used to derive
corresponding p'-order expansions of H,=Z ', and in turn of H. If z,, ..., z,
belong to different squares, the latter is of the form:

Hil(zl""’zl)=;—' ZA %I(X’G)a (9)

where X is the set of squares 4, ..., 4y and of the squares 4,_4, ..., 4, ; containing
Zy, ..., Z;, and the last sum runs over connected graphs G made up of subgraphs G
and of further Mayer lines joining pairs of squares of X : a Mayer line indicates that
the two squares must coincide and gives a factor — 1. (In the absence of a Mayer
line, squares vary independently in A and are allowed to coincide. The graphs G
are connected when all lines, including Mayer lines, are taken into account.) In
view of the previous bounds on |I(X, G)|, it is then shown in Sect. 4 (after a suitable
regrouping of terms associated with graphs G with different sets of Mayer lines)
that the expansion (9) is uniformly convergent at small enough values of 4. The
convergence is uniform with respect to 4 and H, is well defined in the 4 — oo limit.
The method also allows one to obtain (for HS and H®) a decay factor
e mi-dlon2) where [, is the shortest length of connected graphs joining
zy,...,z; and possibly other points (tree-decay). Although the proof requires only
p=1 expansions, it will be explained on p®-order ones in view of later extensions.
In Sect. 5, the kernel G is simply defined as the partial sum, in the 4®-order
expansion of the amputated, connected function F(zi,...,z,), corresponding
to graphs G that are 3-particle irreducible in the 2—2 channel considered (and
2-particle irreducible in 1—3 channels; each Mayer line is to be considered as
“infinitely irreducible”). This definition ensures, in view of the factorization
properties of type (8), that G does satisfy the Bethe-Salpeter equation (1). The
convergence and decay properties of G follow from an adaptation of the methods
used in Sect. 4. Section 5 also contains the fully analogous analysis (needed in
Sect. 6) of the 1-particle irreducible 2-point function K. The momentum-space
analyticity properties of G and of the (complete) 2-point function, needed in the
derivation of 2-particle asymptotic completeness, are finally given in Sect. 6.

2. The Model

The non-connected 4-point Green-function S 4(x, ..., x4) of @3 can be written in a
box A as Z;'N (x,,...,x,), where:
—Af:p%g(x)dx

Z,=limje 4 du(9), (10)
@ ©
. —Af:p%p(x)dx
N (X1, .. x4)= lim [o(xy)... p(xs)e duy(®), (11)

where :¢*:,(x)=@*(x)—6C,0,0)¢*(x)+3C,0,00> and C,x,y) is the Fourier
transform  of the  momentum  space  regularized  propagator
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(p*+m?) " exp[ — M ~*%(p>+m?)]; dp, is the measure of covariance C,. From now
on, we leave implicit the dependence in g. For the simple and well known treatment
of the g— oo limit, see e.g. [21, 22]. For our purposes, it is convenient to “integrate
by parts” the ﬁelds ¢o(x) in (11), ie. to replace each field ¢(x;), i=1,...,4, by

dz,C(x;— This gives:
fdzC( )5 oz g 4
Naxy,.onXg)= [ dzg...dzy [] C(x;—2)Ny(zy, ..., 2) + Raxy, ..., X4),

i=Ta =t (12)

where I ]

—Af:p%: (x)dx

'z, .2 4 (o), (13)
A(zy EH 5(p( ) me

and R is a sum of terms of the form C(x;—x;C(x;—x;) and C(x;—x;)
[dzidz, C(x,— 2 )Clx—2)N'(zp, z)), [, )k, 11=[1,2,3,4],

which will not contribute to the connected 4-point function. By explicit
calculation, N’, can, on the other hand, be written in the form:

AZ15 e 24)=0(2y —2,)0(21 —23)0(z1 — 24)MZ 4
+0(zy —2,)0(z; —23) 1Nz, 20) + ..
+0(z1 —2,)0(z3 —24)1(/12’2)(21,23)'*'

+0(zy =2 >Nz, 25, 2) + o HIT 33Nz, 25,23,24),
(14)

where the dots refer to similar terms obtained by permutations of indices and:

1
1oz, nz)= [ [] [=@Yn) 2" (z)]e” 2o P=dy(g). (15)
A4 i=1
We finally define:
Hy(zy, .0 2)=Z 3 1 4(z4,...,2), (16)
H(zy,...,z;)=connected part of H 4(z,...,2), (16"

where the indices n; have been left implicit, and state the following result [12]
(previously proposed with a weaker type of fall-off in [20]), which will be
reobtained in Sect. 3.

Proposition 1. HS, has a well defined limit H when A— co. Moreover,¥e¢>0,31,>0
and C, (independent of A ) such that for any ( finite or infinite) A and any A, |A| < 4,:

) 17

The length ly(zy,...,z;) is, as already mentioned, the minimal length of all
connected trees joining z, ..., z; and possibly intermediate points. The last factor
(1+|(InInf|z, —z])))° is included to take into account the short-distance behaviour
of HY, but it can be removed if one considers, e.g. the region |z;—z;| > 1, V(i, j), i j.

