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Abstract. Lavine's results on time-delay ([10]) is extended to higher dimen-
sional Schrόdinger operators.

1. Introduction

In [10], Lavine proved the existence of a quantity called time-delay and gave its
representation formula which we call "Lavine's formula," for one-dimensional
Schrόdinger operators. The aim of this paper is to extend them to π-dimensional
Schrόdinger operators.

We consider Schrόdinger operators:

H = H0+V(x); H0=-Δ

on Jtf = L2((R"), and we suppose that the potential V satisfies

Assumption (V). V(x) = V1(x) + V2(x\ and there exists a constant ε > 0 such that
(i) Vl(x) is a C°°-function and for any α,

d V < _ 1 _ ε _ | α |

dx) 1 = α

(ii) the multiplication operator by V2(x) is compact from H2(U") to L2'2 + ε([R").
L2'a(U") = {φeL2

oc(Rn):(l + \x\)aφeL2(Un)} is the weighted L2-space of order α.
Then, as is well-known, H is self-adjoint; the wave operator defined by

W± = s-lim exp (if//) exp ( - itH0)
r-> ± co

exists and is complete: Ran W± = 3fac(H}', hence the scattering operator defined by
S = W*+ W_ is unitary.

For R > 0, let XR be a multiplication operator defined by

XR = XR(X)> XR(X) = X(\X\/R)'> 0 = X(x) = 1?

*(*)=! if x | ^ l , = 0 if |x |^2. (1.2)
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For φ, ι//eJf, we set φ(t) and φQ(t) as

φ(t) = exp(-itH)W-φ; φ0(t) = e\p(-itH0)φ, (1.3)

and ψ(t),ψ0(t) similarly. Note that if φeH2(Un\φ(t] is the unique solution of the
Schrodinger equation: i(d/dt)φ(t) = Hφ(t) such that \\φ(t)-φ0(t)\\-+Q(t-+ - oo).

We set ^o as

@0 = {φej#':EHo(Ω)φ = φ for some Λc(0, oo);

ί2 : compact; ί2 n σpp(H): empty}.

Then TR is defined by the following equation:

(φ,TRφ) = (φ(t),XRψ(t))dt- j (φ0(t),XRΨo(t))dt (1.4)
— OO — OO

for φ,ψe&0. Since XΛ is //0-smooth in the sense of Kato, and is local //-smooth in
the sense of Lavine (see XIII-7, [1 1]), (φ, TRψ) exists for such φ and ψ, and bounded
from below. Hence, TR is well-defined quadratic form on &0 and the Friedrichs
extension exists. TR represents approximately the difference of the sojourn time of an
interacting particle in the ball of radius R, and that of a free particle.

We set 2l = @0nL2 3(Rn), and A = (\/2i)(x (d/dx) + (d/dx) x) is the dilation
generator. Our result is:

Theorem 1. Suppose Assumption (V\ φ, ψ, Sφ and SψE@l9 then

(1.5)

Of course, Theorem 1 implies that the limit of the L.H.S. and the integral of the
R.H.S. exist, and are equal. It also asserts that the limit: \imR^ao(φ, TRψ) exists for
such φ and ψ. It is called time-delay.

On the other hand, in terms of the S-matrix {£(/)}, the Eisenbud-Wigner time-
delay operator is defined by

(1.6)

on the spectral representation space for H0. Jensen ([8,9]) showed that under
certain assumptions,

(1.7)

holds for φ,φE&0. Combining (1.7) with Theorem 1, we can conclude the following.

Theorem 2. Ifφ,ψ,Sφ and Sφe^^ then

(φ,Tι//)= \im(φ,TRιl/). (1.8)
K^x

This formula gives a relation between the 5-matrix and the sojourn times of
particles.
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Remark 1.1. By (1.6) and (1.7), the operator defined by the R.H.S. commutes with
HQ. Hence if we set ψ = H^φ for φe@1r\(S~1@ί), we have

lim(φ,TRφ) = H-
R^oo -oo \ ( 2

As remarked by Lavine ([10]), if the quanity

V+I~LA,V~] = v+l-χ vv

is non-positive everywhere, the time-delay is always non-positive, i.e. the interacting
particles escape from every sufficiently large domain faster than the free particles.

