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Abstract. We consider the pseudoscalar Yukawa model on a four dimensional
Euclidean lattice. The fermions are integrated out giving an effective boson
interaction. We show that for weak coupling this interaction is in the class
covered by the Gawedzki-Kupiainen renormalization group analysis. It follows
that one can adjust parameters so that the flow of the renormalization group is
toward a free massless boson theory. This establishes the existence of the critical
theory and controls its long distance behavior.

I. Introduction

There has recently been substantial progress made in developing rigor-
ous non-perturbative renormalization schemes for quantum field theory
([1,2,4,7-9,12-14]). Much of this work uses Wilson's formulation of the re-
normalization group.

In this approach one begins with a lattice field theory on a fine lattice and
attempts to take the continuum limit by studying effective interactions on coarser
lattices obtained by block spin transformations. This is the basic short distance
or ultraviolet problem. The problem can also be formulated as the problem of
studying the scaling limit for a critical field theory on a unit lattice. In this version
a first step is obtaining the critical theory, a question which is also of interest for
statistical mechanics. Thus one arrives at a class of long-distance or infrared
problems which still carry many of the basic problems of renormalization. The
technique for controlling the infinite volume limit is again to use block spin trans-
formations, this time to get effective interactions in smaller volumes.

In this paper we study the infrared problem for a critical pseudoscalar Yukawa
theory. Our approach uses the renormalization group analysis of Gawedzki and
Kupiainen ([10-13]). The remainder of this introduction is devoted to a precise
description of their results, and in the balance of the paper we show how they can
be applied to our model.

Let L be an odd integer and let A be a four-dimensional unit toroidal lattice
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with LN points in each direction

A = A N = (Z/LNZ)4 ^ ( [ - LN/2, LN/2] n Z)4.

Fields φ on A are functions φe(RΛ. The Hamiltonian Jtf 0 consists of a free massless
piece and a small perturbation:

^v(φ} = Ί Σ <P*(Gϊl)xyφy+V(φ).
x,yeΛ

Here G^1 = G^"1^) is a version of the lattice Laplacian:

The ξ term is added so that the inverse G0 exists, but infinite volume quantities will
be independent of ξ. The potential V is assumed to satisfy V(0) = 0 and V(φ) =
V( — φ) and to have all the symmetries of the lattice. In addition there are
assumptions about the size and locality of V which we explain after some more
definitions.

We divide A up into blocks A with LN° points on a side and centered on the
points of (LN°Z)4. A paved set Y is a union of blocks A. For a paved set 7, | Y \ is
the number of blocks in Y and &(Y) is defined to be the length of shortest tree
graph on the centers of the blocks in Y. The potential will have pieces of the form
Σ Vγ9 where the sum is over non-empty paved subsets of A, Vγ depends only on

YciΛ
φ I y, and Vγ is exponentially decreasing in £f(Y).

One distinguishes between large and small field regions. The small field region
includes complex-valued fields and has the form 3C(A\ where for any paved set
XciA:

C^\\φx - φy\/\x - y\

\(dμφ)x ~ (8μφ}y\/\(x - y)!2/3 g C0C lMJ>4, x Φ y}.

Gawedzki-Kupiainen assume the following condition is satisfied for the small
field region:

OKI: V is analytic on j f ( Λ ) . In the Taylor series V=V2 + V4+V^6

around zero we have

v2(ψ) = ΣOo - 6A0G0,xx)φί

where the various pieces satisfy the conditions for some C+, a:

(a) C_/« 0 <A 0 <C + /n 0 ,

(b) mge(-n0-
3/2,«o3/2),

(c) X Kμj(x,y)\\x-y\2'3^nϊ3l2cxp(-aι&(ΔvΔ')),
xeΔ,yeΔ'
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(d) V4 γ(φ) is the restriction to equal arguments of a quartic form F4 > y(φ l 5. . . ,<p4)
which depends on φ4 only through (φ4 x — φ4^y) ana which satisfies for
( / > ! , . . . , φ 3eJf(Y) and φ4 satisfying the bounds of Jf(Y) except possibly the
first:

