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Abstract. We show that the ADM 4-momentum of an isolated gravitational
system (spatially asymptotically flat spacetime) satisfying the dominant energy
condition cannot be null-like unless it is flat. Together with the positive mass
theorem, this implies that the ADM 4-momentum of an isolated gravitational
system must be strictly time-like.

Introduction

The total mass of an isolated gravitational system is, by now, well known to be
non-negative, thanks finally to theorems of Schoen and Yau [1] and Witten [2].
More precisely, it was shown that for a spatially asymptotically flat spacetime
satisfying the dominant energy condition, its ADM 4-momentum must be non-
space-like. This result was anticipated by and, in turn, confirmed the physical
intuition that an isolated gravitational system is stable. However, it is interesting
to observe that our physical intuition of what an isolated gravitational system
should be, actually demands a stronger result, namely, the total mass must be
strictly positive (equivalently, the ADM 4-momentum must be strictly time-like).

Let us first consider the situation of the Maxwell fields. One can certainly find
solutions (plane waves) whose 4 momenta are null-like1. But these waves are
infinite in extent and in no way can be called isolated. To form an isolated wave (i.e.
a wave packet), one has to superpose plane waves with different momenta; the total
4-momentum of such a wave packet must, of course, be strictly time-like. Since
general relatively in many ways resembles Maxwell theory, general features of
basically the same physical concept should be common to both theories. Thus, we
expect that the total 4-momentum of an isolated gravitational system must be
strictly time-like. There is a caveat, though, general relativity is nonlinear. Could
there exist a situation in general relativity where the nonlinearities can "glue"

* Research supported in part by NSF grant DMS 84-09447
1 Here, of course, the total 4-momentum is infinite. What we mean is that the field is ocem ~ p 'x) with
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together a plane wave so that its spatial extent is finite or has appropriate
fall-off properties, and still making sure that the total 4-momentum is null-like.
Admittedly, this kind of gluing must be extremely fine tuned and thus quite
improbable. But without further investigation, we cannot dismiss, a priori, this
possibility.

Finally, we would like to point out that any intuitive notion of an isolated
gravitational system carries an implicit adjunct; this system has a Newtonian limit.
Indeed, if an isolated system has a time-like 4-momentum, one can find classes of
observers with respect to which the system is at rest (or approximately). Then
standard arguments show that at large distances, these observers can well use
Newtonian theory as an excellent approximation. But if an isolated system has a
total 4-momentum which is null-like, there does not exist any class of observers to
which the system appears approximately at rest. In fact, the system is relativistic
with respect to all classes of observers. Thus, such a system does not permit a
Newtonian limit. Again, while the existence of such a system does not contradict
any first principles, it certainly threatens one's intuitions regarding an isolated
system. The purpose of this paper is to show that the improbable is indeed
impossible - a non-trivial isolated gravitational system must have a strictly time-
like 4-momentum. More precisely, it will be shown that a non-flat spatially
asymptotically flat spacetime satisfying the dominant energy condition must have
a strictly time-like ADM 4-momentum.

We would like to mention two previous works in the literature. Witten [2], in
his paper on the positive energy theorem, actually presented arguments in favor of
a stronger result. Consider a spacetime satisfying the dominant energy condition
with a null-like ADM momentum. It was claimed then a covariantly constant
(4-dimensional) null vector (ka) exists (i.e. Vakb = 0). Consequently, one can employ
the standard coordinates for such a spacetime (the pp waves, see Ehlers and Kundt
[3]), to write down the metric which now only involves one unknown function.
Finally, by imposing the appropriate fall-off properties of this metric function,
Witten concluded that the spacetime must be flat. There are two points in his
arguments which seem unclear. First, from the assumptions, one can easily deduce
that there exists a null vector ka such that Dakb = 0, on an asymptotically flat
hypersurface Σ, where Da = hb

aVb with hb

a the projection operator of Σ. But the
procedure to lift this result off £ so that Vakb = 0 in a neighborhood of Σ is not at all
obvious. Finally, even granting that Vakb = 0, the coordinate system employed, a
priori, bears no relation to the asymptotically flat coordinate system. Thus, one
does not know how the metric component in this coordinate system should fall off.
Any results based on the fall-off properties in this coordinate system are
inconclusive.