Remark 1.2. We must consider how many (/>'s such that φe^^ and Sφe&i exist
because if such φ's do not exist, Theorem 1 would be meaningless. But in many cases
the set of such φ's is dense in ffl. For example, (i) if V satisfies

V:H2(U")^L2A + ε(Un): compact

for ε > 0, then φe^λ implies Sφe^^ (see Jensen [7]); (ii) if V2 = 0 (i.e. V is smooth
and satisfies (1.1)), then φe^1 and $eC£(Un) imply Sφe^1 and (Sφf eC$(Rn).
This is a consequence of the result of Isozaki-Kitada [4]. It could also be proved
that if V2 satisfies (i) above, then φe^l and ^eC^R") imply Sφe@ί.

Time-delay has been studied by many physicists (see the introduction of Jensen
[7] or Martin [13]) and mathematically rigorous treatment was initiated by Jauch
and others ([5,6], see also [1]). In particular the time-dependent formulation of
time-delay such as (1.4) was introduced by Jauch and Marchand [5]. Lavine ([10])
showed that (1.5) holds for one-dimensional Schrodinger operators with V satisfying

Later, Jensen ([7]) proved that for rc-dimensional Schrodinger operators (1.8) holds
if XR is replaced by XR = EA({λ:\λ\ < R}). Jensen proved (1.7) also, which he called
"La vine's formula," under slightly weaker conditions than ours ([8,9]). After this
work was completed, the referee informed the author about papers of Wang
([14, 16]). He obtained similar results for smooth potential using a different method.

The outline of the proof is as follows: at first we construct a pseudo-differential
operator AR such that

XRH0 = -[//o, AR~\ + (small error terms),

and that as R-> oo, AR-+A + constant (Sect. 2); next, we introduce a operator J±

such that

\\(J±-\)e-ltH°φ\\^0 ,

\\(HJ±-J±H0)e-tta°φ\\=0(t-2-') , (1.9)

\\(J*±J± - \)e-illl°ψ\\=0(t-l-ε) (t-v + oo)

(Sect. 3, cf. Isozaki-Kitada [4]); then minicking the proof of Lavine [10], we
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compute

(Φ(t)9XRHψ(t))-(φ0(t)9XRH0ψ0(t))

and show that the error terms tend to zero as R -> oo (Sect. 4). For that purpose we
employ the stationary phase method or the Enss method ([2]).

Notations. We shall use the following notations in the paper. We denote reals by U
and Euclidean n-space by U". HS(U") is the Sobolev space of order s and L2'α(R") is
the weighted L2-space of order α. For Banach spaces X and Y, B(X, Y] denotes the
Banach space of all bounded operators from X to Y, and B(X) = B(X, X).

We set < χ > = ( l + |x|2)1 / 2; jc = x/ |x | for xe(Rn. We write any constant in the
estimates by C or C# denoting the dependence on *.

</> denotes the Fourier transform of φ9 and for a symbol a(x, ξ)9 x, ςeIR", the
operator a(x9 Dx) is defined by

with φe^. About the theory of pseudo-differential operators, see e.g. Taylor [12] or
Hormander [3].

2. Construction of the Operator AR

In this section, we construct the operator AR such that

XRH^l-[_H^AR-\ (2.1)

in some sense. We set AR ~ aR(x,Dx) with some symbol aR(x9 ξ). Then, since

(2.1) formally implies

ξdxaR(x, ξ) - l-AxaR(x, ξ) - XR (x)ξ2. (2.2)

We solve (2.2) as follows: let aR(x, ξ) = ̂ (x, ξ) H- a(

R\x9 ξ) and these are solutions of
the equations

(2.3)

Then the remainder term is

ξdxaR - -Δ xaR -XRξ2= --Δxa
(^(x, ξ) = bR(x9 ξ).
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Transport equations (2.3), (2.4) can be easily solved if ξ φ 0, and we choose the
following solutions:

4°>(x, ξ) = - ξ2XR(x + tξ)dt + ξ2XR(tξ)dt
0 0

= \ξ\\-]xR(x + t ξ ) d t + ]xR(tξ)dt\ (2.5)
( o o J

| f Λ j
0 0

(2.6)

(2.7)

Lemma 2.1. a(

R

](x9 ξ) and α(

Λ

υ(x, ξ) are the unique solutions of (2.3} and (2.4) such that
for ξ^Q,a(°}(Q,ξ) =

aW(x,ξ) = I ξ\xR(tξ)dt = I ξ \ x constant x R,
o

x ^This can be verified directly. We next consider their asymptotic properties as

Proposition 2.1. For (x,ξ)eUn x (Un/{0}\a(^(x,ξ)^χ-ξ; a(^(x,ξ)-+ -(i/2)(n-2);
ί?κ(x, £)->0, ^s K-> oo, locally uniformly.