(e) ^6,r is analytic on 3jf (F) and satisfies there

I T / <
I κ^6,y = no

The large field region is characterized as follows. For φe(RΛ let D(φ) the smallest
paved set D such that | φ(x)\ ^ 2C1Πo/4. exp (1/10 α φc, ~ D)). Then for any paved set
D we define

) , X ) = (φeC : φ = φ0 -f φ^, ψQ^M , D(φ0) c: Z

The set ^(D, X) includes fields which may be large on D, but they must be small off D,
in fact @(D,X)\χ\D c 3jf(X\D). The condition for the large field region is:

GKII. (e~v) is analytic on ®(D,X\ (V itself need not be defined.) For
(exp(— V^4))(φ) ~ eV2(φ](e~v}(φ) we have

.;υ V φ 4_ y
U £_^ τX /_j

where the sum is over collections of disjoint paved sets {Xω} such that D c I (J X

and such that Dn^Γω is a non-empty union of connected components of D. The
function g% are analytic on (̂D, X) and satisfy there

+ 2<U0(ImφJC)4)-- α

There is also an identity the g% must satisfy ([12], Eq. 4.16).
An example of a model satisfying GKI, GKII is the potential V(φ) =

Σ(imoΦχ + Λ0:φί:) + const considered by Gawedzki and Kupiainen. Here

^μv = 0, K4 = 0, F^6 = 0, and g% = exp - λQ Σ <P* 1 if ̂  is a connected component
V ^X /

of D and is zero otherwise.
Given a Hamiltonian jf 0 =i(φ, G^φ) + ̂  of the above form one defines an

effective Hamiltonian J^1onΛN_ίby making a block spin transformation:

exp (-Jf1(φ1) +const) = J exp (-«?f 0(9))^! - Cφ)dφ.

Here C: [R^-^ίR^-i is an operator which averages over blocks of spins with
L4 points, and then rescales to the unit lattice. The constant is chosen so ̂ (0) = 0.
By adjusting an overall constant in C we can arrange that J^1(φl) =
i ( Φ i j ^ Γ V i ) + ^ι(φι)» where Gf 1 is a version of the Laplacian on (R^-i.
Iterating this procedure one obtains a sequence of Hamiltonians J f0, J^ί9 J^2> -
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defined in successively smaller volumes which have the form ^fn(φn) =

The main result of Gawedzki-Kupiainen is the following. Let L be sufficiently
large, L^L, and choose constants α = α(L), C± = C±(L). Furthermore let
N0, C0, C2, C 1 ? n0 be sufficiently large depending on L, and chosen in the
indicated order so that N0 ^ N0(L\ C0 ^ C0(L, Λf 0), etc. . Suppose that J^0

satisfies GKI, GKII so that all couplings are weak. Then for any λ0 satisfying
GKIa one can choose m^ =f(λ0) satisfying GKIb so that Vn satisfies GKI, GKII
with n0 replaced by n0 + n for all n. (Actually one must express Vn in a new
variable \jjn, a smeared version of φn, for this to be true.)

The small field region eventually includes everything, and so in a certain sense
we have lim Vn = 0. That is, all variables in the potential are irrelevant (once

we adjust the mass). One can also establish a sense in which lim Gn

 1 = G^ *,
n-» oo

a version of the continuum Laplacian. Thus the flow of the renormalίzation group
is toward a free massless boson field theory. This is the infrared asymptotic freedom.

The renormalization group results give one control over the model. One can
prove that the infinite volume limit exists for the correlation functions. Furthermore
correlations only decay as x — y\~2 as \x — y|->αo, confirming that we have a
critical theory. For these results and more see [13].

II. The Pseudoscalar Yukawa Model

The Hamiltonian J^0 for the pseudoscalar Yukawa model depends on a boson
field φ as above and on fermion fields ψ, ψ which are elements of a Grassman
algebra. It has the form

+ Σ Φ*(so %Ψyx,y x

where S^1 is a lattice version of the Dirac operator with mass M. The presence
of the φ4 term is standard for this model (see for example [16].).

