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Abstract. Lavine’s results on time-delay ([10]) is extended to higher dimen-
sional Schrodinger operators.

1. Introduction

In [10], Lavine proved the existence of a quantity called time-delay and gave its
representation formula which we call “Lavine’s formula,” for one-dimensional
Schrodinger operators. The aim of this paper is to extend them to n-dimensional
Schrédinger operators.

We consider Schrodinger operators:

H=Hy+V(x); Hyo=—-A
on # = [?(R"), and we suppose that the potential V satisfies

Assumption (V). V(x)=V,(x)+ V,(x), and there exists a constant ¢ > 0 such that
(i) V{(x)is a C*-function and for any «a,

a a
(5;> Vi)

(i) the multiplication operator by V,(x) is compact from H*(R") to L?2*(R").
L2%R") = {¢peLE(R"):(1 +|x|)*pe*(R")} is the weighted I?-space of order 2.
Then, as is well-known, H is self-adjoint; the wave operator defined by

SC(1+]x]) M (L.1)

W, =s-limexp (itH)exp(—itH,)

1>+ oo

exists and is complete: Ran W, = #“(H); hence the scattering operator defined by
S=W* W_ is unitary.
For R >0, let X be a multiplication operator defined by
Xp=Xg(x); Xglx)=X(Ix[/R); 0=X(x)=1L;
XeCP(R);, X(x)=1 if |x|=1,=0 if |x]=2 (1.2)
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For ¢, e, we set ¢(t) and ¢,(t) as
p(t)=exp(—itH)W_¢; ¢o(t)=exp(—itH,)¢, (1.3)

and Y(t), y,(t) similarly. Note that if pe H*(R"), ¢(t) is the unique solution of the
Schrodinger equation: i(0/0t) p(t) = H ¢(t) such that || ¢(t) — ¢o ()] > 0(t > — o0).

We set &, as

Do={¢peA Ey (2)p=¢ forsome 2c(0,0)
Q:compact; 2na,,(H:empty}.
Then Ty is defined by the following equation:

o0 oo

(@, Tr¥p) = | ($(0), XpW(0))dt — | (o), X pho(t))dt (1.4)

for ¢, ye2,. Since X  is H,-smooth in the sense of Kato, and is local H-smooth in
the sense of Lavine (see X111-7, [11]), (¢, Tr) exists for such ¢ and ¥, and bounded
from below. Hence, Ty is well-defined quadratic form on 2, and the Friedrichs
extension exists. Ty represents approximately the difference of the sojourn time of an
interacting particle in the ball of radius R, and that of a free particle.

We set 9, = ZonL*3(R"), and 4 = (1/2i)(x(6/0x) + (6/¢x)-x) is the dilation
generator. Our result is:

Theorem 1. Suppose Assumption (V), ¢, Y, S¢ and SYe2,, then

lim (6, Ty Ho¥) = | (60), { VT4 V] }w(r»dt. (15)

R—

Of course, Theorem 1 implies that the limit of the L.H.S. and the integral of the
R.H.S. exist, and are equal. It also asserts that the limit: limg_, (¢, Tr¥) exists for
such ¢ and y. It is called time-delay.

On the other hand, in terms of the S-matrix {S(4)}, the Eisenbud—Wigner time-
delay operator is defined by

T= { — iS(i)*%S(A)} (1.6)

on the spectral representation space for H,. Jensen ([8,9]) showed that under
certain assumptions,

o0

@.7101= T (o0 v4itaniuo Ja (1)

holds for ¢,y €% ,. Combining (1.7) with Theorem 1, we can conclude the following.

Theorem 2. If ¢, Y, S¢p and Spe %, then

(¢, Ty) = giﬁm‘(fﬁ, TrY). (1.8)

This formula gives a relation between the S-matrix and the sojourn times of
particles.
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Remark 1.1. By (1.6) and (1.7), the operator defined by the R.H.S. commutes with
H,. Hence if we set y = Hy ' ¢ for ¢pe2,n(S™12,), we have

lim (¢, Tg ) j <H 12 (1), {V+é[A, V]}H'”ng(t))dt

R—- w0

As remarked by Lavine ([10]), if the quanity
i i
V+-[A4,V]=V+=xVV
+ 2[ ] + 5% \%

is non-positive everywhere, the time-delay is always non-positive, i.e. the interacting
particles escape from every sufficiently large domain faster than the free particles.