Ashtekar and Horowitz [4] have also proven the theorem in question, (and
also its extension to the case of null infinity) in a slightly different context. More
precisely, they adopt a definition of spatially asymptotically flat spacetimes which
is stronger than the usual "3 + 1" definition (see Sect. 1). It is not clear how generic
their definition is. In fact, one can find examples (though artificial) of spacetimes
which are asymptotically flat in the "3 -f 1" sense but not in theirs. Moreover, the
proof in [4] requires the existence of complete surfaces which have appropriate
boosts properties at infinity. Since the proof of the positive energy theorem (the
ADM momentum is non-space-like) can be obtained without assuming any boosts
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properties [5], it seems rather puzzling that a slightly strengthened result (that
ADM momentum is strictly time-like) would require the existence of boosted
surfaces. In this paper, we present a proof which (i) is valid for the more general
notion of spatially asymptotically spacetimes in the "3 + 1" sense, and (ii) is
3-dimensional and thus no "lifting" or "boosting" is required.

Synopsis of the Proof. Consider a spacetime satisfying the assumptions of the
theorem (see Sect. 1 for a precise statement) with a null-like ADM 4-momentum.
We (Sect. 2) can deduce the existence of a preferred null vector and thus the
particular form of the 4-curvature. Then in Sect. 3, we see that this null vector
induces flat 2-surfaces on which the curvature components satisfy a very simple
Poisson equation. One can then easily observe (Sect. 4) that the fall-off properties
of the curvature as prescribed by asymptotic flatness contradict those governed by
the equation unless the spacetime is flat. The most technical part of the analysis
involves relating the asymptotically flat coordinates and the natural coordinates
on the flat 2-surfaces mentioned above. This part is presented in the appendix.

1. Definitions and the Theorem

We present here the standard definitions of asymptotic flatness. We will follow
closely the definitions given by Parker and Taubes [5]. Spacetime metric gab has
signature (-1,1,1,1).

Definition. A spacetime (M, gab) is said to be spatially asymptotically flat if it
admits a complete oriented 3-dimensional space-like hypersurface Σ which is
asymptotically flat i.e., there is a compact set K C Σ s.t. Σ — K is the disjoint union of
a finite number of subsets Mi9 (i = 1,..., k), the ends of Σ. Each Mt is diffeomorphic
to the compliment of a contractible compact set in R 3 . The induced metric on Mt

takes the form
h δ

in the standard coordinates {x1} in R 3. We impose the following fall-off conditions
on both Atj and Kij9 the second fundamental form:

Definition. (M, gab) is said to satisfy the dominant energy condition if the Einstein
tensor Gab satisfies the following property: for any future directed non-space-like
vector ka, — Gabk

b is also a non-space-like vector.
Given a (M,gab) which is asymptotically flat, one can define its ADM

4-momentum (see, for example, Arnowitt et al. [6]) for each end Mt and Σ as limits
over spheres SRi of radius R in M(.

ί j i j ι j j )

sR>ί

PUk= H m - 1 — J 2(Kιk-διkKjj)dΩι.
R^ooloπij sR,i

We are now ready to state the main theorem of this paper.
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Theorem. AΌM-4-momentum cannot be null-like. Let (M,gab) be a spatially
asymptotically flat spacetime satisfying the dominant energy condition, then if there

3

exists one end MίsΛ.Ef= £ P?fe, then there is only one end to Σ, and M is flat
along Σ. k=1

The proof will be detailed in the following sections. Note that there is no
assumption on the boost property of {M,gab). Our proof is thus essentially
3-dimensional.

2. The Form of the Curvature of (M, gab) on Σ

We want to show that for (M, gab) satisfying the assumptions in the theorem, the
curvature is rather restricted on Σ, namely, there exists a null vector ka s.t. Cabcdk

d

and Rabk
b both vanish. For this result, we need to employ the spinor techniques

used by Witten [2] in his proof of the positive energy theorem. We recall here some
pertinent elements of this technique.

Consider a spinor ξA2 on Σ satisfying the following:
(i) DAA,ξ

Λ = 0, where Da = hb

aVb, Vb is the 4-dimensional covariant derivative
and hb

a is the projection operator of Σ,
and

(ii) on each asymptotic and M f of Σ9 ξΛ

 r^ao>ζA + θl-\ , where ξf is an

asymptotic constant spinor (for existence proof and a precise notion of asymptotic
constant spinors, see [5] or [7]).