We immediately integrate out the fermions to obtain an effective boson theory.
This amounts to restricting attention to the charge zero sector. The new
Hamiltonian J^0(φ) is defined by

e(--<#'Q(φ) + const) _ Γ e-.# o

with the constant adjusted so Jf 0(0) = 0, We obtain

where
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Our goal is to show that J^0 (or e~*°) satisfies GKί, GKII. This involves
extracting corrections to WQ, /0 f

rom log ί2 and showing that the rest is irrelevant.
The details are similar to the analysis of [12].

We begin by defining S0 more precisely. Let M > 0 be a fixed constant and let yμ

be four dimensional Dirac matrices satisfying yμyv + y vyμ = — 2δμv, y* = —yμ. Then
S0 is the operator on (C4)Λ given by the matrix

(S0)Λβ(x,y) = \
peλ H / aβ

where A is the toroidal lattice:

A = A N = (2πL- NZ/2πZ.)4 ^ ( [ - π, π] n 2πL~ NZ)4.

ί Y1

The factor S0(p) = £yμsinpμ + M l is analytic and bounded on a strip contain-
\ μ /

ing the real axis, from which we deduce that for some μ > 0 and sufficiently small
(depending on M)

This estimates and all subsequent estimates are uniform in the volume (i.e. uniform
in N). The estimate is best proved first in infinite volume by deforming the contour
and then in finite volume by periodizing. Some variation in the form of S0 is
tolerable. In particular if we wanted to study the continuum limit we should take

\ μ μ /
Next we show that Ω(φ) has the general form required of our potentials.

Lemma 1. (a) Ω is real,
(b) Ω(φ) = Ω( — φ\
(c) Ω has all the symmetries of the lattice.

Note. The identity Ω(φ) = Ω( — φ\ which is Furry's Theorem, is not true for the
scalar Yukawa model. Our proof for the pseudoscalar model follows Seiler [17] who
considers the two-dimensional case. The result seems to be well-known in the older
literature, but I have been unable to find a reference.

Proof, (a) Choose a representation where y0 is real and y 1 ? y 2 , y3 are
imaginary. (For example, consider the Majoranna representation of the Lorentzian
Dirac matrices in which all yμ are imaginary. Then replace y0 by ίy0 to obtain a
Euclidean representation of required type.) Then y 5 Ξ y 0 y 1 y 2 y 3 is imaginary and
we have γ0yμy0 = - yμ and hence S0 = y0S0yQ. Thus

Ω(φ) = det(l + gS0(iys)φ) = det(l + gy0SQy0(iy5)φ) = Ω(φ\

since 7075 = — y 5 y 0 and γ% = — 1. Thus Ω is real.

(b) On the other hand since SJ = 755075, yf = y 5 , and y\ = 1,

) = dQt(l+g(S0(iγs)φ)*) = d Q t ( l - g φ ( i γ 5 )

= d e t ( \ - g φ S 0 ( ί y s ) ) = Ω(-φ).
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(c) Ω is invariant under lattice symmetries since the original interaction is
invariant. In particular if πμ is the reflection thru the plane xμ = 0 then Ω (φ) =
Ω( — φ°nμ) by the structure of Ω and hence Ω(φ) = Ω(φ°πμ) by (b).

Next we note the identity (cf. [19])

where

Wk = (-\}kk-lΊτ((gSQiy5φ}k\ Ω^n = detπ(l +gS0iysφ).

This gives the expansion of log Ω in powers of φ or g, i.e. perturbation theory. We
n-l

have log Ω = — Σ Wk + log Ω ^ n (at least for φ or g small). By the lemma Wk = 0 for
fc=l

fc odd. Then ί2 = ί2>2 and so we have the basic estimate for all geU, φeCΛ

0(g2)Σ\φ(x)\2 I
x /

We study W2, W4 in more detail. We have

and

X Λ(xί9...9x4)φ(xί) 'φ(x4).
JCι,...,JC4

Lemma 2

(a) W2 = i Co Σ(d μ φ)x + i^mo]

where ζθ9 όm^ are &(g'

(b) W2 = ΣW2,γ, where the sum is over paved subsets of A, wit h 1 ̂  | Y \ rg 2, W^21 γ
Y

depends on {φx}xeY and
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Note. Here and subsequently an expression like (9(g2) means bounded by Co2,
where C may depend on L, N0 the parameters of the paving.

