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Existence of the Spontaneous Pair Creation
in the External Field Approximation of Q.E.D.

G. Nenciu*
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Fόhringer Ring 6, D-8000 Mύnchen 40, Federal Republic of Germany

Abstract. The problem of the spontaneous pair creation in strong electromag-
netic fields is considered in the adiabatic switching formalism. The existence of
a critical value of the strength of the external field at which the behaviour of the
pair production probability has an abrupt change is proved.

1. Introduction

This note is a direct continuation of [1], and concerns the existence of the
overcritical fields in the framework of the external field approximation of Q.E.D.
(see [2] and references therein). In [1] the existence of the overcritical fields (or in
other words the existence of the spontaneous pair creation) was viewed as the
breakdown of the adiabatic switching theorem: for sufficiently strong external
fields the pair creation is by far more copious than one expected from the time
variation of the external fields; in particular it does not vanish as the "speed" of the
time variation of the external fields goes to zero. This is completely different from
the low field regime where the pair creation comes entirely from the time variation
of the external fields and vanishes in the adiabatic limit, i.e. the adiabatic limit
coincides with the static result [3]. It is believed (for references to the physical
literature about the subject see [4-6]) that the change in the behavior of the pair
production probability is an abrupt one and takes place at a value of the external
field called the critical field.

In [1] the notions of the "undercritical" and "overcritical" static fields were
made precise, some conjectures were put forward and the "undercritical" part of
these conjectures was proved. On the other hand, the important problem of the
existence of the overcritical fields was left open. Unfortunately, due to a technical
difficulty (see the remark at the end of Sect. 3) at the present we are unable to prove
the existence of the overcritical fields as described by the conjectures put forward in
[1]. However, we are able to prove the existence of the sudden change from
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undercritical to overcritical regime in a slightly modified context (which is
reasonable from the physical point of view, although less satisfactory from the
aesthetic point of view). In spite of the fact that we consider the result in the present
note ephemeral (we believe that the more elegant and natural conjecture in [1] is
true and someone will prove it) we decided to publish it for the following two
reasons: i) the existence of a critical field in the framework of scattering theory has
been challenged in the recent literature [7, 8] ii) describes a critical phenomenon
which is, in our opinion, interesting both from physical and mathematical point of
view.

In Sect. 2 the problem is briefly described and the main result stated. Section 3
contains the proof.

2. Description of the Problem and the Result

The problem to be discussed is the behaviour of the quantized Dirac field subjected
to the influence of a classical external field. The time evolution is governed by the
Eq.

i—ψt(x) = (ocp + βm + Yt(x))ψt(x);xeΈi3. (2.1)

As is well known (see references in [1]) under fairly general conditions on the
external field, Yt(x), the scattering theory for (2.1) can be described in terms of the
scattering matrix Sf(Y), where Sf(Y) is a unitary operator in the Fock-Cook space
#o of the free Dirac field.

In what follows we shall consider only one matrix element of ^(V), which
describes one of the most interesting quantities of the theory, namely the
probability of pair production from the vacuum state, given by

where Ω is the vacuum state in #"0. According to the general discussion in [1, 2] we
shall take Yt(x) of the following form:

Yt(x) = λφδ(εt)Y(x), (2.2)

where AeR+, V is a nice (see condition B below) 4x4 hermitian matrix valued
function and φδ(s) is a "switching factor" of a more general type than those
considered in [1], namely φδ(s) is supposed to satisfy the following conditions:

i) 0^φδ(s)Sh φδ(0) = h lim φδ(s) = 0,
s-* ± oo

ii) Outside a finite set {/}, 0φ{/}, φδ(s) is twice differentiable and

sup
S6ΪR\{/}

R\{/}

ds

ds

< oo, lim

ds2

φδ(s) =

I ds < oo,

iii) \
se{/}
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In general, for ε, δ φ 0, r(V) + 0. Following the physical literature we shall call
λV(x) undercritical if for small δ, in the adiabatic limit ε->0, r(V) is also (of order δ
say) small, i.e. only the "normal" pair creation due to the small jumps of the
external field at εί e {/} is present. If, on the contrary, even for ε, δ ->0 r(V) ~ 1, λY is
called "overcritical." According to the more or less generally accepted belief for a
given Y(x) there exists λcr (see [1] Sect. 2 and also Lemma 1 below) such that λY is
undercritical for 0 ^ λ < λcr and overcritical for λ > λcτ.