Remark 1.2. We must consider how many ¢’s such that ¢€2, and SpeP, exist
because if such ¢’s do not exist, Theorem 1 would be meaningless. But in many cases
the set of such ¢’s is dense in #. For example, (i) if V satisfies

V:H*(R")— [2**¢(R"): compact

for ¢ >0, then ¢ €2, implies SpeZ, (see Jensen [7]); (ii) if V, =0 (i.e. V is smooth
and satisfies (1.1)), then ¢peZ, and ¢eCZ(R") imply S¢peZ, and (Sp)” eCZ(R").
This is a consequence of the result of Isozaki—Kitada [4]. It could also be proved
that if V, satisfies (i) above, then €2, and ¢eCZ(R") imply SpeZ,.
Time-delay has been studied by many physicists (see the introduction of Jensen
[7] or Martin [13]) and mathematically rigorous treatment was initiated by Jauch
and others ([5, 6], see also [1]). In particular the time-dependent formulation of
time-delay such as (1.4) was introduced by Jauch and Marchand [5]. Lavine ([ 10])
showed that (1.5) holds for one-dimensional Schrodinger operators with V satisfying

V) +[x V')l C1+[x)71

Later, Jensen ([7]) proved that for n-dimensional Schrédinger operators (1.8) holds
if X is replaced by X g = E 4({A:|A| < R}). Jensen proved (1.7) also, which he called
“Lavine’s formula,” under slightly weaker conditions than ours ([8,9]). After this
work was completed, the referee informed the author about papers of Wang
([14,16]). He obtained similar results for smooth potential using a different method.

The outline of the proof is as follows: at first we construct a pseudo-differential
operator A such that

XgHy= %[HO, Ag] + (small error terms),

and that as R— oo, A — A + constant (Sect. 2); next, we introduce a operator J,
such that

[(J, —De g | -0
I(HJ, —J, Ho)e "o || = 0(™*%); (1.9)
“(Jt\]i—l)e_“Ho(ﬁ“:O(t_l_s) (l—»ioo)

(Sect. 3, cf. Isozaki—-Kitada [4]); then minicking the proof of Lavine [10], we
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compute
(1), X g HY(t)) — (¢ (1), X g HoYro(1))

and show that the error terms tend to zero as R — oo (Sect. 4). For that purpose we
employ the stationary phase method or the Enss method ([2]).

Notations. We shall use the following notations in the paper. We denote reals by R
and Euclidean n-space by R". H*(R") is the Sobolev space of order s and L>*(R") is
the weighted L2-space of order . For Banach spaces X and Y, B(X, Y) denotes the
Banach space of all bounded operators from X to Y, and B(X) = B(X, X).

We set (x> =(1+|x|*)"?; X = x/|x| for xeR". We write any constant in the
estimates by C or C, denoting the dependence on *.

¢ denotes the Fourier transform of ¢, and for a symbol a(x, &), x,eR", the
operator a(x, D,) is defined by

(a(x, D) )(x) = 2m) ™" [ea(x, &) p(£)d¢

with ¢pe.&. About the theory of pseudo-differential operators, see e.g. Taylor [12] or
Hormander [3].

2. Construction of the Operator 4,

In this section, we construct the operator Ax such that
i
XRH0~5[HO’AR] (2.1)
in some sense. We set A ~ ag(x, D,) with some symbol ag(x, &). Then, since

< [HO’aR X, )]¢> )

=(2m)” n/zfeué{éa ag(x, &) — A +Ar(x, ¢ }‘5(
(2.1) formally implies
€0 ag(x, &) — —A <AR(%, &) ~ X p(x) &2, 22)

We solve (2.2) as follows: let ag(x, &) = a¥’(x, &) + ai’(x, ¢) and these are solutions of
the equations

£0.aR’(x, &) = X g(x) &% (2.3)
E0,.aP(x, &) = »A LA (x, &). (2.4)
Then the remainder term is

E0an — 3t~ XpE = — S A5 8) = bl &)
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Transport equations (2.3), (2.4) can be easily solved if £ #0, and we choose the
following solutions:

A, 8= — [ EXp(x + Ot + | E2X (e8)de
0 0

Il

m{_IXR(x+r2)dt+zXR(t5)dt} (2.5)

&1 T de [ dbx- (VX ) (Ox + £E):
0 [

) (x,0) —T{M]j A XR)x+té+s§)dt}d 2.6)
2% 14
— T Ax x4 sO)sds;
25
bl 8= | (A7Xg)x+ 5B )

Lemma 2.1. aQ(x, &) and ad)(x, &) are the unique solutions of (2.3) and (2.4) such that
for &#0, ag’(0,&) =0 and

a@(x, &) = [¢] Oj?XR(tf)dt =|&| x constant x R,
0

a(R})(-x’ é) =

if x| =2R and x-£=0.
This can be verified directly. We next consider their asymptotic properties as
R — 0.

Proposition 2.1. For (x,&)eR" x (R"/{0}),ald(x, &) - x- & ag)(x, &)~ — (i/2)(n —2);
br(x, &) —0, as R— o0, locally uniformly.