Proof, (a) Since K(x,y) = K(x - y) and K(x) = (9(g2e~μM) for some μ > 0 we have
that K(p) = Σe~ipxK(x) is bounded by 0(g2} and analytic in a strip \lmpμ\<μ

for some μ>0. Since K(x) = K(-x) we have (dμK)(0) = Q. It follows that ([12],
Appendix 2)

K(p) = K(0) + £ X (**, - l)(^v _ iμ»,
μ,v p

where Λμv(p) is £%2) and analytic in any smaller strip \lmpμ < μ. Corres-
pondingly we have

W2 = K(0)ΣΨ2

X + Σ Σ (3μφ)xKμJ(x9y)(dvφ)y9
x x,y μ,v

where Kμv (x, y) = Kμv (x — y) satisfies the bound of the lemma. One can arrange that
Kμv has all the symmetries of the lattice.

Now replace (dvφ)y by ((dvφ)y — (dvφ)x) + (dvφ)x. In the second term we get
£ Kμv (χ — y) = Kμv(Q). By the lattice symmetries this is proportional to δμv . Thus the
y
lemma follows with

(b) The representation holds with

Kγ(x,V)= Σ X^
ΔivΔ2 = Y

Note that Kγ has support in Y x 7. We estimate this by

\W2tY\£\\Kγ\\2\\φ\\lY,

where || φ \\2tY = Σ \Ψχ 2 Now from the estimate on K
xeϊ

But

and so

This gives the same estimate on || KY \\ 2 since Vol A = L4N° = (9(1).
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Lemma 3.

(a) W4 = Σ W4J, where l^\Y\^

,
xeY

(b) W4 = δλ0 Σ<P*+W4, where δλ0 = &(g*).
X

Furthermore W4 = £ W4 y, where W4 γ satisfies the same bound as W4 γ in (a)
y

Proof.
(a) For 1 ̂  | Y\ ̂  4 we define H 4̂ y with kernel /ly defined by

A Y(x1 , . . . ,*4) - Σ ;u(*ι) uta
/4ι u. .u ΔA — Y

Then by Holder's inequality

But we have

which gives the same bound for | | / ly | | 4 / 3 and hence the result.
(b) We insert φX2 = (φX2 — φxι) + φxι in W4, then in the term with φXί we insert

Φx3 = (<Px3 — φxι) + ^x!» etc The φxι terms are collected to give δλ^φ^ with
X

δλ0= X /I(0,x2,x3,x4)
X2,X3,^4

which is (9(g4). The remaining terms are collected to give W4. We have W4 =

4

W — V VKK4,y — 2^ Li
i- 2 xι, . . . ,X4

Using the bound on A γ above each monomial in this sum can be estimated by the
required (9(g4}e~ μ^(Y] Y \φx\

4.

Remark. The expression for W4tY(φ) is the restriction to equal arguments of

4

= Σ Σ Λγ(Xi^'^X4r)(Pi,^'''(Pi-l,Xl

(Pi,Xi+1' '
i = 2 xι, . . . ,X4

which depends on φ4 only through difference variables.
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III. Expansions for the Fermion Determinant Ω

We now want to analyze the locality properties of log/2. This involves making a
number of expansions and estimating the terms in the expansion. For all the
estimates in this section the bounds are asserted to hold for μ > 0 and sufficiently
small, L ̂  L(μ\ N0 ^ N0(μ, L).

We begin by making a cluster expansion. ([5, 13, 15, 18])

Lemma 4.

where the sum is over all partitions {Xt } of A and pXι depends only on φ \Xt. For all

φeCΛ, geIR, (and say |g | :g 1)

I (9(g2} X \φx\
2

\ xeΔ

\Px\ ^ 0(\g\1/2)e-^^xp 0(\g\) £ \φx

 2 \X\ ̂  2.