Taking second derivative of DAA>ξA = 0, and integrating by parts, Witten
obtained the following identity:

4πG £ ΨlξiAξiA=\dΣa{{DbξA)(DbξA) + Gabξ
ΰξB'},

ϊ = l 0 0 Σ

3

where P? = Ett
a +ΣPi A ta i s t h e u n i t normal to Σ, and ea

k is the tetrad of hab on the
k ' Λ\

end Mb with ea

k daxt = δkl + 0 ( - j .
By using the above identity, we can easily obtain the following result.

Lemma 1. Let (M, gab) be as in the theorem, then
(i) there is only one end of Σ

and m

(ii) there exists a spinor ξA$X.Daξ
A = Q, and ξA-τ^ξA + O\-\ on Σ.

Proof The proof is essentially that given by Parker and Taubes' Lemma 4.3 [5]. If
for some end Mb Ef = Σ P? k , then one can find a nonzero asymptotically constant

2 To conform to our choice of signature for gab, (—1,1,1,1), we must have gab= —BAB
SA'B'- Thus

while we identify say la with ξAξA', we have la= — ^A^A
3 Convergence for spinors is defined by the norm (ξΛ, ηA) = ζA'tAAΎ\A
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ξf on Mt such that Ψt aξfξf = O. Now let ξA be the solution of DAA,ξ
A = 0 on

O 0 0

Σs.t. ξA-7-^*ξ? + 0 (-) on Mi9 but ξA-^>0 (-) on all other ends. From (2.1)

one immediately concludes:

The first term is manifestly positive definite and the second is also positive definite
by the dominant energy condition. Therefore we have:

DaξΛ = 09 and Gabξ
BξB' = O.

Thus (ii) is established. To obtain (i), we simply note that DaξA = 0 is incompatible

with the asymptotic conditions namely ξA ~ ξf + 01 - ) on Mt but ξA ~ O ( - I on
o \rj \rj

all other ends, unless there is only one end Mt. •

We can now proceed to deduce the form of the curvature of (M, gab) on Σ.

Lemma 2. Let (M, Gab) be as in the theorem, then on Σ, we have the following form
for the Weyl and Ricci curvature,

(i) Rab = odalb, α ^ 0 , (where la= — ζA^A^ £A ZS the spinor obtained in Lemma ί),
and

(ϋ) Cabcd = fξAξBξcξDεA,B,εc,D, + c.c, for some f

Proof (i) is relatively trivial. From the proof of Lemma 1, we have Gabl
h = 0. For

any nonspacelike Pα, we then have PaGabl
b = 0. But since PaGab is non-space-like by

the dominant energy condition, we must have PaGa[blc] = 0. But since Pa is an
arbitrary non-space-like vector, we conclude Ga[blc] = 0, and by symmetry
Gab = odalb for some α. Then we have Rab = oclalb. Finally α^:0 by the dominant
energy condition.

One can prove (ii) by straightforward computation. Expanding D[aDb]ξc = 0, in
terms of spinors one has [with (i)],

One further obtains,

ψ PD _i_ f tmp Ψ ?D -4-1 tm

'B'τ ABCD^ * ι b ι bA'M'τAMCD^ ^ ιaι
bA'B'τ ABCD^ * ι b ι bA'M

εAB'Finally, contracting with ε B gives

But this implies (ii). •

3. "2 + 1 " Foliation of Σ at oo

We will now show that the spinor ξA obtained from last section actually induces
two surfaces which foliate Σ — K, where K is compact. These two surfaces turn out
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to be flat planes. Interestingly, by Bianchi identities, the functions α and /
occurring in the curvature satisfy a Poisson equation on each plane. This equation
relating α and / will be crucial in determining their asymptotic behaviors (Sect. 4).

To facilitate our discussion, we will simplify the asymptotic conditions.
Without loss of generality, the asymptotically flat coordinates (x, y, z) are chosen to
have the following properties. Consider the asymptotically constant spinor ξA (in

o
Lemma 1), we can find η , another asymptotically constant spinor such that

o
ηAξA = 1. Now, let xα, / , zα, f be the tetrad associated with the asymptotically flat
0 0 I- / . \ /1 \ ~]

coordinates x , j / , z o n l i.e., xadax = l + θ ί - I, xaday = θl - ) , etc. . Then we

require that ξAξA' = 4 = if + za), ηAηA> =^{ta- za) and
i 0 0 1/2 0 0 1/2

o o j/2 o

We begin with the following simple result.