Proof. We may suppose fz (1,0,0,...,0), and we write

0
x=(x,xX)ER xR, V=—y A'=V-V.
0x

By (2.5), we have

-~

a@(x,&) = — |E1{(x, &)+ (x — (x,E)E)} [ ds [dOVX g(Ox + sE)

O’—;S
ot—,»—

__ x.gTdsjdedi{XR(ex +58))
0 0 S

el [ ds [dBV' X g)(6x + sE). (2.8)
0 0
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Since
0 1 d ~ 1
[ds{dO—{Xg(0x +s¢)} = — [dOX z(0x) = —
o o ds 0

If R = |x|, combining this with (2.8), we obtain

A0, &) = x-& + 1] [d0 [ dsx V' X p(0x + 5E).
0 0

S. Nakamura

We shall show that the second term converges to zero as R — oo. Set y = Ox + s¢,

r=]y|. By definition of Xg, (1.2), we see

r o 1
(VX0 =50 % Xa =" LX)

On the other hand, on the support of VX (), (y/r) = E+OR"- 1) for each x and 0.

Hence

1
X'V’ Xg(y)=O(R"™ 1)'-Ii'z’(’(y/R) =0(R™?),

XR(y)lgR-CR-ch-R—I.

This completes the proof of a¥’(x, &)— x-&.
By (2.6), we have

(1) _i7 ERY - i, .
%) z(f)(axl) Xrlx+1&)tdi +3 [ (A Xglx+1)edr.

By integration by parts, the first term is

%T(E-V)ZXR(xHE):dt— fdi VX (x4 &)}t de
0 O
10 VX p(x +t&)dt = jdt{XR(x+t£)}dt
Z%XR(X).

By elementary calculations, one can obtain
2

’ ’ d ’ d
AXR(y)ZAr;XR‘FlV"Pz-ZXR

(n=1 P N WP a1y
_<r r3RXR+r2RX7’

where y = x + t¢ and r = [y]. Since on the support of VX,

dr _(x+16) _t L R,
dt r Peoror

(2.9)

(2.10)
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and |y'| =|x'|, we have
A'Xp(y)t=mn—D(t/r)R™ X' (r/R)+ O(R™3)

=(n— l)ﬂR_

SRTIXG/R) + O(R?)

(n*l)j 6;jXR(rHO(R %)

d
= =1 Xe) + O(R™?).

Hence, the second term of (2.9) is

2
Combining this with (2.10), we conclude

8= — 5n =X () + OR ™)

bgr(x,&)—0 can be shown easily from (2.7) since (A2 X)(y) = O(R™%).

i‘(n — l)ojodﬁXR(y)dt +0OR Y= —i(n— DXg(x)+OR™!
odt 2
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a

Let peC*([— 1,1])such that 0 < p(x) < L;p(x)=1if x £ 1/4,=0if x < — 1/4.

We set .
Yr(x,8) = X,1(x) + (1 = X5(x)) p(%-&)

Ix] le
2R P
and define dg(x, &) and cgx(x, &) by

(%, &) = ag(x, &) Ye(x, O
(&) = 60,05 &) — 54 (3 &) — X9 £

By easy computations, we obtain

CR=bgrYr+agl 0,Yg —i0.ag 0, Yy “%GR(AxYR)~

Lemma 2.2. For each o, 5,0 >0,

(i) [0208ag(x, &)| < Cppamin({x) ", R)CEN (1€] > O);
Cops{x> "CEYT(1€]>6)
Copslxy 2 EY™ (1E]> 6,2 > — 1,
where C,4;’s are independent of R.

Proof. By (2.5) and (2.6), if |x| £ 4R or &> — 1/4,
Cymin (x|, R)|IE|"" (2 =0)
CoRHE) T (2 #0),

(i) [0%0c(x, &)l é(

0308 aR’ (x, &) <<

i)

2.11)

(2.12)
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|0x0kaid)(x, &) < Cop R E| .
Since supp (¢%af)) < {(x, &) x| £ 2./2 or £:E< —1//2} if a#0 or i = 1, we have
|0208a (x, &)] < Cppmin ((x ' 7P Ry W
on supp Yg, for i =0, 1. By the definition of Y, we have also

Cop > 1]
0 (€2 1/d |+ |B] £0) @13)

Then (i) follows easily from these estimates.
By (2.7), we obtain

|0%0% Yr(x, )| §<

|0%0bg(x, &)] < C,pRH ||
S Cpxy Mg,

similarly if | x| £4R or 2= — 1/4. Hence

16208(bg Yg)(x, &) < C<x )27 Mg,
C{xy P
0 (%&z1/4)
C{x)y ' Mpe-m
0 (%-&=1/4)
C{xyMpg=n
0 (%&z1/4)

10208 (a0, V) ) g(
'a;ag(axaR'ax YR)(X’ é)l é <

laiag(aRA X YR)(X’ é)‘ é <

using (2.13) again. Equation (2.11) and these estimates imply (ii). O
Since our symbols have singularities at £ = 0, we must introduce a suitable cut-
off. We set Zy as

Zr=Zg(Dy); Zg()=Z(R|E]);
ZeC?(R), 0=Z(Q)=1(CeR);
Z(&)=0 if [gl=1,=1 if [{=z2
We define A and Cg by
Ag(x, &) = ar(x,8) Zg(8);  Ag = Ag(x,D,),
Cr(x, &) = cr(x,8)Zg(&); Cg=Cgr(x,Dy).
Then, by Lemma 2.3 and the I2-boundedness theorem (Ch. 13 of [12]), Ag is in

B(H'(R"), L*(R")),and Cyis in B(H*(R"), L?(R")) for each R. Moreover, we can prove
their uniform boundedness in R.

