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An Example of Absence of Turbulence
for Any Reynolds Number: II*

C. Marchioro

Dipartimento di Matematica, Universita di Roma I, "La Sapienza", Piazzale A. Moro 5,
1-00185 Roma, Italy

Abstract. We study a viscous incompressible fluid moving in a two dimen-
sional flat torus [0,L] x [0,2π], L<2π. We show a set of external forces for
which the stationary state is attractive for any Reynolds number R. Moreover,
the size of this set and the basin of attraction are independent of R.

In a previous paper [1] we have considered a viscous incompressible fluid moving
in a two dimensional flat torus [0, L] x [0,2π], L^2π. We have shown an external
force f0 for which there is a globally attractive stationary state for any Reynolds
number R. Moreover, we proved that this stability property holds also for a
neighbourhood of f0 of size depending on R (and vanishing for #->oo). In the
present paper we demonstrate that actually for L<2π the size of this neighbour-
hood is independent of R.

The Navier-Stokes equations governing the motion are

u V)u=-V/?+f+vzlii, u(0) = 0, (1)

dxux + dyuy = 0, (2)

Z) = [0,L]x[0,2π]; x = (x9y) = x

where u(x,t) is the velocity, p(x,t)eR+ the pressure, v>0 the viscosity, f(x) the
external force. All functions involved are periodic of period L in x and 2π in y.

We introduce the vorticity ω = dxuy — dyux.
Equation (1) becomes

dtω + (w\)ω = F + vAω, (3)

where „ ~ r ~ r

F 3 f d f
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In our problem we want to introduce a reasonable Reynolds number. In [1] we
fixed a time scaling and we considered the ratio of the external force and the
viscosity. It was enough to prove the existence of a set of stationary states
attractive for any Reynolds number. Here we want to prove the independence of
the size of this set and so we need more care in defining the Reynolds number (that
is the explicit time scale). In general the Reynolds number R is defined as

R = LU/v,

where L and U are length and velocity characteristic of the system. We can assume
Las the length of the short edge of the torus and U as the supremum of the velocity
of the stationary state ΰ

R= supL|ΰ(x)|v.
xeD

The link between the stationary state and the external force will be discussed at
the end of the paper.

It is well known that in general the behavior of the solutions depends on JR.
When R is small there exists an attractive stationary state; when R increases this
state loses its stability and for large R the motion becomes chaotic. This behavior is
related with turbulence (see for instance [2]).

In this paper we want to show an open set of stationary states which are
attractive for any R with a basin of attraction independent of R.

We write the stationary state ΰ(x, y) as

where

u2(χ, y) = all other terms in the Fourier development.

Hence ώ = ωί + ω2, where

ωι=Λ1 siny — A2 cosy, ω2 = dxΰ2y ~~ ̂ y^ix

We define

v = u - ΰ ; E = l/2Jv2dx,
D

δ = ω-ώ; N = l/2$δ2dx,
and D

$(\ώ2)
2dx=W2v2.

We discuss the relation between R, v, and A. Of course, v is a scaling parameter
on the velocity field. We can fixv = l and use sup|ΰ| as the quantity proportional to
the Reynolds number. Moreover, R > LA, so that a property valid for any A holds
for R as large as we want. From here on c{ means constant independent of A.
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The result of this paper is stated in the following theorem:

Theorem. For every A and W<cx the stationary state attracts exponentially each
solution such that (N(0) — E(0))<c2. More precisely

E(ή = 1/2 j v2dx->0 exponentially,
D

N(t) = 1/2 J δ2dx->0 exponentially.
D

Proof. We introduce the stream function ψ = ψ + φ,

and we develop it in Fourier series:
oo oo

Σ Σ {amncos(

m = 0 n = 0

+ cmn sin(mhx) cos(ny) + dmn sin(mhx) sin(ny)} .