Lemma 3. Let la = ξAξA\ with ξA given in Lemma ϊ, and let Sa = h% hb

a being the
projection operator of Σ. Then @[aSb] = 0 on Σ, where 3)a is the covariant derivative
of hab.

Proof By straightforward computation, DaSb = Dah
c

blc. But since DJC = O by
Lemma 1, we have Dβb = (Dah

c

b)lc or hc

bDaSc = Kab(t%). But the left-hand side is
precisely 2βh9 and Kab is symmetric. Thus £&[aSbΊ = 0. •

The 2-surfaces we are searching for are those orthogonal to Sa. But to
simplify arguments concerning asymptotics, it would be helpful to have a global
control over these surfaces, such as they are level surfaces of some function. This
would only be true if Σ is simply connected. In general, however, we do have such a
control for the region of Σ that concerns us, the asymptotic region. Let BR be the
region of Σ inside the sphere of radius R (in asymptotically flat coordinates). Then
A = Σ — BR is simply connected and thus Sa = daS for some S in A. Next we would
like to determine the geometry and topology of the level surfaces given by S. For
this and later purposes, we need the following construction.

Constructions. Let ξA be given in Lemma 1. Then let ηA be such that:

(i) Λ = l
and

(ii) ηAηA\ ξAξA> and ta of Σ are coplanar or equivalently, ηAξA'tAA, = 0. We see
ηA is determined uniquely by (i) and (ii).

The asymptotic behavior of ηA follows from that of ξΛ. Since ξA~ξA + θ[-

ί\\ . °
one can easily see that ηA ~ ηA + 01 - I. Now let nf = ξAηΛ'. One further sees that

W z" ίί\ 1
t h e f o l l o w i n g a s y m p t o t i c c o n d i t i o n s h o l d : Sa ~ —j= + O I - I a n d ma ~ —= (xa + iya)
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Lemma 4. Let Sa be given in Lemma 3, and ma as defined above, then:
(i) maSa = 0, m% = 0, mama = 0, and mama = ί

and
(ii) (@am[b)Sc] = 0, when 3)a is the covarίant derivative of hab.

Proof, (i) follows trivially from the definitions. To prove (ii), consider Daη
B. Since

Da(ηBξB) = 0, and DaξB = 0, we must have (Daη[B)ξC] = 0. Thus (Dam[b)lc] = 0. On
projecting with hab, we immediately have (ii). Π

Since Sa is hypersurface orthogonal by Lemma 3, we have the following result.

Lemma 5. Let Jf be a 2-surface orthogonal to Sa, with the induced metric
Jab = Kb-βSaSb, where β^SJT1' & is flat.

Proof. Let Λa be the covariant derivative associated with;αb. Then all we need to
do is to find two independent vector fields on Jf which are covariantly constant
with respect to Δa. Now, ma and mα (complex conjugate of ma) indeed satisfy
Aam

b = Aam
b = 0. Consider Aam

b=jb

efa@cm
e. But by Lemma 4, (@cm

[e)Sd] = 0,
therefore )h<βcm

e = 0. Thus Δam
b = 0. By Lemma 4, ma and ma both are vector fields

on Jf\ The two real vector fields, (ma + rha) and i(ma — ma) can easily be seen to
be independent, and from above, are covariantly constant. •

In particular the level surfaces of S in A are all flat with the induced metric.
Next we would want to determine the topology of S. We will show that

S = const surfaces are either flat 2-ρlanes or portions of flat 2-planes. To do that, we
just need to show that any level surface of S, upon maximally extended, is simply
connected. Let S' be the maximally extended 2 surfaces of S which are orthogonal
to Sa. One can achieve the maximal extension to an S = const surface by the
following. Take the union of all connected without boundary 2-surfaces ortho-
gonal to Sa and containing S = const as a subset. It is easy to see that this union is
also a 2-surface orthogonal to Sa and containing S = const. The existence of S' does
not imply that Σ as a whole is foliated, there might be points inside BR which are
not on any S'. But in (Σ-BR\ every point is on a S = const (thus Sf) surface.

Lemma 6. Sf are flat 2-planes.