Proposition 2.2.

(i) ilil? | Ag “B(HI(IR"),LZ‘_ &) < 9O,

(11) ilil:l)” Aﬁ ”B(HI(R"),LZ'"I(R")) < oo,
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(i11) sup || Crll B 2RY) < O
R21

(IV) i'ill) ” C}t “B(HZ(R"),LZ(R")) < 0.

Proof. We define dg ,(x, &) by
o0 1 a .
dra(x, &) = — [ ds [dO——X (0x + sE) Y(x, &)
0 0 axk
for k=1,...,n, then by (2.5) we see
ag’(x, &) Ye(x, &) = Zx"dm x, &)I<]. (2.14)

By a change of coordinates, one immediately obtains dg ,(x,¢&)Zg(¢)=
dy (x/R,RE)Z(RE). Hence, if we set p =1log R and U(o) be the dilation operator
defined by (U(0)¢)(x) = exp (na/2) P (e’ x) (ceR), we have

dR,k(xa Dx)ZR(Dx) = dl,k(x/R’ RDX)ZI(RDX)
=U(—p)d, x(x,D,)Z,(D,)U(p).

Since U(p) is unitary, [dgi(x,D,)Zgllp4 =constant (we remarked that
d, «(x,D,)Z,(D,) is bounded in L* (R"). This and (2.14) yield

(@’ YR Zg)(x, D) It 2-1n = C.

On the other hand, a¥’(x, &) = a{"’(x/R, R¢) and an analogous argument can be
carried out to show the uniform boundedness of (al’ Yz Zz)(x, D,) in B(#). These

imply (i).
Next, by the definition and (2.14), we see

(aR” Yr ZR)(x, D.))*$(x)
= (27I)A”Zfe"("7”éd“(y, ONEIZR(O)yd(y)dy dC

=(2m)" Zf {e”" D} dg (0, O €1 ZR(E) p(y) dy dE

- (271)"";ixkfe""‘"”édx,k(y, OIEIZR()P(y) dydE

=19 +1¢,
and by integration by parts,

. 0

lp=— i@ﬂ)'"%fe“"_y’éa?k{dk,k(y, OIEIZRr ()} d(y) dy dE
. 0

= - i(Zﬂ)_";fe“"“y’é%;{dx,k(y, OIEI} Zr(&)(y)dy dE

—(2n)~ Zfe"" Dodp i (9, el {Zx(i)}¢ y)dyd¢
=lp+1,0.
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For I,, one can prove the uniform boundedness in B(#°) by the same method as
above. Since

0
|2¢ = - iZ{|Dx|<_ZR>(Dx)}dR,k(x’Dx)*d)s
T 0,
and the symbol of {|D,[(0/0¢,Zg)(D,)} is bounded uniformly in ¢ and R,1, is
uniformly bounded in B(#).
19 = —iQn) 7" Tox [ dray O Zal &)¢;¢;0(y)dy dé
=(2m)" zxkj AT a0, 024 (&) dy de

= —(2n)" zx feix™ ne 0 o, drc (0, O ZR(OE y) dy dé

; |0
- 2n)_";x;§e"""y":dx,k(y, é)ZR(é)i,{b-;My)}dydé

0 R *
= —;jxk{<5;;d&k>(x>Dx)ZR(Dx)j} ¢

~ 0
- Zxk {dR.k(x’ Dx)ZR(Dx)j}*a—(f’
kj X;
= ﬂ1¢ + ﬂ2¢-

Similar argument shows that {((3/0x;)dg )(x,D,)Z D, } and {a@}(x, D) Zg D, }*
are uniformly bounded in B(s#), again. Hence [, is uniformly bounded in
B(A#,L* 1), and I, is uniformly bounded in B(H', L*'!). These prove (ii).
The next estimates can be shown in the same way:
1(br YZ)(X, D) | gy < CR™2;
[{ar& 0, YR)(X, D) g2,y = G

[(0xag 0 Yr)(x D) || Epr 2y = CR™ Y

[(ag A Yr)(x, D) |l par 12y < CR™Y,
and (iii) follows. (iv) can be proved by the standard method using integration by
parts. N

Remark 2.1. Using the Calderon-Lions interpolation theorem (Th. IX-20 of [11]),
one can prove that Agx(Cp respectively) is uniformly bounded in
B(H>*(R"), H*~**"Y(R")) (B(H**?, H*) respectively) for seR,0<a<1, where
H**(R") is the weighted Sobolev space.