Proposition 1 yields corresponding results on the connected 4-point
function S¢.
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3. p™-Order Cluster Expansions

3.1. Pairwise Cluster Expansions

The most simple type of p-order cluster expansion that might be thought of is as
follows. Auxiliary variables s, , are attached to each pair of squares of 4 and
C(x,y,5),s={s4 4},isdefined as s, ,C(x, y)if xe A, ye A', A+ A",C(x, y,5)=C(x, y)
if x, y belong to a common square:

C(x,; 5)=C(x,) [(}; Saar (ARAG)+ 4 (x)A0) + ;A(x)A(y)] . (18)

where A(x)=1 if xed, A(x)=0 if x¢ A. We note, in particular, that C(x, y; 1)
=C(x,y), C(x,y;s)=0if x and y belong to squares 4, 4’ such that s, , =0, and

d . . : .
s C(x,y;s)=0 unless xe 4, ye A" or vice versa, in which case it is equal to
A,4"
C(x, y). Let I 4(s) be defined, formally, by replacing C by C(s) is the measure dp.
Being given a partition of 4 into subsets X, ..., X, if all the variables s, 4
associated to squares 4,4’ that belong to different sets are fixed at zero, the
measure dy correspondingly factorizes. Then, by Taylor expansion of order p

of I,(s):

d 1 d
I,=1,1)= {(AI’:[',),:SA,A’=O+I§I;" Saa=0t-- +MFT Sa,4=0
+ ! 1(1 Sa )t @ 14(s) (19)
G-nrat e g

Expansions of I, of the form (5) to (7) are obtained with a sum in (6) over all
connected graphs G including n, , < p lines between any pair (4, 4") of squares of
X and:

1

(1 =544 ) 'dsy 4
(4,4)eX nA,A,! Al:l: (p 1 J. 4,4 A, A
ng,asp—1 na,4=p

x § ZH dudv [ A () Ai(v) + A(v) A(u)]

I(X,G)=

eG
0 1
X A"z,
Sty bgln) L, H1OT D
such that
zyeX
—Af:0%: (x)dx
{0 A @; S)ls 4r=0 it na a0 <p- (20)

The results above are only formal, as was already known at p=1: the propagator
C(x, y; s) is not in general of a positive type and the measure du(s) is thus not well
defined in general. Various possibilities have then been considered at p=1. In a
first one [23] a formula of type (18) is applied to C'/? (the square-root of C in the
operator sense) rather than to C. This allows one to avoid the previous difficulty. It
introduces, however, a number of unpleasant features and, in particular, would not
allow a direct analysis of the structure of the 2-point function (isolated pole at the
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physical mass), as that given in Sects. 5, 6. On the other hand, an alternative
expansion, in which variables s, , between squares are replaced by similar
variables, first between a given square and its complement in 4 and so forth, has
been introduced in [18, 19]: this is the type of expansion that is generalized in
Sect. 3. Although it introduces some arbitrariness it is a natural and simple way of
solving the positivity problem: all C(x, y; s) either in [18, 19] or in Sect. 3 are by
construction of a positive type, as linear combinations, with =0 coefficients, of
positive-type terms.

We finally mention another way of solving the positivity problem, proposed in
[247:it is shown there that C(x, y; s) as defined in (18) can be of a positive-type if the
side of the squares of the lattice is taken sufficiently large (and not of order 1 or
m~1) and if characteristic functions of these squares are replaced by smooth
enough functions. This method introduces, however, at least from a conceptual
viewpoint, an important loss of information.

3.2. Inductive Cluster Expansions

The cluster expansions of I, and Z , are obtained by introducing a lattice with
squares of e.g. unit side in (2-dimensional) space-time (best results are obtained in
principle when the side is of the order of m™!) and auxiliary real variables as
follows. First, a given square A4, is considered and C(x,y;s;) is defined, for
0<s,=1, as

Clx,y;89)=Clx, y)[sy + (1 =s){4: ()4, () +(1 = 4) ()1 = 4) )], (1)

where 4,(x) is the characteristic function of 4, [4,(x)=1 if xe4,, 4,(x)=0 if
x¢A,].Le., C(x,y; s;)=C(x,y)if x and y both belong to 4, or both belong to A/4,,
and C(x, y; s;)=s,C(x, y) otherwise. In particular, C(x,y; 0)=0if xe 4,, y¢ 4, or

. ac ., .
vice versa. We also note that Tls equal to zero or to C(x, y) in the first and second
1
case, respectively. Functions Z ,(s;) and I ,(z,, ..., z;; s;) are defined by formulae
(10), (15) with C replaced by C(s,) in the measure du. We treat below I ,, Z , being

treated similarly. A 1% order Taylor formula gives (leaving A implicit):
L d
I(zy,...z)=1zy, ...z 1)=1(z4, ..., 2;; 0)+ gdslﬁl(sl). (22)
1
In view of the previous property of C(x, y; 0), the measure du at s, =0 factorizes, 4,
and A\4, are decoupled and I(0) reduces to the product I,,1,,, (each factor
. . . . . 1
depending on the variables z in 4,, respectively in 4\4,). On the other hand, ;—

dc o1
can be written <in view of the property of K) as:
1

dl
— (2 nzns)= Y a4 (21525 81), (23) -
dsl A1, 1 ¥ 41
0 0
IA;,Al,l(Sl)z fdudv[ 4 1w, () +4,v)4y, 1W)]1C(u, U)W w
! —Af:0%(x):dx .
x [ Gip™:(ae 4" V(o sy), (23)
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where the integration in (23) is restricted touin 4, vin 4, , or vice versa in view

of A-functions.
The term I, 4, ,(s;) is represented schematically in Fig. 1, where the line

between 4, and 4, ; represents the propagator C(u,v).
Fig. 1 D | |
| 414

The term 1(0) is treated by applying to I 4 ,, the same procedure as that presently
described. For each value of 4, ;, 1, 4, ,(s,) is treated again by a 1* order Taylor
expansion:

s d g
IAlyAl,l(S1)=IAl,A1,1(O)+ .f d ’ IA1,A1,1(Sl)dSI’ (24)
0 dsy
d ! ! !
—dsfl IAl,A1,1(51)= 4 Z*A IA[,Al,l,Al,z(sl)' (24)
1,2 1

The measure du(p; 0) in 14, 4, ,(0) is decoupled relatively to 4. Concerning the
second term of (24), Taylor expansion is now applied to I, 4, , 4, ,(51). The
procedure is pursued, until either one variable s{ is fixed at zero or p squares
among 4, ;...4, , coincide. We thus get at this stage either terms of the form
L4, 44 ..., 4, ,(0), in which case at most p—1 squares among 4, ;... 4, , coincide
and 4, is decoupled in the measure du from A\ 4, (but is linked by propagators to
the squares 4, ;...4,, of A\A,) or terms I, 4 , ., (s¥7V), where 4,,
coincides with p—1 previous squares: see Fig. 2.