We define
( )

oo oo

,y)= Σ Σ {amncos(rnhx)cos(ny) + bmncos(mhx)sin(ny)
m = 0 n = 0

δί=a1 siny — a2

Ex = 1/2J (y1)
2dx = [(πL)/2] [(α 0 1 ) 2 + (fe01)

2], (4)

= 1/2 f (v2)
2rfx = [(πL)/2]/*2[(βl 0 ) 2 + (c 1 0 ) 2 ]

+ [(πL)/4] Σ Σ (»2+Λ2m2)[(flJ2 + ( 6 J 2 + ( c J 2 + ( < U 2 ] , (5)
m = 1 « = 1

ΛΓi = 1/2 J ( ^ ) ^ x = [(πL)/2] [(α 0 1 ) 2 + (fe0 1)
2], (6)

N2 = 1/2 J (5 2) 2iχ = [(πL)/2]/j4[(α10)
2 + (c 1 0 ) 2 ]

+ [(πL)/4] Σ Σ l(amn)
2 + {bmn)

2Hcmn)
2Hdmn)

2Wm2 + n2)2, (7)
m = 1 n = 1

and so
E = Eί+E2; N = NX+N2.

By a direct calculation we have

— = - j^(v V)ώJx-J(V(5)2Jx, (8)

d^ $(\v)2dx, (9)

and hence

^ l = _ j ίδ(y. v)co2 _ v (v \)ΰ2-]dx - J l(Vδ)2 -(Vv)2]</x

= -ί[^i(v2 V)ώ2 + ̂ 2(v1 V)ώ2 + <52(v2 V)ώ 2 -v 1 (v2 V)Q2

- v2 K V)fl2 - v2 (v2 V)u 2 ]dx- J [(V^)2 -(Vv) 2]Jx. (10)
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We note that

N - E = N2 - E2 = KπL)/2]h2(h2 -1) [(αx 0 ) 2 + ( c 1 0 ) 2 ]

+ [(πL)/4] £ £ [(<U 2+(U 2 + U 2 + (<ϋ2]
m = 1 « = 1

x(h2m2 + n2)(h2rn2 + n2-l). (11)

All terms in the sum are positive and hence (N — E) small implies that all
coefficients in the Fourier development different from a01 and b01 must be small.

We study now the evolution in time of E1:

άEΛ
i = ίv [(v V)0 + (v V)v2 + (α2 V)v 1 ]dx-2E 1 . (12)

We observe that

2-(Vv)2]dx = πLh\h2 - l ) [ ( α 1 0 ) 2 + ( c 1 0 ) 2 ]

Σ Σ (π
m = 1 n = 1

(13)

Then we estimate the other terms in (10) and (13). By use of the definition of Eu

the expression (11), integration by parts, we obtain

£), (14)

(15)

dt z

dlλ<
dt =l

We study these inequalities. We suppose initially

cs(N-E)V2<Wc6. (16)

We prove that this property holds for every time if W is small enough. In fact, we
sum (14) and (15), and we have

d[{N-E)ί/2 + (E1)
1/2^ 1 / 2 1 / 2 1 / 2 1 / 2

dt ~ 9 l lo l
(17)

For W small enough (N~E)ί/2-h(Eί)
1/2 is bounded by a function which vanishes

exponentially. So Ex and (N — E) separately vanish exponentially. •

Finally, we want to relate the stationary state with the external force f

where

f2(x, y) = other terms in the Fourier development,
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where

Proceeding as in [1] we have

J [ώ2F2 -u2 f jdx = J [(Vώ2)
2 -(Vϋ2)

2]dx. (18)

Hence

C l t J (Vώ2)
2rfx £ J [(Vώ2)

2 - (V02)
2]rfx ^ [j (d}2)

2iix] ̂  + [f (ύ2)
2rfx] ^ 2

^ Q ί V ώ ^ d x J ^ ^ ϋ ί F ^ d x J ^ ^ u ίf^dx] 1/ 2}, (19)

and so
ci i ϋ (Vd)2)

2rfx] ^ 2 < [f (F2)
2dx] u* + U (f2)

2dχ-]1/2 (20)

Then we see that small forces f2 produce small stationary states, u2 for any f 1.
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