The next lemma follows easily from the definitions, (2.11) and Proposition 2.1:

Lemma 2.3. For(x,{)eR" x (R"/{0}), Ar(x, &)= x-& —(i/2)(n —2); Cg > 0as R— oo,
locally uniformly.
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3. Modifier J,

Here we introduce a pseudo-differential operator J, such that it satisfies (1.9). J , we
shall define is approximately the same as that in Isozaki—Kitada [4] (for short range
potentials), and their modifier is more precise than ours. But our construction is
slightly easier to handle and enough for our purpose.

Let p, (x,¢) be a solution of

2i80,p, (x, &) = V, (x): (3.1)
1 = 1 £%
ai(x,é)= —E (j; VI(X+[é)dt: —21 |£A| {‘; VI(X+ t&)dt
It satisfies
10208, (x, &) S Cpl&l M) o1, (3:2)

If +5E2 —1/4 We set j, (x, &) =, (5,4;x,E)(0 <8< A<o0) by
Jo () =exp {p, (%, (1 = X, (0))p( + %)} /6, 4:1¢17),
where f(5,4;)eCE((0,0));0< f(5,4; ) < L,£(6,4; ) =1 if Ze[5,4], =0 if
J1¢(5/2,24). Let t(x, &) =1, (5,4;x, &) be
t,(x,8)=2i0,j, (%, &)+ A, j,(x,8) + Vi(x) ], (x, ). (3.3)

Lemma 3.1. For any o, f3,

M) 1j,(xII=L
(i) 105057, (x, O = Cop x>~ (o] + [ Bl # O

Capxy ™ 7"

(iii) Iﬁi%%(%é)lé( Copdx> T (4 %8> 1/4),

Proof. (i) is immediate since p., (x, ¢) is pure imaginary. (ii) follows from (3.3) and the
fact that p(+ %-¢) is homogeneous in x. By (3.3),
(%, &) =280, {p, (x.O)(1 = X, (p(£ £ O} . (x.&)
+ AP, (O = X, ()p(£ 20} . (x,0)
+10:{p, (. O = X, (Dol £ £} j. (x.9)
—Vi(¥)j. (69
= {2i&-0,p. (x, 6) Vi(x)} ). (x,€)
+2i0,{(1 = X, ())p(£ %9}, (x,8) ). (x.©)
+Axmxél—X(m (££8}).(x.0)

A

+ 10, {p. (O — X (x )P(+X P (x,€).
The first term vanishes by (3.1), and it is easily seen that the second term satisfies the
former property of (iii), and vanishes outside {x:|x| <2} if + £-& = 1/4. (iii) follows
since the third term is O({x) "2 #)(O({x ) *~*"™) after differentiation 0%0%), and
the last term is O({x > ™27 %) (O({x) > * ", after 8%0%). ]
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We define J, =J,(5,4) by
J, = f(5/2,24;H,) j, (x,D,).

Then the symbol of J, concides with j, modulo O({x )~ *)since f(6/2,24;&%) =1
on supp j,(6,4;,").

Lemma 3.2. Let q,(x, &) be a symbol such that

C¢ﬂ<x>—lal

5208 , < o z
|030¢q . (x €)|—<cw<x> i 2Ezy)

for any a, f, with ye(— 1,1) and ue[0,3]. Then for ¢pe2,,
lq.(x,D)e” || < C,<td>™*(+120).

C, depends only on ¢ and finite number of constants in the assumption.

Proof. We prove the (+ )-case only. Let geCZ((—1,1)) such that g@)=1 if
0=(1+79)/2,=0if 0<y:0<p(0) =1, and set

41068 =q. (%, O{X, () + (1 — X, (x))-p(*-&) };
0068 =0+ (%8 —q1(x, ) =g, (6, E)(1 — X, ()1 — f(%-&)).