Proof. For each pair of distinct blocks Δ, Δ' introduce a variable 0 ̂  sΔtΔ, ̂  1, let
s = {sΔtΔ>}, and define

Δ Δi= Δ'

Then

Ω =Σ$dsΓd/dsΓ[_det(ί +gSs

0(ί

where the sum is over collections Γ of pairs (Δ,Δf) and sr= {sΔιΔ>}(ΔtΔ>)eΓ Now Γ
determines a partition {X^ of A by grouping together the blocks it connects. Since
SQ with s^Γ = 0 preserves each subspace in (C4)Λ= ®/(C4)Xl the determinant
factors. Summing first over {Xt} and then over compatible Γ's we have the claimed
representation for Ω with

Px= Σ \dsΓd/dsΓdetx^+gSsi(iy5)φ)\sχ^^,
Γconn X

where the sum is over all /"'s connecting X and det^ ) means the determinant of the
operator on (C4)*.

To estimate the derivatives d/dsr we allow s Γ to be complex. We take s rin the
polydisc

where μ is small enough so \S0(x,y)\ ^ Ce'2^-^ and r ^ l . In this domain
l^o^J7)! ̂  Cre~μlx~yl and it follows as in the estimate on Ω that

2 r 2 )X \φx
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Also in this domain we can surround any point with \sAtA>\ ^ 1 by a poly disc whose
radius in sAtA, is re^(^A'\ Thus for \sAtA.\ ^ 1 we have by the Cauchy bounds:

\d/dsΓdεtx(ί+gSs(iy5)φ)\

^Γ Π r-i<r^.*> |exp( t f (0 2 r 2 )Σl<pJ 2 ) .
\_(Δ,Δ)εΓ J \ xeX J

If \X\ ̂ 2, then 7" is not empty and we can extract a factor r"1 from this
expression. Using also d(Δ ̂ , Δ 2) ̂  <£(Δ 1uΔ2) — 2LN° the expression in brackets is
bounded by (9(r~1)Π(ΔtΔ,}6Γexp( — μ£'(Δ uZi'))

Each Γ can be thought of as a graph on the blocks Δ in X. By deleting lines in Γ
we can break all closed loops and obtain a tree graph which still connects X. This
leads to the bound

On the other hand the sum over Γ can be estimated by

Σ ΓT p-^(ΔuΔ') < V Π P~2^(γ

α) < f>2\x\
1 1 ^ = 2L 11^ = e •

Γ(4,4')eΓ {yα} α

Here the second sum is over all collections {yj of paved subsets with Yα c X and
I yj = 2. The final estimate, valid without the restriction | YΛ\ = 2, follows from the
general bound Σ exP(~7^(^)) ~ 2 | X \ valid for iV0 ^ N0(y) sufficiently large.

Combine the above estimates using &(X) ^ LN°(\X\ - 1), hence &(X) ^ ̂ LN°\X\
for I X I ^ 2, and hence 2\X\- (μ/4)&(X) < 0 for JV0 sufficiently large. Then we have

\Px\^G(r~^

Taking r = \ g \ ~ 1 / 2 gives the result.
If \X\ = 1 then Z = Δ and

where S0> 4(x, y) = χ /i(x)S0(x, .y)χ 4(>;). We have as before | p Δ \ ̂  exp (0( \ g \ 2) ̂  | φx \ 2).
jce4

We also need an expansion for Ω^6. Under the same hypotheses as Lemma 4 we
have

LemmaS. Λ* 6 =
{

where

|p|6| ̂  βd^l^-^^exp Φ ( | f l f | ) Σ (\φx\
2 + |φJ4) | Jf | ̂  2.

\ ^ex /

Proo/ We have Ω>6 = eW2 + w*Ω. Expand Ω by the cluster expansion in Lemma 4,
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and make a Mayer expansion for eW2 and ew* using Lemma 2 and Lemma 3. For
example

{Yα} «

where the sum is over collections {7α} of distinct subsets 7α of A with 1 ̂  | 7α| ̂  2.
Similarly ew* is expressed as a sum over {7^} with 1 ̂  | Y^l ^ 4. Thus we have

β*6 = Σ

Any choice {AΓJ, {7α}, {7^} determines a new partition {Xy} which is the finest
partition such that each Xi9 7α, Yβ is contained in only one Xy. If we fix (Jf y} the sum
factors into a product and we have the claimed representation for ί2>6 with

pf = Σ ΓKιΠ(eχp w2,Ya - i)Π(eχp w^ - 1).