Proof. We may suppose ξ = (1, 0, 0, . . . , 0), and we write

= (x l ϊx')6lR x IT'1; V'--—;
ox

By (2.5), we have

- RQ Q as

\ξ\* ]ds}dθ(VXR)(θx + sξ). (2.8)
0 0
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= -]dθXR(θx)= -

If R Ξ> |x |, combining this with (2.8), we obtain

1 oo

We shall show that the second term converges to zero as R -> oo. Set y = θx + sξ,
r = \y\. By definition of XR, (1.2), we see

R -
r r R

On the other hand, on the support ofVXR(y),(y/r) = ξ + 0(R~l) for each x and θ.
Hence

1 ) ~
K

$dθ]dsx' VrXR(y)
0 0

This completes the proof of a(£}(x,
By (2.6), we have

^R'C-R-^C'R'1.

(R(x + tξ)tdt + l- J (Δ'XR(x + tξ)tat. (2.9)
-̂ o

By integration by parts, the first term is

i °° d
-l-
ZQ at

i°° d

"2U

By elementary calculations, one can obtain

(2.10)

r r° / \ R J r^

where _y = x + ί£ and r = \y\. Since on the support of VXR

r r r

R r
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'at

fod_

}-X}dt R

Hence, the second term of (2.9) is

co Λ

-(B - 1) j -ΛOOrfί + 0(R~1)=- -(n - \)XR(x]
2 o at 2

Combining this with (2.10), we conclude

a(

R\x,ξ) = -l-(n-

bR(x9ξ)-*Q can be shown easily from (2.7) since ( A 2 X R ) ( y ) = 0(R~4).
LetpeC0 0^- 1,1]) such that 0 ̂  p(x) ̂  l;p(x)= 1 i f x ^ l/4, = 0 i f x ^

We set

YR(x, ξ) = X2R(x) + (1 - X 2 R ( x ) ) p ( x ' ξ )

D
-1/4.

and define a R ( x , ξ ) and CΛ(X, ξ) by

cR(x9 ξ) = ξdxάR(x, ξ) - Δ xaR(x, ξ) - XR(x)ξ2.

By easy computations, we obtain

CR = bRYR + aRξ 8xYR - idxaR dxYR-l-aR(ΔxYR}

Lemma 2.2. For each z,β,δ> 0,

(i) |δ;3§α J l(x,ξ)|gCβ / ϊ 4min«x>-" l,Λ)<ξ> 1 " I | ( l ί l>δ);
w (\ξ\>δ)

where CXβgS are independent of R.

Proof. By (2.5) and (2.6), if x| g 4Λ or x ξ^ - 1/4,

"11 (α = 0)

(2.11)
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Since supp(^4>) c {(*,£): |x| ^ 2^/2 or x-ξ^ - 1/^/2} if α ^ O or z = 1, we have

on supp YR, for i = 0, 1. By the definition of YR, we have also

-α/ /
0 (*

Then (i) follows easily from these estimates.
By (2.7), we obtain

similarly if x| ̂  4R or x ξ ̂  - 1/4. Hence

o (& ξ:

using (2.13) again. Equation (2.11) and these estimates imply (ii). Π
Since our symbols have singularities at ξ = 0, we must introduce a suitable cut-

off. We set ZR as

: = ZΛ(DJ;

Z(ξ) = Q if | ξ | ^ l , = l if \ξ\^2.

We define AR and CR by

AR(x, ξ) = aR(x, ξ)ZR(ξ)ι AR = AR(x9 Dx\

CR(x, ξ) = CR(X, ξ)ZR(ξ); CR = CR(x, Dx).

Then, by Lemma 2.3 and the L2-boundedness theorem (Ch. 13 of [12]), AR is in
B(Hl (R"), L2(R")), and CR is in B(H2(Rn\ L2([R")) for each R. Moreover, we can prove
their uniform boundedness in R.