As is easily seen, they satisfy

10208, (x, &) < Copdx D1, (3.4)
1020845 (x, O < Cop x>
suppq, < {(x, &) % E<y). (3.5)

At first we consider ¢q,(x, D, ):
q1(x, Dy)e” "o d = (g, (x, D) {xX)({x )~ #e™ Mo g).
and by Lemma 4.3 of [7], we have

[{xy e Mog || < C<Cty 7, (3.6)

since p€Z, < D(A>). By virtue of (3.4), q,(x, D,)<{ x >* is bounded in I* (R"), and the
claim has been proved for ¢, .
Now, (3.5) implies that g, has support in the in-coming subspace, and the Enss
method can be applied to obtain
|| QZ(-x’ Dx)e_itﬂof(éﬁ Aa HO)X{x:|x|<cl} H é CN< t > _N(t > 0) (37)

for any N and sufficiently small ¢ > O (cf. Enss [2]). We take 0 < d < A < o0 so that
f(6,4;Ho)¢ = ¢. Then

‘h(x, Dx)e_ irHOd) = (QZ(X, Dx)e_itHuf(é’ A 5 HO) X(x:|x|<ct})¢
+(q2(x,D,)e~"f(5,4; Ho) Az e @
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hence we have

” QZ(X, Dx)e_ilﬂoqb ” é ” q2 (X, Dx)e_ itHOf(a’ A a HO)X{x:fx|<c1} ” ” ¢ ”

+ ”42(3" Dx) ” ||X{(|x|g(‘l}¢”' (3‘8)

Since ¢pel*3(R"),
” X(x:|x};cr}¢ ” é <Cl > -3 ” d) ”Lz“"(R")) (39)
and (3.7), (3.8), (3.9) complete the proof. O

Proposition 3.1 For ¢e2,,

() I(HI, —J Hole ™og || £ C,<t> 275t - + 0);

(i) |(JEJ, — f(6,4;Ho)?)e™ "og | < Cy<t) ™1 *(Jt] > 0);
(iii) 1(J, — f(3,4;Ho)e " Ho¢ | < Cy<t>~*(|t] > c0).
Proof. As remarked after the definition of J, , the symbol of J, coincides j, (x, £)
modulo O({x)~*), and we may consider j, (x,¢) as the symbol of J, . Then the
symbol of {(Ho + V;)J, —J, H,}is —t,(x,&), hence by Lemmas 3.1-(iii) and 3.2,
we see

|{Ho+Vi)J, —J  Hole "o < C<ty ™2 (£120)
V2Jie—itHo¢
= {VadxD? (Ho + D)} {(Ho + D<x)> 727 x D H{x ) T2 P 7 MHog ),

The first factor is bounded by Assumption (V). The symbol of the second factor, say
r(x, &), satisfies

03 0Er(x, O < Copy (x> 7YY

for any a, f and N, hence the second factor is bounded. The last factor can be
estimated by (3.6) to conclude

1VyJ e og| < C<ty ™27

This completes the proof of (i).

By the asymptotic expansion theorem ([12],§2.3) and Lemma 3.1-(ii), the
symbol of {J*J, — f(6,4;Hy)*} isin S7§7°(R}), so (JXJ, — f(6,4; Hp)*){x D' **
is bounded in I2(R"). Thus (ii) follows from (3.6) again. (iii) follows similarly from
Lemma 3.1-(ii). O

Corollary 3.1. For ¢pest,

W, (5, 4; Ho)p = s-lime™J e~ og,

t->+oo

Proof. If ¢p€2,, this follows easily from Proposition 3.1-(iii), and the density
argument yields the assertion. O
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Corallary 3.2 For ¢p€2,,

(W, f(8,4;Ho) —J )e™ o] < C, <1y~ (12 0)

+

(i) f I(W, f(8,4;Ho) —J )e™ "¢ |ldt < o0.

0
Proof. We prove the ( + )-case only. By Corollary 3.1,
(W, f(6,A;Ho)—J e "o = (s-lim esHJ e SHo _ g, )e“"”oqb
s— + o

ieH(HJ, —J, Hy)e Hog~itHog g,

O—8

Hence we have

I(W, f(3,4;Ho)J )e™*ogp || < f I(HJ . —J s Ho)e 00 g ds

© C
<(cC t|72 7 ds = ——t|7t7F (>0
_g [s+t]” s 2+II ( )

by Proposition 3.1-(i). (ii) follows immediately from (i). O

4. Proof Theorem 1.
At first, we sum up the remainder terms of (2.1).

Lemmad.1. As forms on H*(R"),

i
XRH0=§[H0,AR]+XRHO(1—ZR)—CR; 4.1

XRH=%[H,AR]+XRV—%[V,AR]+XRHO(1 —Zp)~Cr. (42

Equation (4.1) follows from the definitions of Ax and Cg. Equation (4.2) follows

immediately from (4.1).
We fix ¢,¥e2,n(S7'2;) and 0<d<A< oo so that f(5,4;Hy)d = ¢,

f(6,4; Hy)y = . Then we obtain by Lemma 4.1,
(€™ W _ X e ™" W_HoW) — (™10, X o™ "H0 H o)
= (p(t), X gk HY(1) — ($o(t), X g Ho (1))

= 60, TH, ARW0) ~ Go(0, [Ho, Ax 101}

+(9(2), {XR v+ %[AR, V]}l//(t)) + (), XgHo(1 — Zg)¥ (1))
—(¢o(t), XgHo(1 = Zg)¥o(t)) — {(p(t), Crip(t)) — (¢o(t), Cg 'po(’:))}'(4 ;

We shall estimate the integrals of these terms.
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Lemma 4.2. For sufficiently large R,

;lm f{(d) 0, [H, AgJY(1)) — (¢o(2), [Ho, Ar1¥o (1) } dt = 0.