Here the sum is over all {A\ }, {7α}, {Y^} such that {JίJ is a partition of AT, each
7α, 70 ci A", and X is connected with respect to (Xj, { Yj, {7^}, i.e. X cannot be
divided without dividing one of these sets. (However, X is not necessarily
connected.)

Since \ew - 1 1 ̂  | W\em we have

To combine the exponentials in the product over α we use

Σ e-^^rΛ\φ,\^2Σ\Ψ,\2

YΛex / xeX

(Here we use Σ e~y^(γ) ^ 2 valid for N0 ^ N0(y).) Using a similar estimate for the
Y:Δ c Y

W4 Y terms and the estimate on ρx . from Lemma 4 we obtain for | X \ ̂  2

p ̂  6 ̂  y γίe- (uPWXd ΓT β - (μ/2)JSf ( yα) ΓT g - (μ/2)^( Yβ)

L{^ί},{yβ},{yϊ}-»A' f « 0 J

The factor Θ( \ g \ 1/2) may be extracted since each term in the sum either has an Xt with
|^.|^2 or a 7α or a Yβ.

Now using

,) + -^(n) +
α β

we extract a factor e-M4^w fτom the bracketed sum. The remaining sums can be
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estimated by (elιxl)3 as explained earlier. Then since 6\X\-μ/%&(X)<Q for N0

sufficiently large, the bracketed sum is bounded by e-w*W(χ\ j^jg gjves Our result.
IΪX = Δ then

and the result follows from the earlier bounds on these objects.
The remaining results in this section consist of refinements that are appropriate

when φ is either in the small field region Jf(Λ ) or the large field region S)(D, X) as
defined previously. These results hold for g sufficiently small depending on
everything, i.e. \g\^g(μ,L,N0,C0, C29Cί9n0).

Lemma 6. For φ e 6 j f ( Λ ) and \g\ sufficiently small

Ω =p-w** — p v n l — V W*^6 — ̂  — expi 2^ κκ^

where

Proof. For φe63f(Λ) and \g\ 5Ξg sufficiently small,

0(101) Σ (\v>*\2 + \φ**}^ &(\g\)\x\(LN°γc*n0 g \x\.
xeX

Then from Lemma 5 we have |p|6| g 0(1) and |p|6| ̂  (9(\g\1/2)e'(μ/2)^X) for \X\ ̂  2.
Now p^6 is analytic in the complex disc \g\ ̂  g and the same bound holds there.
Since p^6 = 1 at g = 0 we may estimate the remainder in the Taylor series to get, say

Now we write the expansion for Ω~6 as

where the sum is now over all collections {Xγ} of disjoint subsets Xy c A with
I Xy\ ^ 2, i.e. polymers. We have defined

The denominator is bounded by e&(]d]m and so we obtain

From the theory of polymer gases ([5,6,18] and earlier references) we have

~~ Zj ^
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where for \Y\^29

n=l n\ (Xι,...,χn)

Here the sum is over ordered collections of subsets of Y. Each element Xt has
\Xi\*£ 2, and a(Xl9. . . 9Xn) is some coefficient. Using this representation with X = Λ
and also defining W^β= — (logp^6) we have the claimed representation for Ω~6.

The function V^6J may be estimated in terms of the quantity

By our bound on p|6 the sum converges and we get Q ̂  (9(\g\1/2). Hence Q < 1, and
so we have the bound (see above references) W^6J\ ^ Q(\ - Q}~1\ Y\ ̂  &(\g\1/2)\Y\
This can be improved by first extracting a factor exp( —(μ/8)JS?(JQ) from each
pf.6 to obtain an overall factor of exp( —(μ/8)J£?(7)). Here we use the fact that
a(X!,...,Xn) = Q if ^Ίί j^π can be divided into non-overlapping subsets.
The rest of the estimate goes as before and we have | W^6Y\ ^ @(\g\1/2)
exp(-(μ/l 6)&(Y)). This is for \Y\^2 but the bound | H^M | ̂  0(\g\1'2} for | Y\ = 1
follows from our estimate on p|6— 1.