.....

4122416 A2 %1679, 5
4127413
41 =d1:5=41,8

44 4147 (=45)
d13=41
415 1
a) A term IAln-wAl,r (0) b) A term IAlsnwAl,r (S(lr_l))
(41 decoupled) (p=4 coincident squares 4y ,)

Fig. 2. (p=4)

In the first case, the procedure to be applied is described later. In the second
case, denoting below 4, the square 4, ,, we now introduce a new variable s,
relative to the set 4,u4, and the propagator:

C(x, ya S(lr_ 1)9 52)= C(xa ¥, s(lr— 1))
X [s3+(1=s){(4104,)(x)(4,04,)(Y)+(1 = (4, 04,)(x)(1 = 4,04,)(y)}],

(25)
where A,0d,(x)=4,(x)+4,(x), which yields a corresponding function
L, ay o4, 8V 7Y, 8,). This propagator satisfies properties similar to above, with

A, replaced by 4,u4d,, A\4; by A\(4,u4,), C(x,y) by C(x,y;s,). We now
consider (1 order) Taylor expansions with respect to s,,s5, ... until either s@ is
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fixed at zero for some g (4,u4,) is then decoupled in the measure du from
A\(4,04,) or the square 4, , coincides with p—1 previous squares among the
squares4; ;#+4,and 4, ;, j<r,i.e. this square, denoted 4, can be separated from
4,04, only by cutting p lines. (The dependence on 5§~ ! is then kept.) We note that
each square 4, ; is (in either case) linked by a propagator to 4,u4,. The terms
I4,,4,,,,...can be decomposed correspondingly into sums of integrals in which each
4,, ;islinked by a propagator either to 4, or to 4,. An example of a corresponding
term (in the second case above, for p=4) is shown in Fig. 3.

dy=dy 3=4; 324, =4,

431
2.2

Fig.3 4, 9 dy=dy4=4y = 4152415

In the second case, a variable s is then associated to the set (4,u4,)u4, and so
forth. The procedure is pursued until one variable s’ is fixed at zero. In this case,
the measure dy is decoupled relatively to 4,u4,uU...u4, and its complement in A.
A square 4, . is then chosen in A\(4,u...u4,) and the same procedure as above
is applied in A\(4,u...u4,), with A,,s, replaced by 4, 1, S+, until either one
variable s, is fixed at zero or 4, , is linked in a (p — 1)-irreducible way to one or
more squares of 4:1.e., the set formed by 4, , ; and these squares, together with the
lines that join them (associated with the various propagators already produced)
can be separated into two parts only by cutting p lines or more, but not less than p
lines. In e.g. the example of Fig.2a (k=1), if 4, is chosen to coincide with
Ay,,=44,6, a (p—1)-irreducible set (with p=4) is obtained if 4, ; and 4, ,
coincide with 4, =4, 3=4, 4. Anew variable s, , , is then associated to the set L
and the procedure is pursued (with no line issued at this stage from the possible
squares of 4,U...u4, in L) until one s{, is fixed at zero or L is contained in a
larger irreducible set L', and so forth.
The final result is an expansion of I of the form (5), (6), with:

IX,6)=Y1(X,G,P), (26)
P

where the sum runs over a set of different procedures that give rise to the same
graph G. Each term I(X, G, P) is of the form:

s(re” s{r2 =

1 S1
I(X,G,P)= [ds, | ds] ... f ds(” des f ds(rz n
0 0
LMY 7D (X, G, Py s Y, s870, L), 27)
where
J(X, G, P; 5)=[du(p; s)

y H {jduldvl[ﬁ(”(ut) D)+ A%w) A" () 1C(uy, vy) 5;(“1) 5(;”1)}

x 1 (ip™:(z)e 7" (28)

r;zreX
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In (27), (28), A" and 4'® are the squares linked by line I, and M(s) is a product of
variables s; at given powers coming from the dependence of some propagators on
these variables [e.g. in the case of Fig. 3, the propagator between 4, or 4, and 4, ;,
i=1,...,5is C(u,v; s ?)=5{"C(u,v)]. We note that du(¢p; s) and M(s) depend on
X, G, P, although this dependence has been left implicit in (27), (28). In particular,
some of the variables s{") may be fixed at zero in du(¢; s), in which case M and du
factorize. This factorization occurs, in particular, in all cases when G can be divided
into two subgraphs G’,G” by cutting a set S of p’<p lines, and then yields a
corresponding expression of J(X, G, P,s) as a convolution product, with propa-
gators on each line of S, of functions J(X,G,P;{z}, {u},s"),

J(X",G",P"; {z,}", {u!},s"). <Functions I, J are defined in a way analogous to I,J

with operators ot attached to each variable u;. The variables u; and u! are
L

integrated in X’ and X", respectively, and a factor (p'!)~!is included.) I(X,G,P)
satisfies a similar property, but with factorized functions that still depend on the
overall procedure P, as appears on the following example.

| A’
Example. Let p=2, (X, G)=[1+-{1={1and 4, = 4. Then 3 procedures P,, P,, P,
are encountered:

Pyo Ay =4", Ay ,=4,3=4"(=4,), 4"=4;,
Py Ay =4, A,,=4", A,3=4"(=4,), 4"=4;,
Pyt Ay =4, ,=4"(=4y), 4,,=4"(=4,),
with
I(X,G,P)=I1(X,G,P,)= [A dudvC(u, v)

ue

ved”
1 S1 si R ’ R ”
v [jdsl [ ds, | ds/ (ﬁ=(‘i‘l;u,8’1’)]J (5;1’)’ (29)
4] (4] 0
I(X,G,P;y)= jA dudvC(u, v)

ved”
1 st o4 4 , 1 N
X I:'(“)dsl (j;dslsl‘]<E’=*:'; u9sl>:|(§)dSZJ(D;v>’ (30)