Proof. By (1.3), we have
i{(p(2), [H, ARTW (1)) — (do(t), [Ho, ArYo(D)}

d
=7 (p(1), Ag (1)) — (Do (1), Ar o (1))}
hence
i f{((ﬁ(t), [H, AgJ(0)) — (o (t), [Ho, Ao (1))} dt

= {(&(T), AgY/(T)) — (¢o(T), ARtﬁo(T )}
- {(¢ T, ArY(T")) — ($o(T"), AYo(T)) }- (4.4)
Again in by (1.3),

(@), ARY(1)) — (Do (1), Ar¥o (1))
= (W_e—itHo¢’ Ag W_e_"HDlp) _ (e—itHqu’ ARe_itHolﬁ)
=((W_ — l)e—itHo¢’ Ag W_e_i'HOlﬁ) + (A,";e‘i'H"(j),(W_ _ l)e_"HOl//). (4.5)

Since  Ag, A eB(H'(R"),[*(R")) for each R (see Lemma 2.2) and
|(W_ — 1)exp(—itHy)¢| —0(t > — oo) by definition of W_, we obtain

(D (1), ARY(E) — (Do (1), Artbo(t))]
SHW- =De ™o ||| Ag i 2l W |l ey | 1 g2
+ 1 AR s | @l | (WZ — 1)e™ MHoy |
— 0 (t— — ). (4.6)

We will show
(@(0), AgY(1)) = (Do (1), Arho (1)) >0 (¢ > c0). (4.7)
Let ¢,(t) and y, () be
¢ () =exp(—itHo)S¢; W, (t)=exp(—itHo)Si.
Then similarly to (4.5) and (4.6), one can see

(1), ARY(1) — (D1 (1), AR, (1) >0 (1 — o0). (4.8)

If R is so large that 2/R <48, then éesuppy, [x|=2R and %-&= 1/4 imply
agr(x,8)Zg(()=R'|¢| by Lemma 2.1, where R’ =constant x R in Lemma 2.1.
Therefore, using Lemma 3.2, one can show

I(Ar — R'[D[)e™ "y || > 0(t - 0).
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It follows that

(Do(t), AgYo (1)) = (do(t), R'I Dy [Yo(t)) + (¢o(2), (Ag — R'| D, |)e ™ "Horp)
= R/((f), ]Dxllﬁ) + (Qbo(t), (AR _ R,|Dxl)€_itH°!'[/)

— R(¢,|D.[Y) (1~ 0). (4.9)
In the same way, we have
(¢4 (1), Ar 1 (£))
—> R'(S,|D,[S¥) = R'(¢,[D,[y) (- c0). (4.10)
Combining (4.8) with (4.9) and (4.10), we obtain (4.7). The lemma follows from (4.4),
(4.6) and (4.7). O

Lemma 4.3. For sufficiently large R,

T (o0 XnHo(l ~ Z)o(e))dt =0.

Proof. This is immediate since (1 — Zg =0 if 2/R < 6. O
Lemma 4.4

;im _j (p(t), X g Ho(1 — Zg)Y(1))dt =0,
where the integral converges absolutely.

Proof. Since the integrand clearly converges to zero for each t, it is sufficient to show
that the integral is dominated uniformly.
Let Mg = XgHy(1 — Zg). Then, similarly to (4.4) and (4.6), we see
[(@(2), Mgy (1))
(o (8), X MyJ o (D] + [(W- —J _)e™ "o | | Mgl 1|
+IITEMENIGINW - —J )e™ "oy |
(@10, 5 MpJ Y (D) + (W — T )e™ oS | | Mpll 1]
HIMEI ANV, —J e oSy . (4.11)
If 2/R<6/4,MzJ, =0 and by Corollary 3.2, we have
I(p(e), Mpip(e)| S C<ty~1 75,

to conclude the assertion. O

I\

Lemma 4.5

0

lim | {((t), Crp(t)) = (o(t), Cribo(t))} di =0,

R—- 0 — o0

where the integral converges absolutely.