Proposition 2.2.

n 2, - 1 n <C 00

(ii) sup||/4J| |β ( / /ι ( Rn ) L2,-ι ( R n ) )< oo,
Λ > 1
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(iii) sup||Cκ||β(//V)jLV <oo,
R*ι

(iv) sup||C*||β{//V);LV <oo.
R^l

Proof. We define dRtk(x9 ξ) by

<*R,k(x, £)= - ]ds\dθ—XR(θx + sξ) Y(x, ξ)
0 0 OXk

for fc = 1, ...,«, then by (2.5) we see

(2.14)
k

By a change of coordinates, one immediately obtains d R k ( x , ξ ) Z R ( ξ ) =
d l k ( x / R , R ξ ) Z 1 ( R ξ ) . Hence, if we set p = \ogR and U(σ) be the dilation operator
defined by (U(σ)φ)(x) = exp(nσ/2)φ(eσx) (σeR), we have

= U(-p)dltk(x,Dx)Z1(Dx)U(p).

Since U(p) is unitary, \\dR^k(x,Dx)ZR 11^^ = constant (we remarked that
^(^DJZ^ig is bounded in'L2 (Rπ)). This and (2.14) yield

On the other hand, a(

R\x,ξ) = a(^(x/R,Rξ) and an analogous argument can be
carried out to show the uniform boundedness o f ( a (

R

} Y R Z R ) ( x 9 D x ) in B(3F}. These
imply (i).

Next, by the definition and (2.14), we see

and by integration by parts,

{dR,k(y,
(*k
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For I 1 ? one can prove the uniform boundedness in B(J^) by the same method as
above. Since

and the symbol of { \ D x \ ( d / d ξ k Z R ) ( D x ) } is bounded uniformly in ξ and R, \2 is
uniformly bounded in B(jjf ).

Similar argument shows that { ( ( d / d X j ) d R t k ) ( x , D x ) Z R β χ } * and {a(gk(x9Dx)ZRβx}*
are uniformly bounded in B(3f\ again. Hence [̂  is uniformly bounded in

2 ~1),and D 2 is uniformly bounded in B(H\L2Λ}. These prove (ii).
The next estimates can be shown in the same way:

\\(bRΎRZR}^Dx}\\B(^CR-^

\\(aRξ dxYR)(x,Dx)\\B(H2tL2}^C ,

and (iii) follows, (iv) can be proved by the standard method using integration by
parts. Π

Remark 2.1. Using the Calderon-Lions interpolation theorem (Th. IX-20 of [1 1]),
one can prove that AR(CR respectively) is uniformly bounded in
B(Hs**(Un\Hs-^*-~l(Un)) (B(HS + 2,HS) respectively) for s e R , 0 ^ α ^ l 5 where
//s'α([R") is the weighted Sobolev space.

The next lemma follows easily from the definitions, (2.11) and Proposition 2.1:

Lemma 2.3. For(x, ξ)εU" x (Rn/{0})9AR(x, ξ)-+x ξ- (i/2)(n - 2); CR-*Qas R^ oo,
locally uniformly.
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3. Modifier J±

Here we introduce a pseudo-differential operator J± such that it satisfies (1.9). J± we
shall define is approximately the same as that in Isozaki-Kitada [4] (for short range
potentials), and their modifier is more precise than ours. But our construction is
slightly easier to handle and enough for our purpose.

Let p±(x,ξ) be a solution of

2iξ dxP±(x,ξ)=V1(x): (3.1)

-l-L^ίx
2ι \ζ\ o

It satisfies

\d«dlp±(X,ξ)\ίCaβ\ξ\-l-m<Xy-E-1*1, (3.2)

If ±x ξ^ -1/4. Wesetj±(x,ξ)=j±(δ,Δ;x,ξ)(Q<δ<Δ«x))by

j±(X,ξ) = exp{p±(X,ξ)(l-Xl(X))p(±X ξ ) } f ( δ , Δ ; \ ξ \ 2 ) ,

where f(δ,Δ;λ)eCg((0, oo));0^/(M;/0^ l ; f ( δ , Δ ; λ ) = 1 if λe[δ,Δ],=0 if
λφ(δ/2, 2Δ). Let t ± ( x , ξ ) = t± (δ, Δ;x,ξ) be

(3.3)

Lemma 3.1. For any a,β,

(i) | j ± (x,£) |gl;

(ii) |δ;3Jj±(χ,ξ)|^Cβ /,<

Proof, (i) is immediate since p+ (x, ξ) is pure imaginary, (ii) follows from (3.3) and the
fact that p(± x ξ) is homogeneous in x. By (3.3),

t±(x,ξ) = 2iξ dx{P±(x,ξ)(l-Xl(x))p(±x ξ ) } j ± ( x , ξ )