In this note we shall study r(V) in a neighbourhood of λcr and prove that for an
appropriate class of Y(x) and φδ(s) (see the conditions A, B at the end of this
section), r(V) indeed has a jump at λcr in the limit ε->0. More exactly

Proposition 1. There exist φδ(s)9 V(x) such that the following is true:
If Yt(x) = λφδ(εt)V(x)% then there exists λcr depending on V(x\ η(δ)>0,

lim η(δ) = 0 such that

"» <v)i zr^ % o s

Remark. The above result implies in particular that for sufficiently small δ, lim r(V)

has a jump at λ = λcτ. Let us stress that this discontinuity appears only in the limit
ε->0. For fixed (nonzero) ε one can prove [8] that (Ω, 9P{Y)Ω) is an entire function
of λ, and then r(V) is a smooth function of A. Actually this analyticity together with
the fact that r(V) = 0 for static external fields [3] were the arguments in [7, 8] for
the claim that the spontaneous pair creation does not occur. In our opinion the
situation is analogous with the situation in the theory of phase transitions where
the order parameter is identified via a sequence of appropriate limits. Actually the
analogy with the theory of phase transitions goes a little bit further. The
undercritical regime corresponds to the high temperature region; the weak time
variation of Vf(x) due to εφO [which breaks the time translation symmetry
responsible for the fact that r(V) = 0 for the static case] corresponds to the small
external magnetic field in the theory of ferromagnetism, etc. Of course one has not
to push this analogy too far.

We end this section describing φδ(s) and V(x) appearing in Proposition 1.
(A) The switching factor φδ(s) has the following additional properties:

iv) {/} = {-U},
l for |s|<l

i for |S
vi) φδ{-s) = φδ{s)9

vii) 0<φδ(s)<l~δ for
(B) Let

Then V{x)=V(\x\), V(x)eC$(ΈL3) and

where d is a sufficiently small positive number
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3. The Proof

We need some spectral properties of the Hamiltonian summarized in:

Lemma 1. Let

where V(x) satisfies B. Then Hλ has the following spectral properties
i) σess(Hλ) = (—oo, — m]u[m, GO) and is absolutely continuous.

ii) As λ increases from zero, the lowest eigenvalue Eg(λ) appears at m and
disappear at — m. Let λcr be the value of λ at which Eg(λ) reaches — m. In a (left)
neighbourhood of λcr, Eg(λ) is nongenerate and

0>j-χEg{λ)Z-~. (3.1)

iii) Let Pg(λ) be the spectral projection of Hλ corresponding to Eg(λ). Then

norm-lim Pg(λ) = Pg(λcr)

exists. Pg(λ) is norm continuous on \_λcτ — λo,λcτ~\ for some λo>0.
iv) Let E φ σ(Hλ), λe(λί—μ,λι-\-μ) and Pf (λ) be the spectral projections of Hλ

corresponding to (—oo,E) and (E, co) respectively.
Then Pi{λ) are (as functions of λ) Hilbert-Schmidt norm differentiable on

Proof of Lemma 1. i) Obvious under our conditions on V. In particular the
absence of the eigenvalues in the continuum follows from the spherical symmetry,

ii) For the potential λVR the eigenfunctions can be expressed in terms of Bessel
functions in both regions r<R and r>R (r = \x\) and the continuity condition at
r = R leads to a transcendental equation for the eigenvalues (see e.g. [4, 9] for
details). In particular the values of λ at which the eigenvalues reach — m are given
by

(3.2)

where jx(z), 1 = 0,1,... are the spherical Bessel functions [10, Sect. 10].
From the ordering of the zeros of the Bessel functions [10, Sect. 10] it follows

that at least in a neighbourhood of λcr the lowest eigenvalue corresponds to total
angular momentum 1/2 and positive parity (i.e. / = 0 or the s-wave). The next
remark is that although Ho is not bounded from below there is a comparison
theorem for the eigenvalues. Let H(μ) = oφ + βm + V + μW, W=Wt, W(x)<0,

If Eμ is a nondegenerate eigenvalue of H(μ), then by perturbation theory

^ , (3.3)

where \pμ is the corresponding eigenvector. The strict inequality in (3.3) comes from
the fact that \\ψμχsuppWII cannot be zero. In particular (3.3) implies (3.1) and the fact
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that the lowest eigenvalue corresponding to λFlies between the lowest eigenvalues
corresponding to λV1 -d and λV1 respectively (as far as all exist, i.e. appeared from
the upper continuum and have not disappeared in the lower continuum). Since the
eigenvalues of Ho + λVR depend continuously on R, the arguments above prove ii)
and the fact that Eg(λ) corresponds to the s-wave.

iii) Due to the spherical symmetry the eigenfunction, corresponding to the
lowest bound state, has the form

if(r)Xι(x/r)

(see [4] for the definition of χμ+ ί). The coupled radial equations for the functions /
and g are

d ~)f(r) + (EM)-m-V(r))g(r) = O,+
(3.4)

-g(r)-(Eg(λ) + m-V(ή)f(r) = 0.