1
where the integral [ ds, in (30) can be removed (s, fixed at zero in the last factor J).
0

On the other hand, the sum over procedures P that give rise to the same set
(P, P") does factorize in a natural way in terms of functions I{X’, G', P'; {z,}’, {u}),
I(X",G",P"; {z,}",{u/}) (with as before propagators on each line of S). In the
example above, there is only one pair (P’, P”) associated with 4uA4’ and A",
respectively (P': 4, ; =4, ,=A4"=4,, P"is trivial). The result then comes from the
identity (valid for any function f):

1 S1 s 1 s1 1 S1
2 (dsy [ds, [ds|f(s)+ [ds, [ ds,syf(s)= [ds, [ds, f(5}).
0 0 0 0 0 0 0
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It follows more generally from similar identities (involving various sets of
variables) proved directly by induction or checked at each order if f{(s) is replaced

formally by ¥ £, [1sk* (n={n,}). The factorization of I(X, G) mentioned in Sect. 1,
n k
and from there Eq. (8) follows.

Remarks. 1) As mentioned in Sect. 1, I(X, G) depends in general the choice of 4,
and subsequent squares. An example at p=2 is

[ ]
AN

If A”=A,, theneither A= A4, ,,A'= A4, , or vice versa. In either case, s; =0 and 4"
is decoupled from AuAd'. If A=A, then 4'=4,, A"=4; and 4,4', 4" remain
coupled in the measure in all procedures. The corresponding terms I(X, G, P) are
different.

2) Some graphs G cannot be obtained by any procedure P, in which case

I(X,G)=0, e.g. at p=2, the graph Aﬂ

3.3. Bounds on I(X, G)

In view of the following lemma, which is an extension of a previous result at p=1
[19], the following bound holds on the terms I(X, G) of Sect. 3.2:

IXGl< T —

(v,0")eG Iy o+

Sup|J(X, G, P,s), (31)
P,s

where n,, . is the number of lines joining the vertices v,v’ of G, and bounds on J
independent of P and s will be obtained in view of the inequality (0=)
C(x, y; )= C(x, y).

Lemma 1.

(ry—2
Sll

1 ) 1
jdsM(s,G,P)E;(j)dsl... (j) ds({"l)(j)dsz...jds‘z”_l)...M(s,G,P)
= l—[ (nu,v’!)_l . (32)

(v,v')eG
Proof. Let F be the function of = {g; ;}, with one variable ¢; ; for each pair (i, j) of
indices, i=1,...,n, j=1,...,n, i< j, defined by:
F(8)= (H) (1 +8i,j+ “en +8£_])= Z H) (si’j)nl"’ . (33)
L, J

i}y (]

0<n, ;=p
The first expression of F can be evaluated by introducing variables
1,871, .5 8,85, ... In @ way analogous to above. Namely, a first index i; (analogous

to 4,) is chosen and all variables ¢; ; are replaced by ¢; (s;), where:

&, (s1)=¢; {51 +(1 =s1)[(0;,,:0;,, ;+(1—0;, )1 —0;, )1, (34)
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where i, j play the role of x, y in C(x, y) or C(x, y; s,). We then consider the 1% order

Taylor expansion F=F(1)=F(0)+ j s F(s ), where F(0) factorizes, and so forth,
with: 51

&5 50) =&, ([P + (1 — ) {6, 1, ..., i)O(; iy, .., 1)
+(1——(5(l,ll,...,lk))(1—(5(],11,..., i)}, (395)

where S=(s{ 7Y, 527, s Yy and 6(i; iy, ..., i) =1 if i is equal to one of the
indices iy,...,i; and to zero otherwise (the indices ij,...,i, play the roles of
4y, ..., 4;). This procedure provides an expansion of F(e), or its connected part, of

the form:
F(s)— j dsM(s; G, P)< H & ,)

i,jeG

(H nu' + Z C(nk I}Hgk l(s) k. l) (36)

nkl
):nk 121

where the sum runs over (admissible) connected graphs G in the same class as
before and where, moreover, C,; ,#0 only if there is no procedure P giving rise to
the graph {n"} = {n} + {n'}. In fact, if }, ,+0, then the variable s corresponding to a
possible coupling between k and /is not fixed at zero. Hence, the expansion relative
to this s has been stopped and {n"} cannot be obtained by a procedure P.
Equation (32) follows by identifying the coefficients of [] &f#7 in (33) and
(36). Q.E.D. DG

In view of this lemma, we now state the following bound.

Proposition 2. a) If thereisnoz,€ X,r=1,...,1,3 constants C,(¢), C, independent of
X, G (and A) such that ( for any s>0)
(X, G)l < [111; |4'2C 1(8)6‘("‘_‘)"”’J ci, (37)

where d(l) is the distance of the centers of the squares of X joined by line l.
b) If there are I' points z, in X, AC,(¢e), C, (independent of X, G, A) such that:

AT
IX,G)< [1+|ln  Inf |z—z 6|A|S“"< 3)”
such that
zieX, z;eX
x [IFL Cl(e)e“"“”‘“"] c, (38)

where n(G) is the number of lines in G.