+ Δx{p±(x,ξ)(\-Xl(x))p(±x ξ ) } j ± ( x , ξ )

+ \dx{p±(X,ξ)(l-Xl(X))p(±X ξ } } } 2 j ± ( X , ξ )

= {2iξ dxP±(X,ξ)-V1(x)}j±(X,ξ)

+ 2iξ dx{(l-X1(x))p(±x ξ ) } p ± ( x , ξ ) j ± ( x , ξ )

+ Δx{p±(x,ξ)(l-Xl(x))p(±x ξ ) } j ± ( x , ξ )

+ \dx{p±(X,ξ)(l-X1(X))p(±x ξ ) } 2 j ± ( X , ξ ) .

The first term vanishes by (3.1), and it is easily seen that the second term satisfies the
former property of (iii), and vanishes outside {x:\x\ ^2} if ±X ξ^ 1/4. (iii)follows
since the third term is 0«x>~2"ε)(0«x>"2~ t~ | α l) after differentiation d^dfi, and
the last term is 0«x>"2~2 ε) (0«x>-2-2εHα|, after d"xd

β

ξ). D
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We define J±=J±(δ,Δ)by

J±=f(δ/2,2Δ;H0)j±(x,Dx).

Then the symbol of J± concides with j± modulo 0«x>~°°) since f ( δ / 2 , 2 Δ ; ξ 2 ) = 1
on supp j±(δ9Δ; 9 ).

Lemma 3.2. Let q ± ( x , ξ ) be a symbol such that

for any α, β, with γe(— 1, 1) and μe[0, 3]. Then for

Cφ depends only on φ and finite number of constants in the assumption.

Proof. We prove the ( + )-case only. Let peC$((- 1, 1)) such that p(θ)=ί if
0^(1 + y)/2, = 0 if θ ̂  y:0 ̂  p(θ) ̂  1, and set

As is easily seen, they satisfy

|^δf ί l(x,ξ)|gCα / ί<x>-"-w; (3.4)

|θί^2(χ,ξ)|£Cα/i<x>-111;

supp ί2cz{(χ,ί):^-e^r}. (3-5)

At first we consider ql(x,Dx):

and by Lemma 4.3 of [7], we have

||<x>-"e- i'"°φ||ίiC<O-' i, (3.6)

since φeS>1 <= D(A3). By virtue of (3.4), q1(x,DJ<x>" is bounded in L2(R"), and the
claim has been proved for q^.

Now, (3.5) implies that q2 has support in the in-coming subspace, and the Enss
method can be applied to obtain

'(t>Q) (3.7)

for any N and sufficiently small c> 0 (cf. Enss [2]). We take 0 < < 5 < 4 < α o s o that

+ (q2(x,Dx)e-i<H°f(δ,Δ;H0))(χ{x:Mίct}φ),



Time-Delay 409

hence we have

\\q2(x9Dx)e-ίtH-φ\\ ^ |k2(x,DJ^-^°/(^Zl;//0)Zx:[x |<fr|| \\φ\\

Dx)\\\\χ{x^ct}Φ\\. (3.8)

Since 0eL2'3(R"),

\\x{x,x^t}Φ\\^<cty-3\\Φ\\L^{^ (3 9)

and (3.7), (3.8), (3.9) complete the proof. Π

Proposition 3.1 For

(i)

(ii)

(iii)

Proof. As remarked after the definition of J±, the symbol of J± coincides j±(x,ξ)
modulo 0((xy~co), and we may consider j±(x, ξ) as the symbol of J±. Then the
symbol of {(//0 + V±) J± — J±H0} is — ί±(x, ξ), hence by Lemmas 3.1-(iii) and 3.2,
we see

V2J±e-itHo

The first factor is bounded by Assumption (V). The symbol of the second factor, say
r(x, ξ\ satisfies

for any α, β and Λf, hence the second factor is bounded. The last factor can be
estimated by (3.6) to conclude

-2-ε

This completes the proof of (i).
By the asymptotic expansion theorem ([12],§2.3) and Lemma 3.1-(ii), the

symbol of (J* J± -/(M;H0)
2} is in S^'TO so (J* J± -/((5,^;H0)

2)<x>1+ε

is bounded in L2(1R"). Thus (ii) follows from (3.6) again, (iii) follows similarly from
Lemma 3.1-(ii). Π