The solution of (3.4) square integrable at infinity is, for r> 1,

f(r)= -

g(r) = Nexp(-βr)/βr,

where β = (m2 — E2(λ))1/2 and N is the normalization factor determined from the
condition

00

II V^) | | 2 = 1 = f r2(/2(r) + g2(r))ί/r.
0

Using (3.5) and the fact that

one can easily show that for β ^ 1/2, r 0 > 1, there exists a constant K independent of
β and r 0

 ι such that

This implies that ψg(λ) is uniformly localized as λ approaches λcτ, i.e. for every y > 0
there exists r(y) independent of λ such that

where χr(γ) is the characteristic function of the ball \x\<r(y).
Consider now (3.4) on the compact [0, r(y)], with regular boundary conditions

at the origin [selected by the square integrability oϊψg(λ)]. Using the continuous
dependence on the coefficients of the solutions of differential equations [11,

1 The mass, m, is supposed to be fixed. The localisation of ψg(λ) is not uniform in m, as m-> 0
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Chap. 3] and taking into account (3.1) one can find My) such that for all
λ(γ)<λl9λ2<λcr9

which finishes the proof of iii).
For iv) see [12,13].

Proof of Proposition ί. Let UεtλfΛ(t9t0) be the evolution corresponding to

t(x) = ocp + βm + λφδ(εt) V(x).

Taking into account the form of φ^s), the corresponding scattering matrix SBtλti is
given by

e) l/βiAfί(2/ε, -2/ε)exp(2ιΉ0/ε). (3.6)

Let

Under our conditions on F, A is Hilbert-Schmidt and the basic result of the
quantized theory gives the following formula for (Ω9S^(V)Ω) [14],

f 0 if AA* has 1 as one of its eigenvalues
j d e t ( 1 + β - 1 ^ ^ * - 1 ) - 1 / 2 o t h e r w i s e V'O

From the unitarity of S£fλtδ, it follows that [as operators in P(J~(

BB* = 1-AA*. (3.8)

If \\AA*\\g,b<l, then B is invertible in Po

+(0)Jf and IKBB*)"1!! <1/(1—fe).
Suppose now M||H < S ί = fl<l. Then

and since for a positive operator C [15, Chap. 3]

l > d e t ( l + C Γ 1 / 2 ^ ( e x p T r C Γ 1 / 2 ,

what we have to prove in the undercritical case is that ||i4||H.s> is sufficiently small.
Suppose now \\A\\ =c^ί [by (3.8)]. If c = l, then AA* has 1 as an eigenvalue

and r(V) = 1 by the upper part of (3.7). Suppose c < 1. Then (recall that A is H.S.) c2

is an eigenvalue of AA* and from (3.8), 1 — c2 is an eigenvalue of both BB* and
From (3.8) and the invertibility of B

l={B*B)-1-B-ίAA*B*~1,

and c2/l —c2 is an eigenvalue of B~ιAA*B*~γ. Obviously

Taking into account the lower part of the formula (3.7), it follows that in order to
prove the existence of the overcritical regime we have to show that in the limit ε-»0,
ll̂ o (0)SβfAtdPo (0)11 is close to one.
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Consider first the undercritical regime. According to the discussion above,
what we need are estimations on ||Po (0)5^,^0 (0)||HS i n the limit ε-»0. Since
Po(0) are nothing but the spectral projections of Ho corresponding to [m, oo) and
(— oo, — m] respectively we have

Let now λ < λcτ and E = (Eg(λ) - m)/2. Clearly E > - m and E φ σ(H0 + V,(x)) for all
teK so P£(λφδ(sή) are well defined for all t except t= ±l/ε, where they have a
jump. Writing for brevity P^(λφδ{εt)) = PE{t\ one has (with a self-explanatory
notation)

ll̂ o (2/ε) UεtUVε> -2/ε)Po(-2/ε)||H.s.

= ||P0

+(2/ε) L/εα,,(2/ε, l/ε)(P£

+(l/ε + 0) + P£-(l/ε + 0))

x t W V ε , -l/ε)(P£

+(-l/ε-0) + P£-(-l/ε-0)) C7e,λiί(-l/ε, -2/ε)

xPo(-2/ε)||H.s^||P0

+(2/ε)(7ε,A,,(2/ε,l/ε)P£-(l/ε + 0)||H.s.

+ ||P£

+(-l/ε-0)C/ε?A>,(-l/ε,-2/ε)Po-(-2/ε)||H.s.