Proof. In view of (32), it is sufficient to bound |J(X, G, P, s)|. Uniform bounds on the
latter can be obtained by an adaptation of usual methods (see [20] and references
therein). The exponential fall-off factors e =™~ ?® arise from the decrease of the
propagators C(u,v) as e ™*~*l <cste ™, A fall-off factor e ¢~ *! is kept to

. 0
control the sum over the terms generated by the derivatives 7 and, for each of

these terms, the sum over the contraction schemes of the fields. The independence
of the bound on P and s arises from the inequality 0= C(x, y; s) < C(x, y), which
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gives directly the inequality [npdu(s) < [ nepdu(1) and can be shown to yield also
the inequality | e '(x)dxd,u(s)§cste”‘ | with a constant independent of s. The

factor A'/? in (37) for each line [ arises from the fact that there are four fields by
vertex and that propagators are obtained by contraction of two fields. The power
of 21in (38) is different because some propagators can be obtained by contraction of
fields ¢(z,). On the other hand, a propagator obtained by contraction of fields
¢(z,), ¢(z,-) behaves at short distances like In|z, — z,.|. The first factor in the right-
hand side of (38) accounts for this fact.

We conclude this section with the following comment. If | X| is composed of
only one square 4, there is only one term I(X, G, P)=I(4) equal to:

(A= 1  (A:0":(z)e dp(p). (39)

i such that z;e4

—Af:0%(x):dx
a4

I(4) is a constant a (+0: see [21]) independent of 4, if 4 contains no point z.
Equation (7) follows.

4. p™-Order Expansions of Connected Functions

4.1. Description

While the Mayer procedure might be applied in a more simple form for the
purposes of this section (introduction of non-overlap factors 1 + y between subsets
X, rather than between squares), we present it in a form that is also convenient for
the study of irreducible kernels. Let 4, 5, ..., 44, , denote the different squares of A
containing one or more points z,, *=1,...,0 (6 2 1). Equation (7) can be written:

Al a—(N+d)
I(z4,...,z)=a"
A( 1900 l) N<[d]-0 N!
X Y I (1+x(4, 4p)
Atyeen, AN (2, B), a<p
4;cA, i=1,..., N a,$=(0,1),...,(0,0),1,...,N
q
X . Z/ Z H I(Xjan): (40)
partitions oy, ..., wq Gyy...s q J=1
of (0,1),...,(0,0),1,...,N;
qz1

where (4, 45)=—1 (ie. 1+x=0) if 4,=44, x=0 (ie. 1+x=1) if 4,4 4, the
factors 1+ y account for the fact that 4,, ..., 4, have to be different from each other
and from 4, 4, ..., 4o, ,, and the sum )" runs over partitions including no subset ;
of one element among 1, ..., N. The factor (N!)~! accounts for the fact that each
configuration of given subsets X ; is obtained N! times when 4, ..., 4y vary in 4.
The graphs G; are connected graphs between the indices of w; with the same
properties as in Sect. 3 and X ;={4},,, . Factors 1+ x(4,, 4,), &, f=(0,1), ...,(0, )
are equal to one and can thus be removed.
Through expansions of the products 1 + y, one obtains in turn an expression of
the form:
q
Lepwz=dt S o Yy 3 [IX,G). @)

N=|A|—o . Agy.nn, AN W1yenny wg Gi,..., Gy j=1
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In (41), the graph G; (see example in Fig. 4) include lines associated with
propagators (as before) and Mayer lines associated with factors y. They are
connected when both types of lines are taken into account. The factors I are
defined as products of terms a'*'T associated with subgraphs already connected by
lines——, and of factors y associated with Mayer lines joining indices «, f (y =0 if
A, F A, y=—1if 4,= Ap). The value of I(X, G) when some squares of X coincide is
arbitrary. In this subsection, it can be taken equal to zero, but a different choice is
made in Sect. 5, namely: I =0 whenever two squares that belong to a common
(p — 1)-irreducible subgraph coincide, otherwise I is defined by a direct extension of
factorization properties.

15 5 12

‘Iegﬂ,\A/@::w9

(0,1 8 3

(~~~ denotes a Mayer line)
Fig. 4 A graph G (p=4, ©={(0,1),3,5,8,9,11,12,15,16})

Finally, the separation of those w; that contain one or more of the indices
(0,1),...,(0, 0),and of remaining ones, leads to a partition of the set of N indices into
subsets of N; and N, indices (N, + N, = N), which can be chosen to be the indices
1,...,N;yand N, +1,...,N,,if a multiplication factor N!(N,!N,!)~ ! is added. This
leads to a factorization of I ; into the term Z , (no variable z,, 0 =0) and a term
which is equal to H , in view of (16). (Values of N\,N,, N, Z|4|—0, N, =Z|4|—o,

such that N=N, + N, >|A4|—o are zero in view of the product [] in (40) and can
thus be added to I A.) Hence: @h

Ho(zy.nz)= Ly v vy 6, @

Nefdl-a NV 4y, Toay o1 oy 61,506, j=1

where the sum )" runs over partitions @y, ..., ®, such that each w; contains one or
more of the indices (0,1), ...,(0,0). Thus, H, can be written in the form:

K
Hevon= v Q[ v Sy 6],
partitions i=1| N=|A]—|nri] s A, ..., An G;
of (1ol k=1
where the last sum runs over connected graphs G; between the indices (0, r) that
belong to 7;and 1, ..., N. If the variables z,, ..., z; all belong to different squares, i.e.
o =1, the standard definition of connected functions (which expresses H , as a sum
over partitions of z, ..., z; of products of functions H) yields in turn the expansion
) of HS:
Hil(Zlﬂ"'aZl)= Z ATI z ZI(XaG),
14| =1 4An G

N=

.....

where X is the set of squares 4 4, ..., 40,44, ..., 4y.
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If 0 <1, one may start from the expression (42) and add to its right-hand side
the term H', defined below and in fact equal to zero. Let 7 be the partition of indices
1,...,1(or of zy, ..., z;) into those o subsets such that the variables z; of each subset
belong to a common square 4, ,. We then consider non-trivial subpartitions of ©
and, whenever the induced partition of indices for a given r has y(r)> 1 elements,
replace 4, , by y(r) coincident squares 4, , 1, 4o,,. 2, ... H; is then the sum, over all
non-trivial subpartitions of 7, of terms analogous to the right-hand side of (42),
except that )" is replaced by a sum over partitions w, ..., @, of the indices (0, 1, 1),
0,1,2),...,(0,0,1), (0,0,2),...,1,..., N such that each w; contains one or more of
the indices (0,1, 1), ...,(0, o, y(c)).