Corollary 3.1. For

Proof. If </>e^1? this follows easily from Proposition 3.1-(iii), and the density
argument yields the assertion. Π
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Corallary 3.2 For

(i)

(ϋ)

Proof. We prove the ( + )-case only. By Corollary 3.1,

(W±f(δ9Δ;HQ) - J + )e~itHoφ = ( s-lim eisHJ + e~isHo - J+ e~ίtH°

o

Hence we have

,-«» + ')»o^||ds

c .
-1-' (ί>0)

o z -f- E

by Proposition 3.1-(i). (ii) follows immediately from (i). Π

4. Proof Theorem 1.

At first, we sum up the remainder terms of (2.1).

Lemma 4.1. As forms on H2 (Un\

2 2
Equation (4.1) follows from the definitions of AR and CR. Equation (4.2) follows

immediately from (4.1).
We fix φ,φe^1r\(S~1^1) and Q<δ<Δ<ao so that /(<5,Δ;H 0 )φ = φ,

f(δ9Δ',H0)ψ = ψ. Then we obtain by Lemma 4.1,

(e~itHW_φ X e~itHW-H \l/) — (e~itH°ώ X e~ίtH°H ώ)

= (φ(t\ XRHψ(t)) - (φ0(t)9XRH0ψ0(t))

\ [H, AR-\ ψ(t)) - (φM [H0, AR~\ φ0 1))}

(φ(t\ XR V + AR9 K] (f)) + (φ(t\ XRH0(l - ZR)ψ(t))

- {(Φ(t\ cR
(4.3)

We shall estimate the integrals of these terms.
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Lemma 4.2. For sufficiently large R,

lim J {(φ(t\ [H, AR-\ ψ(t)) - (φM [Ho, AR-\ (Ao W)} dt = 0.
'

Proof. By (1.3), we have

- (Φ0(t), \_H0, AR-} ψ0

hence

i]{(φ(t),lH,AR-]φ(t))-(φ0(t),LH0,AR-]φ0(t))}dt
T'

= {(φ(T)9 ARψ(T)) - (φ0(T\ ARψ0(T))}

-{(φ(T'),ARψ(T'))-(φ0(T'),ARψ0(r))}. (4.4)

Again in by (1.3),

- \)e-itH°φ,ARW_e-ίtHoψ) + (A*e-itHoφ,(W_ - l)e~itH°ψ). (4.5)

Since AR, A^eB(/f1([R"),L2(lR")) for each R (see Lemma 2.2) and
_ - l ) e x p ( - ί t H 0 ) φ \ \ ->0(ί-> - oo) by definition of W _ , we obtain

- ̂ 0 (ί->_oo). (4.6)

We will show

(Φ(t)9ARιl/(t))-(φ0(t)9ARΨ<>(t))^Q (ί->oo). (4.7)

Let φ j W and ιj/1 (t) be

0i(ί) = exp( - ίtH0)Sφ; ψ^t) = exp( - itH0)Sψ.

Then similarly to (4.5) and (4.6), one can see

), AR\l/(t)) - (φ,(t\ ARψ,(t))-*V (t -> oo). (4.8)

If R is so large that 2/R^δ, then £esupp^, |x ^2Λ and x-ξ^ 1/4 imply
)ZΛ(^) = Λ / | ^ | by Lemma 2.1, where R' = constant x R in Lemma 2.1.

Therefore, using Lemma 3.2, one can show
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It follows that

(φ0(t),ARψ0(t)) = (Φo(t), R'\Dx\Φo(t)) + (Φo(t),(AR ~ R'\Dx\)e-''H°ψ)

= R(φ,\Dx\^ + (φ0(tl(AR-R'\Dx\)e'i'H^)

- >R(φ,\Dx\\lι) (f-»oo). (4.9)

In the same way, we have

(ΦM^ΦM)
- >R'(Sφ,\Dx\Sψ) = R'(φ,\Dx\ψ) (f-»oo). (4.10)

Combining (4.8) with (4.9) and (4.10), we obtain (4.7). The lemma follows from (4.4),
(4.6) and (4.7). Π

Lemma 4.3. For sufficiently large R,

] (φ0(t),XRH0(l-ZR)ψ0(t))dt = Q.
— oo

Proof. This is immediate since (1 — ZR)ψ = 0 if 2/R ̂ δ. Π

Lemma 4.4

lim f (φ(t)9XRHQ(l-ZR)ψ(t))dt = 0,
R-+ o o - o o

where the integral converges absolutely.