Proof. By Lemma 2.3, C, weakly converges to zero and it is sufficient to show the
dominated convergence, again.
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On (— c0,0), the integrand is
(@ (1), Cri(1) = (o (1), Cripo()) = (W — J _)e "o, Cx W_e™THoy))
+(CRJ €™M0, (W_ —J )e™ Moy + (o, (J* Cpd - — Cple™ oy,
and the former two terms can be dominated in the same way as the last lemma using
Proposition 2.2. We have
J¥CrJ_ —Cr=J*[Cg,J _1+(J*J_ —1)Cqg
and by Lemmas 2.2, 3.1 and the asymptotic expansion theorem, the symbol of
[Cg,J _ ] satisfy the assumption of Lemma 3.2 with u = — 1 — ¢ ((—)-case) uniformly
in R, if |£] = §. Hence, by Lemma 3.2, Proposition 3.1-(ii) and Proposition 2.2-(iii),
(e "o, (J* CrJ - — Crle "oy < [[J e 0@ ||| [Cr,j-Te oy ||
+ [ (JET - — e Mo ||| Cge™ ™oy CCey™1 78 (t=0).

It follows immediately from Lemma 2.2 that the symbol of Cy f(5,4;H,)
satisfies the assumption of Lemma 3.2 with u =2 (( + )-case) uniformly in R and

| Cre™ ™oy || < C(t) (1 20).
Since
(P(t), Cr(t)) = (W, — J ,)e™ oS¢, Cx W (1))
+(CHJ 4 b1 (1), (W, — T L )e” "Hosy)
+(J 4+ §1(t),(CrJ 4 )e™ MoSy),

and the symbol of (CrJ ,) satisfies the same estimates as Lemma 2.2-(ii), we can
conclude by Lemma 3.2 and Corollary 3.2,

(@), CRU(D)| S |(Wy — T 1 Je oSG | Cr Wby (1) ] _
FICET O I W, =T e oSy || + 11, d(0) | [(CrJ +)e™ oSy |
SCy™T (120).
Thus the integrand is dominated uniformly in R. O

Lemma 4.6.
lim [ (00, { XV 454, V] }w)) at= 1 (0, { V4 3IA V] }w» d,

where the integrals converge absolutely.

Proof. For each t, clearly

lim (¢ (2), X g V(1) = (9(0), Vi (1)),

R~

and by Proposition 2.2 and Lemma 2.3,
(@), [Ag, VIY(0)) = (AR D(0), V(1) — (V (1), Ar ¥ (1))

= (x> AR S(0), (x> V(D))
= (x> (), (<x>™ 1 AR)Y(1))
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L
—a<<x>-l< —;x'V—é(n—2)>¢(t),(<X>V)W(f))

R-

—<<x>V¢(r),<x>-‘(—%x-w%(n—z))w(z))
= (@(O.LA. VIV 1),

It remains to prove the dominated convergence.
Since V is locally H-smooth, we have

T 160Xyl <€,y < 0.

Similarly to (4.11), we obtain
CXVa0(X)={ O V(H+0) " e ™MW _(Ho +1)¢
(COVa(H )7 (I e ™o(H + i)p + (W — J _)e™ " (H, + i)}
= { (COVa(H A+ e 0S(Ho + i) + (W, —J e 0S(Hq + i)).
[<x>Ve@)l
[<x>Va(H + i)~ e[ <x )y~ 72T e Mo(Hy + D) |
= + [ O Va(H A1) (W. =T )™ "o (Hy + 1) ||
<D Va(H 4+ )7 DM e [ x> 7T e HoS(Hg + i) |
+ O VH A+ )T IN(W, = J e MHOS(Ho + ) |-
Lemma 3.2 can be applied to ((x)>~'7°J,), and combining this with Corollary 3.2
we conclude
I<x>Vap@ £C<e>7 78 (teR).
This implies
(P[4, VoI S Cey™ 170 (teR) (4.13)
by virtue of (4.12);
(@), [Ar, Vi IW(0) = (W, — J ) ¢:(t), [AR, V1 1Y (1))
+ (L (D), [Ag, Vi (W, = J (D))
+ (4 §:(0), [Ag, V11T L ¥:(2)).
where i = 1/0 for (+ )/( —) respectively. The former two terms can be dominated as
above (we remark that [Ag, V,] = Ag V, — V, Apis uniformly bounded in B(H?, ?)).
[ARa V1]Ji = [ARJi’ VJ + AR[Vin]-
The symbol of [AgJ,,V,] ([V,,J,] respectively) is in Sy 87 “(RE)(S1.5™>*(RY)
respectively), and is bounded in R by Lemmas 2.2, 3.1 and Assumption (V). Hence
I(J 1 @:(0), [AR, Vi 1T WiO) = 1T, i) I[ART s Vi IY(@)
+ AR gt 2= 1 L @@ N <X TV T IO |
SCEy I T(teR),
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and these estimates follow

(@), [AR, Vi 1Y) = C<2) ™1 o (teR). (4.14)
Equations (4.13) and (4.14) prove the dominated convergence. O
Proof of Theorem 1. Combining (4.3) with Lemmas 4.2-4.6, we obtain

lim (9. TyHoy) = lim { T 00, XeHy@)de— | (0 XRHowo(t»dr}

- <¢(t>,{V+§[A, Vj}w(t))dt. 0
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