The fact that H, =0 is due to the coincidence of at least two squares 4, , ,, as
can be checked easily. The definition of connected functions then gives:

Hie.o)= S S oS SING, @
subpartitions of t N<|A|—¢ ¢« Ag,..., An G

where the graphs G are here connected graphs in the same sense as above, but (for

each given subpartition of z) between the indices (0, 1, 1), ..., (0, o, 9(0)), 1, ..., N. The

first sum Y includes the trivial subpartition, i.e. m itself. While H'; =0, the various

contributions to the right-hand side of (44), which involve only connected graphs,

are not zero in general.

4.2. Convergence and Decay in the A— oo Limit

We now give a proof of Proposition 1. For simplicity, we consider only the case
when z,, ..., z; belong to different squares. The treatment of Eq. (44) is similar. As
already mentioned, we use a p™-order expansion, p=> 1, in view of the adaptation in
Sect. 5, even though the p=1 expansion is sufficient for present purposes.

Being given a connected graph G, let G,,G,,... be its subgraphs already
connected by lines ——. It is convenient in this section to regroup together all
terms associated with graphs G’ that differ only by their sets of Mayer lines inside
each subgraph G;. The summation over 44, ..., 4y is then restricted as originally by
the non-overlap conditions 4, 4, inside each G;, and it is sufficient to consider
graphs G with Mayer lines joining vertices of different subgraphs. Moreover, in
view of the previous non-overlap conditions, the only G that give non-zero
contributions are those that have at most one Mayer line between any vertex of a
subgraph G; and any subgraph G;, j=i. A skeleton graph G is then associated to
each graph G as follows. Starting from the subgraph, denoted G, that contains e.g.
the index (0, 1), we consider all subgraphs G, i+ 1, of a “first shell,” namely those
linked to G, by at least one Mayer line. If there are several Mayer lines between G,
and G;, all are removed, except that attached to the vertex of lowest index in G; the
order of vertices of G, is their natural order in the sequence (0, 1), ...,(0,1),1, ..., N:
in the example of Fig. 5

6; <_=
=
=

Fig. 5
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the Mayer line joining the indices 9, 11 is removed (and the line joining 5, 10 is
kept). All Mayer lines between the subgraphs G; of the first shell are also removed.
Next, one considers all subgraphs of a “second shell,” namely those attached to
subgraphs of the first shell by Mayer lines. The same procedure as above is applied
(using e.g. the natural order of all vertices of all subgraphs of the first shell), and so
forth. The skeleton graph G obtained is of the form shown in Fig. 6:

Fig. 6. A skeleton graph

From each vertex of a given subgraph, zero, one or more lines are issued, each one
joining this subgraph to one subgraph of the next shell.

The summation in (44) over all graphs G that have the same skeleton G
amounts to introduce non-overlap functions between squares that belong to
different subgraphs of the same shell and some squares that belong to subgraphs of
successive shells. The uniform bounds (17) of Proposition 1 then follow from
uniform bounds in modulus on all contributions corresponding to different
skeleton graphs, non-overlap functions, as also the factors —1 of each Mayer line,
being bounded in modulus by 1. We first remark, as mentioned in Sect. 1, that a
common uniform fall-off factor e~ (m~¢olz.--2) ¢’ >¢ can be extracted for all
terms by extracting a factor e~ ™~ ¢® from each factor e~ ™~ 90 of the bounds
(37),(38). If ¢' is chosen > &, we still have at our disposal a factor e~ ~9® for each
line.

For any given N, skeleton graphs can be specified by indicating the set of
indices of the first subgraph G, then for each index a set of zero, one or more
Mayer lines that are issued from it and the set of indices of corresponding
subgraphs, and so forth. (Subgraphs G,,G,,... have also to be specified.) The
choice of Ny, N,, ... indices among 1, ..., N for each subset amounts to replace the
factor (N!)~! in the bounds by [](N;!)™*. The choice of the index in each subset by

which this subset is attached to a preceding one and the specification of possible
external indices (0, 2), ..., (0, ) contained in each subset can be taken into account,
e.g. by including a factor kN, where k is a given (fixed) constant, for each subset.
Finally, uniform bounds independent of A will be obtained by removing the
conditions N <|A4|—1 and 4, € 4, and considering independent sums over N, >0,
N,>0,.... The following bound will be used (in successive steps) for each subset,
the index 0, denoting either an external index (0, o) or the index by which the subset
considered is attached. (Possible subsets with one external, and no internal, index
are treated separately):
cr 101Dy < O

LN, L Y [I(Ce™)=C (46)

NZ1 41,...,4n  G(0,1,...,N) leG
AinA;=0, i%j
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for sufficiently small C’ (a condition that will be fulfilled in the application for
sufficiently small ), with C” arbitrarily small if C’ is sufficiently small.

Proof of (46). The bound (46) can be obtained, e.g. by bounding the sum over
relevant graphs G by a sum over all trees joining 0, 1, ..., N and for each tree a sum
over all graphs obtained by adding, for each vertex v, sets of 0, 1, ..., plines from v to
each other vertex.

The sum, with a vector C'e ™™ for each line, over all possible sets of <p lines
joining a given square 4, to all other squares in R? is a finite constant K if C’ is
sufficiently small.

For each tree T, Y  [[(Ce ™®) is bounded by C*[ ¥ e""’”’]” )

Atly..e, An leT A* Ao
Finally, the number of trees T(0, ..., N) is bounded by Cste¥ N! The bound (46)
follows. Q.E.D.