Proof. All we need to show is Sr are simply connected. Let us assume the contrary
and arrive at a contradiction. Take a single S' which is not simply connected. First
we note that S' can be shown to be complete. The set of non-contractible curves
associated with a point p e Sf must be bounded below in length. Take a sequence of
minimizing curves out of this set. We can obtain a limit curve C attaining the
greatest lower bound in length. It is obvious that C is also incontractible. But since
any variation of C would produce a longer curve, C must be a geodesic. Thus we
can find a constant β such that βma + βπf = na generates C Now we can parallel
transport C out to large r (r is unbounded on S', see appendix). But we know at

large r we have ma~ma + θ(-). Since ma{dax + iday)~l/2 + θ( - ) . Therefore

na(β(dax + iday) + c.c.) = 2]/2ββ + θ(-j. But since β(x + ίy) + c.c. is a continuous

function, we must have na da(β(x + iy) + c.c.) = 0 somewhere on C, a
contradiction. •
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To finish this section, we want to obtain a differential equation relating / and α
in the 4-curvature valid on any S'. To this end, we first rewrite the curvature. On Σ,
we have by Lemma 1.

Cabcd = f^A^C^A'B'^C'D' + C ' C >

Kb = *lJb > W h e r e la = - ^A^A'

Now, we can use ma to write:

Thus, on Σ, we have the following form for the Riemann tensor.

Kbcd = 4fm[alb]m[cld] + ex . + a{ga[cld]lb - gb[cld]la)

Applying De, we have:

DeKbcd = 4DJ{m[alb]m[cld]) + c.c. + Deoc(ga[cld]lb - gb[cld]la).

The above equation is valid because De = ha

eVa is a derivative along Σ, on which the
special form of the curvature holds. On the other hand, replacing De by Ve would
not be legal in general. Contract with rif and ma, we obtain:

mameDeRabcd = 2lbm[cld]m
eDef + meDea(m[cld]lb).

Next, we consider

hh

fm
am\DeRabcd + DaRbecd + DbReacd).

Since both πf and me are in Σ, we can replace Da in the above expression by Va. But,
by Bianchi identity, the above expression vanishes identically. On simplifying, one
finally obtains the following equation

2meDj-maDa(x = 0. (*)

4. Fall-Off Properties of the 4-Curvature

We now simply use (*) to deduce the asymptotic behavior of/ and α. The equation
(*) is a Poisson equation in 2-dimensions, with / as the potential and α supplying a
quadrupole source. The key to the analysis is that α is non-negative, and thus

quadrupole moment is non-negative. Therefore, / should fall of as -j on the

2-surface S'. But this will contradict that prescribed by asymptotic flatness, thus /
and α both have to vanish on Sf.

Let us begin by obtaining the desired Poisson equation on S'. First, note that
we can replace De by Δe in (*) and obtain an equation on S".

2fήeΛj-meAe(x = 0.

Operating by maΔω we have

2maΔam
eΔj- maΔam

eΔeoc = 0.
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Since S' is a complete flat 2 surface, we can define coordinates x and j ; on S' s.t. ma

= ^=(dax + iday) etc. The above equation becomes

d2

dy1)" \dx2 dy2

and

d2

where .R and / are the real and imaginary part of / respectively.
First of all, we will show that in general, α must vanish on Sf.

Lemma 7. Given the conditions in the theorem, oc = 0 on any S'.

Proof. The key is to recognize that if α φ 0 on S', J a > 0 by dominant energy
S'

condition. This means that there is a positive quadrupole moment. The potential

(R and /) would fall off as -^. But the asymptotic conditions require that R and / fall

off like xj. Thus we have a contradiction unless α = 0. More precisely, consider

The integrals exist by the asymptotic fall-off conditions (see Proposition 3,
Appendix). Integrating by parts, the left-hand side vanishes identically, while the
right-hand side becomes 2 J α dx dy. Thus J α dx dy = 0. But since α is non-negative

S' S'

by the dominant energy condition, α = 0. •

Lemma 8. Given the conditions in the theorem, if a = 0 on S'(Rab = 0), ί'/zβn

Proof The first key is to recognize the asymptotic behavior of /. This is done in
Proposition 3 of the Appendix. We will include a different argument here for
completeness. First, we have

Now since m α ~ —=(xβ + ij;β) + θ ( - ) and /f l~ —={ta + za) + O\ -\ we have

l/2 W 1/2 r/
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Now the curvature components in asymptotic flat coordinates by the conditions

on the fall off of htj and Kij9 must fall off like oί-Λ. Therefore f~θi-Λ.