Lemma?. For any D cz/1, φe2&(D,Λ), and g sufficiently small,

~ z^ W^(

w/z^rβ the sum is over collections of disjoint paved sets Xj so D c (J ̂  αnrf so D n A^ is

non-empty union of connected components ofD. The quantity h% depends only onφ\X
and satisfies for C2 ^ C2(μ,L, ΛΓ0),

Proof. We begin with the expansion for ί2>6 in Lemma 5. For each partition {Xδ} let
U be the union of the Xδ's that intersect D. Classifying the partitions by U we obtain

">=*= Σ \ Σ Π/dΓ Σ
U=>DL{Xδ}onU δ J L [Xδ] on ~ ί/

The second bracketed expressed is identified as exp I — Σ V> β Y ) smce on ̂  D the
\ 7c=~ £7 ~ ' /

field φ is in 6jΓ. Let {Dj be the connected components of D. In the first bracketed
expression each partition {Xδ} and the {Dj determine a new partition {̂ 7 } of ί/
which is the finest such that each Xδ, Di is contained in only one Xj. Such partitions
have the property that D n Xj is a non-empty union of connected components of D.
Then the first bracketed expression can be written as a sum over such partitions:

Σ I]*?,,
{Xj}onU J
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where

*?= Σ IK6

W-»* δ

This last sum is over partitions {Xδ} of X such that X is connected with respect to
{Xδ}, {Di} (which implies Xδr^D Φ φ). Combining these observations we obtain the
representation of Ω^6 as stated.

By the estimate on p|6 we have

Given {Xs}, {Dt} connecting X we may form a tree graph connecting X by taking
a union of shortest tree graphs on each Xδ, Dt and then breaking loops. This gives
the estimate Σδ&(Xδ) + Σ^(D^ ^ &(X). But since Dϊ is connected
24LNo\Di\^C2\Dί\. Thus

and so the sum over {Xδ} is bounded by exp(C2\Dr\X\ — (μ/2)J£(X)). Finally
since φ is bounded on ~Z) we obtain Θ(\g\) £ (\φx\

2 + |φx|
4) ̂  \X ~ D\ g |X|

xe*~D

and the factor '̂ ' is controlled by an exp ( — (μ/4)&(X)). Thus we end with a bound
of the announced form.

Finally we need a result for ί2>4.

LeminaS. For D c /I, φe2@(D,Λ\ and g sufficiently small,

where the sum is restricted as in Lemma 7, g% only depends on φ\X and

x e n

Proof. InΩ^4 = e~W4Ω^6we insert ί/F4 = <5Λ,0Σ φί + ̂ 4 and ί2>6 from Lemma 7. If we
X

also Mayer expand exp ( - W4) = exp ( - Σ ^4 y ) and exp ( - Σ w>β Y } we obtain
V * / V Y ~ ' /

Here {Jί7 } is as in Lemma 7, and the {Yβ} are restricted by the condition
Yβd ~(\JXj). Each {Xj}, {XΛ}, {Yβ} is grouped into clusters {Xω} which are

./
connected with respect to their constituents. Our sum can now be written

where the Xω are disjoint, D c UωXω, and Dr\Xω is a (possibly empty) union of
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connected components of D, and where

0? = Σ IK, Π (eχp( - w4J) - 1) Π (exp ( -

The latter sum is over collections {Xj}9 { YΛ}, { Yβ} whose union is X and such that X
is connected with respect to them, and so Yβ a ~ (J χjt For each {Xω} let U be the

union of those sets that intersect D. Then our sum can be written

Σ[ Σ Πrf.ϊ Σ Πβϋ
C/=.DL{Xω}on(7 ω J |_{*ω}on~[7 ω J

The second sum is over collections {^ω} of disjoint subset of ~ U. For Xω a ~ U,
gx contains no Xj terms and so we may identify this sum as

exp I — Σ W4tY + W>6 Y 1. The first sum is over partitions of U such that
\ yc ~ u ' ~ ' /

is a non-empty union of connected components of D. The whole expression now
can be rewritten in the stated form.