-l/ε-0) | |H . s . . (3.9)

Following closely the proof of Theorem 4 in [1] the first two terms vanish in the
limit ε->0. Taking into account that

[recall that φδ(s) is constant on (-1,1)], one obtains that the third term in the r.h.s.
of (3.9) is smaller than 2||P+(l/ε + 0)-P^(l/ε-0)| |H. s.. Now

, (3.10)

where E = (E^λ) + Eg(λ))/2, and Et is the next eigenvalue of Ho + λφδ{\ — 0) V and

Since for all λe(0,λcr], Eγ remains far away from — m, due to Lemma 1 iv), there
exists a constant independent of λ e (0, λcr~\ such that

On the other hand, since Pg(t) is one dimensional, taking into account
Lemma 1 iii),

with i7((5)->0 as (5->0, uniformly with respect to λ e (λcr — λ0, i c r] for some λo>0.
Summing up it follows that

which proves the undercritical part of the proposition.
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Consider now the overcritical case. The problem is to find a vector (depending
on ε) in PQ(0)J^ which in the limit ε->0, is "carried" almost completely into
Po (0)Jf by the evolution UetλtJ2/ε, -2/ε). Again we shall write Eg(t), ψg(t) as a
shorthand for Eg(H0 + λφδ(εt) V(x)) and the corresponding normalized eigenvec-
tor. Let λx be the value of λ at which Eg( — 1/ε —0) reaches — m.

Due to (3.1)

Consider now λeiλ^λ^) and ψε(t)=UEtλδ(t, —l/ε)ψg( — l/ε—0). We claim that
PQ(0)ΨE( — 2/ε) has the desired property. By the adiabatic theorem [16,17],

lim||Po(O)φε(-2/ε)||=O, (3.11)
ε-*0

so that in the limit ε->0 one can identify PQ (0)ψε( — 2/ε) with ψε( — 2/ε). Now, for
sufficiently small δ there exists E > Eg( — 1/ε — 0) such that H0 + λφδ( — 1 + 0) V has
no eigenvalues in ( — m,E). Then by Lemma 1 iii),

(3.12)

with

so that replacing ψg( — 1/ε — 0) with P_m( —l/ε + 0)φ^( —1/ε —0), the error is less
than β(δ). Since PIm( — 1/ε + 0) is contained in the absolutely continuous subspace
of # ( - l / ε + 0), it follows that

ε , λ , , ( / , / ) m ( / ) ^ ( / ) , (3.13)
ε-^ O

wherefrom using also (3.12)

lim||P,(l/ε + 0)^(l/ε)|| £β(δ). (3.14)

Since C/ββAβΛ(l/β, -1/ε) commutes with P I w ( - l / ε + 0) = PIm(l/ε-0),

| |PZ m ( l/ε-0)φ ε ( l/ε) | | ^ l-^) . (3.15)

Now from (3.14), (3.15), Lemma 1 iii) and the definition of E,

lim||P:m(l/ε + 0)φε(l/ε)|| = lim||(Pΐ(l/ε + 0)-P 9(l/ ε + 0))vε(l/ε)||

£ 1-300).

Using again the adiabatic theorem for the interval (1/ε, 2/ε) one obtains

Summing up

|
ε->0
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which implies

limp

ε—• ()

and the proof of the proposition is complete.

Remarks. 1. Consider a switching factor of the type considered in [1], i.e. {/} = φ

and suppose φ(s) = 0 for | s | > l , and — φ(s)f^0 for s > 0 (these conditions are not

essential and can be relaxed).

Let λ > λCΐ and - ί(ε) < 0 be the time at which Eg(t) reaches - m. One can try to

repeat the "overcritical" part of the proof of Proposition 1, defining xpjfj
= Uεtλ{t, —t{ε))ψg( — t(ε)). The obstruction appears in proving (3.13), i.e.

5-lim l/βf λ(t(ε), - f (ε)) ψg( - ί(ε)) = 0,

and this is the technical difficulty mentioned in the Introduction.

2. Some time ago it was suggested that during heavy ion collisions an

overcritical electric field is created for an instant, and then the spontaneous pair

creation can be seen experimentally. Moreover a lot of calculations were

performed (see [4-6] for details). The results of the experiment carried in

Darmstadt [18] did not confirm the calculations. There are a lot of possible

reasons: the calculations or/and the experiments are not accurate enough; the

non-adiabatic effects are important, etc. It is not clear at present if the theory and

the experiment will "converge" to a positive result or one has to look to a "cleaner"

place for the spontaneous pair creation. As concerns the present note, the price

paid for the fact that the results are rigorous is that the situation it describes is by

far simpler than the actual complex situation in heavy ion collisions.
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