The second key step is to recognize that on S', along any radial direction,
r (\ \

B < - < A for some A, B > 0 (see Proposition 2, Appendix). Thus / ~ 0I -3 . Now
r (d2 d2 \ v }

since α = 0, we have simply, I —^ + ̂ y ) / = 0, or / is harmonic on S'. Together

with the condition that f^ol-^j we must have / = 0 on S' identically. Π

Now, we can complete the proof of the theorem. Take any point x e Σ — BR, for
some large R. Then we can find S' s.t. x e S'. But on S\ α = 0 and / = 0, or Rd

ahc = 0.
Thus Rd

abc = 0inΣ — BR. This implies that I P % M = 0. Now, we appeal to the positive
energy theorem [1,2,5], to conclude that Rd

abc = Q on Σ, thus establishing our
theorem.

Conclusion and Discussion

Thus we have strengthened the positive mass theorem to conclude that a non-
trivial isolated gravitational system must have a strictly time-like 4-momentum.
The central feature of our proof is that it is essentially 3-dimensional. At the same
time, the fact that Σ is embedded in a 4-dimensional space is also crucial. For
example, we take the 4-dimensional Bianchi identities, and study them on Σ via
projection. This procedure is perhaps not surprising in retrospect. Since our
statement calls for a relation between energy and momentum, which are dictated
by the intrinsic geometry and the imbedding of Σ respectively, it only seems natural
to study equations which do reflect both features of Σ.

Appendix

Here, we present the technical results which establish the asymptotic fall-off
behavior of the 4-curvature. Again, let S' be as defined in Sect. 3.

Proposition 1. The function r = (x2 -f y2 + z 2 ) 1 / 2 , with x, y, z the asymptotic coordi-
nates of Σ, is unbounded on S'.

Proof Since S C S', we only need to show that S = const = C, say, has the stated
property. Assume the contrary, i.e. 3 r0 s.t. r < r0 on S. Take r0 large enough so that

/ d\a 1 /1\
S= —= +0 - I ^

/ \j

/ d\ 1 /1\
the asymptotic conditions — Sa= —= + 0 - I ̂ ε > 0 holds for r>r0. Now

\dzj j/2 \rj

consider the 3-plane L:(x = r0). On L, we have r^r0, therefore the estimate

— ) S>ε>0 holds on L. Then — g ε > 0 on L. Thus along any integral curve of
OZJ OZ
d\a

— ) on L, S ̂  εz + So for z ̂  0 and S ̂  εz + So for z ̂  0, for some So. Therefore S
^z/

takes on the value C for some z on L. But r ̂  r0 on L, a contradiction. •
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We now establish a result relating the natural coordinates on S' (Sect. 4) and r.

~ ~ r
Proposition 2. On S\ 3 constants A, B, and Ro, such that for r>R0, Bi^-^LA.

Proof. There are two steps to the proof. The first is to show that along any radial
direction off, r becomes unbounded. The second step is then to use the asymptotic
estimates for x and y in terms of x and y, which are valid for large r, to deduce the
precise relation between f and r.

For the first step, it turns out to be convenient to consider the tube T.
{x2 + y2 = C2}. We want to show that for some C, T intersects S' in a closed curve,
homeomorphic to S1. Let us take C large enough s.t. for r^C, the following

estimates hold: xaδax = ί + θ(-\ yaday = l + θ(-\ χaday = θ(-\

yadaχ = 01-1, and ( — I Sa= —= + 0 1 - 1 . Repeating essentially the same argu-
ment as in Proposition 1, we have for any x,yeT, 3 unique z(x,y) s.L the point
(x,y,z(x9y))eSr. It's also easy to see that z(x,y) is continuous. Thus K=TnSf

= (x, y, z(x, y)\ with x2 + y2 = C2, is a curve homeomorphic to S1. Without loss of
generality, we take the origin of the x and j ; coordinate system of S" to be in the
region bounded by K (intK). Now, we want to show that in the region exterior to
K, x2 + y2>C2. This can be seen as follows. T divides Σ into two disconnected
open sets, namely one with x2 + y2 > C2, and its complement. Likewise, T divides Sr

into two disconnected components (namely the interior and exterior of K). Now
since x2 + y2 is unbounded on S', and since the interior of K has compact closure,
the exterior of K must have non-empty intersection with the region of Σ
s.t. x2 + y2 > C2. Since exterior of K is connected, it cannot intersect the region oϊΣ
with x2 + y2<C2. Thus x2 + y2>C2 in the exterior of K. In particular, let
fmax = maxf on intX. Then for r^rmax. r^(x2+y2)ll2^C.