Proof. Since the integrand clearly converges to zero for each ί, it is sufficient to show
that the integral is dominated uniformly.

Let MR = XRH0(l — ZR). Then, similarly to (4.4) and (4.6), we see

\(φ(tlMRψ(t))\

(4.11)

If 2/R ̂  δ/49 MRJ± - 0 and by Corollary 3.2, we have

to conclude the assertion. Π

Lemma 4.5

lim
R-^ co - co

where the integral converges absolutely.

Proof. By Lemma 2.3, CR weakly converges to zero and it is sufficient to show the
dominated convergence, again.
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On ( — oo,0), the integrand is

(φ(t)9CRψ(t))-(φMCRιl/o(t)) = ((W--J^

+ (C* J_ e-ithoφ,(W_ - J^)e-itH°ψ) + (e-iΐίίoφ,(J* CRJ_ - CR)e-itHoφ\

and the former two terms can be dominated in the same way as the last lemma using
Proposition 2.2. We have

J* CR J_ - CR = J* [CΛ,J_] + (J* J_ - l)CR

and by Lemmas 2.2, 3.1 and the asymptotic expansion theorem, the symbol of
[CR,J_] satisfy the assumption of Lemma 3. 2 with μ= — 1 — ε(( — )-case) uniformly
in R, if \ξ\ ̂  δ. Hence, by Lemma 3.2, Proposition 3.1-(ii) and Proposition 2.2-(iii),

\(e-*Hoφ,(J*-CRJ--CR)e-itHoψ)\^\\J_e-itH°^

It follows immediately from Lemma 2.2 that the symbol of CR f(δ,Δ;H0)
satisfies the assumption of Lemma 3.2 with μ = 2 (( + )-case) uniformly in R and

Since

(φ(t\ CRφ(t)) = ((W+ - J + )e~itH°Sφ, CR W+ i

+ (ClJ+φl(t\(W+ - J + )e-itH°

and the symbol of (CRJ + ) satisfies the same estimates as Lemma 2.2-(ii), we can
conclude by Lemma 3.2 and Corollary 3.2,

^SJ^^OII \\(W+-J+)e-itH'Sφ\\ + ϋ J + φ(t)\\ \\(CRJ+)e-itH°Sψ\\

Thus the integrand is dominated uniformly in R. Π

Lemma 4.6.

lim f
R-+OO -oo ( £ }

the integrals converge absolutely.

Proof. For each ί, clearly

lim

and by Proposition 2.2 and Lemma 2.3,

= (A*Rφ(t), Vψ(t» -(Vφ(t\ ARφ(t))
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It remains to prove the dominated convergence.
Since V is locally //-smooth, we have

J
— co

Similarly to (4.11), we obtain

\\<xyVφ(t)\\

+ || <x> V2(H + i)~ 1 1| \\(W+ - J+ )e-ilH°S(H0 + i)φ ||.

Lemma 3.2 can be applied to «x>~ 1 ~εJ+), and combining this with Corollary 3.2
we conclude

This implies

I WO, [ΛK2]ψ(ί))|^C<ί>'"1" ε (teR) (4.13)

by virtue of (4.12);

where i = 1/0 for ( + )/( — ) respectively. The former two terms can be dominated as
above (we remark that [AR, V1~]=ARVl — V1AR is uniformly bounded in B(Hl,l}]).

The symbol of \_ARJ±,V^\ ([VΊ,J±] respectively) is in SΓ,o~ε(Kί)(SΓ,o"2ε(R?)
respectively), and is bounded in R by Lemmas 2.2, 3.1 and Assumption (V). Hence

\(J±φt(t),lAR,V^J±ψt(t))\^\\J±φ{(t)\\ IICΛ^
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and these estimates follow

|(0(ί),[/lΛ,K1]^(ί))|^C<ί>-1-e(ίeR). (4.14)

Equations (4.13) and (4.14) prove the dominated convergence. Π

Proof of Theorem 1. Combining (4.3) with Lemmas 4.2-4.6, we obtain

lim (ψ,TRH0ψ)= lim J (φ(t),XRHψ(t))dt- (φ0(t),XRH0ψ0(t))dt
R—> oo R— > oo (̂  — oo — oo

α
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