The bound (46) is then applied, starting from subsets in the most remote shell
up to the first shell. The fact that an arbitrary number (= 0) of subsets are attached
(by Mayer lines) to each vertex of a subgraph leads to add a (fixed) multiplicative
constant, for each vertex, in the bounds [equal to (1—C”)~ ! if we leave aside the
possibility that some subsets contain external vertices. This possibility is taken into
account by modifying this constant]. Hence a bound independent of the number of
successive shells is obtained if this constant has been included in the constant C of
Eq. (46) already at the first stage. Q.E.D.

The fact that H converges to a well defined function H¢ in the 4 — oo limit is
proved by showing in a way similar to above that |HS, — H¢,| is uniformly bounded
by ¢(A4), ¢c(4)—»0 as A— o0, VA'D A: in fact, exponential fall-off factors with the
distance between the set of points z,,...,z, and the boundary of A arise since
H¢,— H¢.is a sum over connected graphs and over squares 4, ..., 4y one of which
at least belongs to A"\ 4. The independence of H® on the way the limit is obtained
(i.e. on the sequence of boxes A) can also be established similarly.

5. The Bethe-Salpeter Kernel: 4 Particle Decay

For the purposes of this section, we consider a cluster expansion of order p=4. A
3d-order expansion would be sufficient to get momentum space analyticity of the
Bethe-Salpeter kernel G arbitrarily close to the 3-particle threshold (for sufficiently
small 4). The use of a 4*-order expansion will provide analyticity arbitrarily close
to the 4-particle threshold, as expected in an even theory.

The connected 4-point function §¢(x;, ..., X,) can be written, in view of (14), (16)
in the form:

4
WX1s . X0)= fA dz, ...dz, ‘I=_[1 Clx;—z) [A0(z4 — 2,)0(z1 — 23)0(z1 — 24)
+0(zy —2)0(zy —23)HY (21, 24) + -

+0(z1 —2,)0(z3 —24)HYy, (21, 23) + ...
+0(z1 —2)Hy(2y5 235 20) + ... +HYy(24,25,23,24)] . 47)
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A corresponding expansion of S¢, follows from those of the functions H¢. It gives,
by direct graphical inspection:

4
Sil(xl, ooy X4)= I [iljl SA(Xi, ui)] FA(ul, veey u4)du1 e du4, (48)

where S 4(x,, x,) is the 2-point function and F 4, the amputated, connected 4-point
function, admits an expansion analogous to that of S, except that it is restricted to
graphs G that are one-particle irreducible in all 1 -3 channels of the form (i; j, k, I).
We then define G 4(uy,...,u,) as the sum over all graphs that are moreover 2-
particle irreducible in the channel (1,2; 3,4). We note that, in the definition of
irreducibility used here, Mayer lines cannot be cut.

The one-particle irreducible 2-point function K(u,,u,) is defined similarly as
follows. The 2-point function can be written:

S alxq,Xx5)= _IA du1du2‘_I112C(xi’ w) [A0(uy —uy) 1 9®: > 4+ Hf(ug, u,)]
2102 T

= [ duydu, T Clu, X)S (s, 5). (49)
u;cA i=1,2

Then, K 4(uy, u,) is the sum over all 1-particle irreducible graphs in the expansion of

S q(ug,uy).
The following equations hold by direct inspection:

S,=C+CK,S,, (50)
FA=GA+GAOAFA’ (51)
where CK S ,(x{, x,) is the double convolution integral

I Clxysug)K 4(uy, u3)S 4(uz, Xo)du du,

uj,uz2ed

and G 4o, F 4 is a Feynman-type convolution integral with 2-point functions on
internal lines:

G, °4) Fuy, ... uy)= jA G (g, ug, u'y, u5)S (U, u3) S 4(U, Uy)
€

4
X F ((u3, uy,us,uy) [] dus, (52)
iz

i.e. Eq. (51) is the usual Bethe-Salpeter equation apart from the dependence in A.
In view of (47), (49), K, and G, admit decompositions of the form:
K 41y, u5) = A0(uy —u5) 9% D 4+ A2 K y(ug, 1), (53)
Gty ..., uy)=A0(2; —2,)0(z, —23)0(z1 — 24) + ... + Gy(uy, ..., Uy). (54
The following result is proved below:

Proposition 3. V¢>0,34,, C, (independent of A) such that K', and the functions G’
converge to well defined functions in the A— oo limit, VA such that |A| <A, More-
over, the following bounds hold (VA finite or infinite), V4, |A| <4,:

IK (1, )| < CoAI(1 + [Infuy —uy][)>e = 30m =l meal, (55)
G4y - )] < CJAI(1 +[In Inf fu; — ) O ™ (™ Halts-aswavia), (56)
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where L is the shortest length of all connected graphs joining u,, ..., u, and possibly
intermediate points, and 3-particle irreducible in the channel (1,2; 3,4) as also 2-
particle irreducible in 1—3 channels.

Finally, CK S 4, respectively G 4 o 4, F 4, converges in the 4— oo limit to CKS,
respectively Go F, and F and G satisfy the Bethe-Salpeter equation F=G+Go F.

Proof. We prove below the bound (56) on G'(u,, ..., u,). Other bounds are proved
similarly. The method is analogous to that used in Sect. 4.2 with, however, some
difference arising from a different definition of skeleton graphs: the set of graphs G
having a graph G as a skeleton graph (in the sense of Sect. 4.2) contains in fact
graphs that do not belong to the expansion of G/;. Being given a graph G, its
skeleton graph G will now be defined as follows. We first consider G. It no longer
satisfies in general the irreducibility properties of the graphs in the expansion of G/,
and has in fact a structure of the form:

(0,7) Mmm_@ (0,3)

(0,2) ©O—++ - = (0,4)

where each bubble <O respectively L, stands for a subgraph that is 1-particle
irreducible, respectively 2-particle irreducible, in the channels determined by the
incoming and outgoing lines, and has the same form (no loop arising from the
Mayer lines) as before. [The vertex (0, 1) is now replaced by one of the incoming
vertices.]