The bound on g*χ follows as in the previous lemmas; see particularly Lemma 5.

IV. Conclusions

We now collect our results. The new field strength in 3tf 0(φ) is identified as Z0 =
1 +Co (Co fr°m Lemma 2) and we renormalize to one by considering ^0(Zo 1/2φ).

Theorem. Given M let L, N0, C0, C2, C1 ? n0 be sufficiently large and chosen in the
indicated order. Let C^n^1 < λ0 < C + n$l and m^e( — n^3/2,n^"3/2). Then for g
sufficiently small JJf0(ZQ1/2φ) satisfies OKI, GKII.

Proof. Given M, choose μ>0 sufficiently small, and then L, N0 large so our
lemmas hold. We may assume also that α ̂  μ (since α = α(L) = Θ(L~ 1)) and hence

To verify GKI suppose φ is in the small field region. We insert — log Ω
+ W4+W^6 in J^Q and then we have

je 0(Z0- Wφ) = i X φx(Go *)xyφy + V(φ\
χ,y

where now

GO^GO^ZO^),
and where
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and where

δm2

0)

It is now easy to check the various conditions. Since Z0 = 1 + @(g2), δrn2^ =
0(g2\ δλ0 = (9(g*\ we have Λ'0, (m'0)

2 in the same intervals as λθ9 ml for g small
and hence GKI(a), GKI(b). Condition GKI(c) for K' follows from the bound on
K in Lemma 2. For GKI(d) we use the expression for W4Y in the remark after
Lemma 3. Assuming \φiίX\^ClriQ/4 for i= 1,2,3 and |φ 4 x — φ 4 y |^
CoCιnol4\x ~ y\ and using the bound on A γ we obtain the required bound for
^4,y(Zo Il2φ) Finally if>e3Jf (Λ) we have Z^ 1/2φe6jΓ(Λ) and the bound GKI(e)
for W>6Y(Zo1/2φ) follows by Lemma 6.

Now for GKII suppose φe@(D,X). We have by Lemma 8

- exp - 0Zo

= Σ ΓW)*ω exp -λ'0 Σ Φx- Σ

where

We have the estimate for C2 large enough (as in [12], p. 222)

^ e x p - λ ί > / 4 Σ

On the other hand since ZQ 1/2φe2^(D,x) we have by Lemma 8

Provided then that G ( \ g \ ) < λ'0/4 the (Re φx)
4 term has a negative coefficient and we

obtain a bound of the required form on (g')χ. The identity for (g'}χ can also be
checked and so GKII is established.

Remark. Since WQ is unrestricted we can actually obtain any value for (m'0)
2 in

( — π0'
3/2,n^3/2) by adjusting WQ.

Corollary. Fύc M and let λ0^ λ0,g -^ g(λ0) be sufficiently small. Then one can choose
niQ = mQ(λQ,g) such that J4f0(ZQ1/2φ) is asymptotically free under the flow of the
renormalization group. The infinite volume limit exists for the correlation functions
(for either ^f0(Zo 1/2φ) or J^0(φ)) and they define a critical theory.

Proof. We assume A0 is sufficiently small so that λ0<C + nΰ 1 for the n0 of the
theorem. Then by taking n0 even larger if necessary we can arrange
C _ n 0 ~ 1 < / t 0 < C + n0~

1. Then GKI, GKII hold for g sufficiently small by the
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theorem. Now choose m\ so that (m'0)
2 =/(Λ'0) and the conclusions follow from

the general results of Gawedzki-Kupiainen as explained in the introduction.

Remarks.

(1) It would be interesting to keep the fermions as dynamical variables and try to
adjust parameters so that both the boson mass and the fermion mass vanish.
This could lead to a treatment of the continuum limit except that theory is not
asymptotically free in the UV. One would have to make some modification such
as negative λ0 [13] or (for the future) adding a non-abelian gauge field.

(2) Another interesting variation would be to study infrared properties for (QED)4

on a lattice. For this problem one would expect that gauge invariance would
guarantee a vanishing mass, and one could dispense with any adjustments of the
bare mass. On the other hand one would not have a φ4 term to stabilize the
theory which could make life more difficult.
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