We now proceed with the second step. Consider the case where x = r. Then in

the region r^rmax, we have xadax = 1 + θ ( - L xaday = O\ - J, and xadaz = 0\ - ).
\rJ \rJ \r,

(The estimates are valid for r ^ C in this region.) Thus one can find 1 >ε>Os.t.

1 — ε ̂  xa dax <Ξ 1 + ε, — ε ̂  xa day ̂  ε, — ε ̂  x daz ̂  ε.

Then along the ray x = r, we have

Squaring and summing, we obtain

( l - ε ) 2 ( x - x o ) 2 ^ ( x - x o ) 2 + (y-y o ) 2 + (z-

Generalize to any radial directions, we obtain
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The following two inequalities are easily obtained:

(1 - ε) (r- fo) ύ I |r| + |r o | |, |r| - |r o | ^ ((1 + ε)2 + 2ε2) (f - r 0 ) .

Let r m a x = max |r 0 | on r = fmax. Then we have

It is now obvious that for sufficiently large Ro, we can find two constants A and

£>Os.t. for f ^ j?o, Λ^ - ^B. Π

Proposition 3. On S\ the following asymptotic conditions hold for f and a.

(

and

(iii) f f 0 (
dx2 dy2 dxdy \r5/

Proof We know, by definitions, that the 4-curvature components in asymptotic
coordinates (x, y, z) have the desired fall-offs on Σ. We need only to translate those
conditions to / and α, in terms of x and y on Sf. We will present arguments for α, the
case for / is similar. First, we show that α has the right fall-off in the (x, y, z) system.
By the initial value constraint equation, one has

G +a+b 1 f(3)τ> _\(vra\2 jf J^ab\

The left-hand side is simply oc(laf)
2 = ocβ2. Since L goes as L + O\ - )? we have β2 =

+ 0 ( - I. The right-hand side by asymptotic conditions goes as 01 - j ), we easily
r l 7 1 \ ^ δα , d2a V r

have α = 0 (-3-1. To obtain fall-off for — Ί and . . (x1 = x, x 2 = y, x3 = z\ we
\r ) ox ox ox

note that if -r-^ = 01 -^ 1 and „ . „ . = 0 ( -5-1, we will have the desired fall off for
dx1 \r2/ dxιδxJ \rόj

α, namely —^ = 0 ( — 4 ) and ^-7^7 = 0 ( - j ) . Now β = lata.' .Daβ = lbKab. Thus

-y 1 ̂  0 (-y j . Thus —T- = 0 1 - 2 ) . Similarly, we get . .

= 0 1 - 3 ) . Finally, we want to obtain the fall off in terms of x and y. Consider on S\
V J ( 1 \

\maDaoc\S\ma\\Daoc\. But |mΛ| = l, .'.\maDaoc\ = 0[-^). Similarly, \rnaDam
bDboc\

^ . Now we only need to appeal to Proposition 2 to arrive at our

conclusion. •



Strictly-Positive Mass Theorem 665

Acknowledgements. I would like to thank A. Ashtekar and D. Christodoulou for many helpful
discussions. My thanks also go to D. Brill, A. Sen, R. Sorkin, S.-T. Yau, and the referee for
suggesting the simple proof of Lemma 2.

References

1. Schoen, R., Yau, S.-T.: The proof of the positive mass theorem. II. Commun. Math. Phys. 9,
231-260 (1981)

2. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381-402
(1981)

3. Ehlers, J., Kundt, W.: Exact solutions of the gravitational field equations. In: Gravitation: an
introduction to current research. Witten, L. (ed.). New York: Wiley 1962

4. Ashtekar, A., Horowitz, G.: Energy-momentum of isolated systems cannot be null. Phys. Lett.
89 A, 181-184(1982)

5. Parker, T., Taubes, C.H.: On Witten's proof of the positive energy theorem. Commun. Math.
Phys. 84, 223-238 (1982)

6. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Gravitation: an
introduction to current research. Witten, L. (ed.). New York: Wiley 1962

7. Reula, O.: Existence theorem for solutions of Witten's equation and nonnegativity of total
mass. J. Math. Phys. 23, 810-814 (1982)

Communicated by S.-T. Yau

Received June 12, 1986; in revised form September 19, 1986