G is defined by keeping a further “minimal” set of Mayer lines (that do not
belong to G). Starting from the external bubble b, on the left containing, e.g. the
vertex (0, 1), we consider the set of all Mayer lines of G that join b, to other bubbles.
This defines a 2-particle irreducible set B, that contains b,. B, is composed of all
bubbles “between” extremal bubbles of the latter set. (A bubble b of a set is
extremal on the right, respectively on the left, if there is no other bubble 4’ in this set
on the right, respectively on the left, of b. A bubble b is between b’, b” if b’ is on its left
and b” on its right or vice versa. The relation left-right is well defined in the natural
way for any pair of bubbles, except bubbles O~ that belong to different lines
—(O—--—O—and have no bubble = between them: such bubbles have no
relation left-right.) We then keep in G 1, 2 or 3 Mayer lines that join b, to the 1,2 or
3 other extremal bubbles of B,. If there are several Mayer lines joining b, to
another extremal bubble b}, we keep more precisely e.g. the line, among those
issued from the vertex of lowest order in b,, joining the vertex of lowest order in b’.

The same procedure is now applied to B; and so forth. We note that Mayer
lines issued from B, cannot be issued from b,. More generally, Mayer lines issued
from B, to B;,; cannot be issued from B;_,.

As before, the resummation of all graphs G that have the same skeleton graph
G gives non-overlap conditions, to be bounded by 1 in bounds on absolute values
(and skeleton graphs that differ only by the labelling of vertices lead in turn to the
same bounds). A bound on the sum over all possible structures of graphs G, and for

each bubble over all possible (2-particle irreducible) substructures can be obtained
e.g. as follows. (More refined estimates are possible if one is interested in obtaining
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a better radius of convergence in /, e.g. by regrouping graphs G that differ by the
number of intermediate bubbles in the successive subsets By, B,, ... .) First, for any
G, the number of graphs G is bounded by 8", where N is the total number of
squares of G, in view of the previous construction. After extracting a common fall
off factor e~ ™~ -44) we remove in the bounds the coincidence relations due
to the Mayer lines in G/G and are then led to prove a bound on the sum over
structures of graphs G, with a further multiplicative factor 8 now associated to
each vertex. (For sufficiently small 4, this factor does not modify the argument.)

For each bubble b, the set of possible substructures is a subset of those
occurring in Sect. 4.2. Hence bounds that include (i) a remaining exponential fall-
off factor between points from which external line of b are issued and (ii) an
arbitrary small factor for A sufficiently small (except possibly for a finite, fixed,
number of cases), are obtained in the same way as in Sect. 4.2. The exponential fall-
off factors associated with the bubbles together with those associated with the
explicit lines between bubbles allow one in turn to get a uniform bound of the
form cste C", where n is the number of bubbles and C is arbitrarily small (for A
sufficiently small). The bound (56) follows.

The fact that the functions F ,, K/, G/, converge to functions F,K’,G’ in the
A— o0 limit is proved as in Sect. 4.2. Finally, G o F is well defined in view of the
exponential fall-off properties of G, F and of the functions S involved in - and of the
fact that singularities at short distances are at most logarithmic (apart from J-
functions that can be integrated explicitly). The fact that G-, F 4 converges to
GoF can be obtained e.g. by decomposing GoF—G,o,F, as (G—G,)oF
+G 4o —o4)F +G 40,4 (F —F ,): uniform bounds that include exponential fall-off
factors in the distance between u,...,u, and the boundary 04 of A are again
obtained.

We conclude with the following result:

Proposition 4 (Euclidean invariance). All functions F, K, G obtained in the A— 0
limit are Euclidean invariant. Let us indicate the argument e.g. for K.

Let 7(x,y) be obtained from (x,y) by a given Euclidean transformation 7.
Then K 4(7(x,y))=K,-14(x,y). On the other hand, the limits of K, and K, -,
coincide in the A— oo limit: in fact, the differences K ,—K,-1, can be again
bounded by uniform factors times exponential fall-off factors in the distance
between (x, y) and the union 04uUd(t~ 1 4).

6. Momentum-Space Analyticity

Proposition 5. Ve>0, 31,>0 such that, for |[A|<A4,:

1) The 2-point function S is analytic in momentum-space in the region s <3m—g
apart froma pole at s = (mph(}p))2 ; My is arbitrarily close tom if Ais sufficiently small.
P1—DP2 S = D3— D4

2 2
(and bounded) in a region of the form ke A, ze D, z'€ D, where 4 is a complex
neighborhood of the set k=(ko,0), ko <4(m—e¢) and D ={(zy,z,); [Rezo|<2(m—e¢),
Imz,|<e}.

, is analytic

2) G(k;z,2"), where k=p,+p,=p3+Dps, 2=
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Proof. By projection on the time axis, the exponential fall-off factors of the bounds
(55), (56) yield fall-off factors e =3~ @lwi~w2dol regpectively e~ ™1 ~ #4014 where
d is defined in Eq. (2). [A small part of the fall-off factors of (55), (56) can also be
used to get fall-off factors in space variables.]

Property 2) of Proposition 5 follows directly from the Laplace transform
theorem as already done in [1, 2].

From direct inspection, s (= — + —()— + —<®—®—+-) is equal in momentum-
space to [p? +m?* — K(p)] !, where by the Laplace transform theorem K is analytic
in the region Rep,<3m—¢, and is moreover uniformly bounded there by
cste(¢')[4]. Property 1) follows from invariance properties. Finally mZ,, the zero of
p?+m?—K, is arbitrarily close to m?, e.g. via the implicit function theorem.
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